1
|
Goto S, Setoguchi S, Matsunaga K, Takata J. Effects of radical scavengers for reactive oxygen species on vitamin K-induced phototoxicity under UVA irradiation. Toxicol In Vitro 2024; 98:105839. [PMID: 38723978 DOI: 10.1016/j.tiv.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Vitamin K possesses efficacy as a topical dermatological agent. However, vitamin K is phototoxic and susceptible to photodegradation. Herein, we investigated the mechanisms underlying the phototoxicity of phylloquinone (PK, vitamin K1) and menaquinone-4 (MK-4, vitamin K2) under ultraviolet A (UVA) irradiation using various reactive oxygen species (ROS) scavengers. This resulted in the production of superoxide anion radicals via type I and singlet oxygen via type II photodynamic reactions, which were quenched by the ROS scavengers: superoxide dismutase and sodium azide (NaN3). In HaCaT cells, MK-4 and PK induced the production of intracellular ROS, particularly hydrogen peroxide, in response to UVA irradiation. Furthermore, the addition of catalase successfully decreased maximum ROS levels by approximately 30%. NaN3 and catalase decreased the maximum reduction in cell viability induced by UVA-irradiated PK and MK-4 in cell viability by approximately 2-7-fold. Additionally, ROS scavengers had no effect on the photodegradation of PK or MK-4 at 373 nm. Therefore, the phototoxicities of PK and MK-4 were attributed to the generation of singlet oxygen and hydrogen peroxide, underscoring the importance of photoshielding in circumventing phototoxicity.
Collapse
Affiliation(s)
- Shotaro Goto
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Shuichi Setoguchi
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhisa Matsunaga
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Jiro Takata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
2
|
Lee CH, Wallace DC, Burke PJ. Photobleaching and phototoxicity of mitochondria in live cell fluorescent super-resolution microscopy. MITOCHONDRIAL COMMUNICATIONS 2024; 2:38-47. [PMID: 39449993 PMCID: PMC11500826 DOI: 10.1016/j.mitoco.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photobleaching and phototoxicity can induce detrimental effects on cell viability and compromise the integrity of collected data, particularly in studies utilizing super-resolution microscopes. Given the involvement of multiple factors, it is currently challenging to propose a single set of standards for assessing the potential of phototoxicity. The objective of this paper is to present empirical data on the effects of photobleaching and phototoxicity on mitochondria during super-resolution imaging of mitochondrial structure and function using Airyscan and the fluorescent structure dyes Mitotracker green (MTG), 10-N-nonyl acridine orange (NAO), and voltage dye Tetramethylrhodamine, Ethyl Ester (TMRE). We discern two related phenomena. First, phototoxicity causes a transformation of mitochondria from tubular to spherical shape, accompanied by a reduction in the number of cristae. Second, phototoxicity impacts the mitochondrial membrane potential. Through these parameters, we discovered that upon illumination, NAO is much more phototoxic to mitochondria compared to MTG or TMRE and that these parameters can be used to evaluate the relative phototoxicity of various mitochondrial dye-illumination combinations during mitochondrial imaging.
Collapse
Affiliation(s)
- Chia-Hung Lee
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, United States
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pediatrics, Division of Human Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Peter J. Burke
- Department of Electrical Engineering and Computer Science, United States
| |
Collapse
|
3
|
Seo C, An HW, Han W, Lee JW, Shrestha KK, Jung WK, Shin JH, Lee SG. Screening of antioxidant capacity of Nepali medicinal plants with a novel singlet oxygen scavenging assay. Food Sci Biotechnol 2023; 32:221-228. [PMID: 36647521 PMCID: PMC9839913 DOI: 10.1007/s10068-022-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023] Open
Abstract
Pollutant exposure due to industrial development increases oxidative stress in human bodies. Dietary intake of antioxidant shows a protective effect against oxidative damage induced by oxidative stress. Therefore, the development of natural antioxidants is needed. In this study, the antioxidant activities of some Nepali medicinal plant extracts were measured. Using Rose bengal and 3,3',5,5'-tetramethylbenzidine, a novel assay was utilized to evaluate the singlet oxygen scavenging capacity, and showed a strong correlation with other antioxidant assays. Also, antioxidant capacities based on four assays including the singlet oxygen scavenging assay were highly correlated (≥ 0.858) with the total phenolic contents in the medicinal plant extracts. Among the selected extracts, Persicaria capitata, Elaphoglossum marginatum and Eurya acuminata showed the highest antioxidant capacities. Overall, this study presents a novel approach for evaluating singlet oxygen scavenging capacity, and performed a screening of antioxidant capacities of 54 Nepali herbal medicines. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01175-z.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Hyun Woo An
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | | | - Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| |
Collapse
|
4
|
Theoretical and kinetic study of the singlet oxygen quenching reaction by hesperidin isolated from mandarin (Citrus reticulata) fruit peels. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ling P, Sun X, Chen N, Cheng S, Gao X, Gao F. Electrochemical biosensor based on singlet oxygen generated by molecular photosensitizers. Anal Chim Acta 2021; 1183:338970. [PMID: 34627523 DOI: 10.1016/j.aca.2021.338970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
Here a sensing strategy with the integration of photosensitizer and electrochemical analysis was present. The photosensitizer, Zinc(II) tetraphenylporphyrin (ZnTCPP), was functionalized graphene oxide (GO) to form complex (ZnTCPP/GO) as the electrode material and generated singlet-oxygen (1O2) in the presence of air under light illumination. Due to the special electronic structure of 1O2, hydroquinone (HQ) could react with 1O2 to produce electrochemically-detectable products, benzoquinone (BQ). Meanwhile, the formed BQ could be reduced on the electrode, completing the redox cycling. The ZnTCPP/GO modified ITO electrode produces a stable and enhanced photocurrent signal under 420 nm irradiation in air-saturated buffer, compared with in N2-saturated buffer. On the other hand, l-glutathione (GSH) as a signalling molecule plays important role in physiological process, which was employed as model to investigated the sensing performance. Coupling with HQ oxidized by 1O2, a GSH sensor was constructed on the basis the redox cycling of HQ. A sensitive reduction of photocurrent is observed with the addition of GSH, due to the GSH could be oxidized by the generated 1O2 to form GSSG. The biosensor displayed good performance in a broad concentration range of 0-150 μM, with a lower detection limit of 1.3 μM at an S/N ratio of 3, and could be used in practical application. This work affords a platform for constructing the biosensor with 1O2 instead of enzyme via on/off light switching.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Nuo Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Shan Cheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| |
Collapse
|
6
|
Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel) 2021; 14:723. [PMID: 34451820 PMCID: PMC8401619 DOI: 10.3390/ph14080723] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient's comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Collapse
Affiliation(s)
| | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.K.); (J.R.); (Z.R.)
| |
Collapse
|
7
|
Hansda S, Ghosh G, Ghosh R. 9-phenyl acridine photosensitizes A375 cells to UVA radiation. Heliyon 2020; 6:e04733. [PMID: 32944667 PMCID: PMC7481570 DOI: 10.1016/j.heliyon.2020.e04733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Acridines are an important class of bioactive molecules having varied uses. Its derivative, 9-phenylacridine (ACPH) had been found to exhibit antitumor activity both in cell lines and in vivo model. Its DNA binding ability and absorbance in the ultraviolet range encouraged us to investigate its role as a photosensitizer with UVA radiation. We investigated the effects of ACPH prior to UVA exposure on in vitro DNA through photo-cleavage assay. Effect of such treatment was also studied in cultured A375 melanoma cells. Endpoints studied included morphological changes, evaluation of cellular viability, scratch assay, intracellular reactive oxygen species (ROS) production, DNA damage, lipid peroxidation, glutathione (GSH) level, autophagy, cell cycle progression, depletion of mitochondrial membrane potential (ΔΨmt), induction of apoptosis and Hoechst dye efflux assay. Our findings indicated that ACPH could sensitize damage to DNA induced by UVA both in vitro and in cells. It could also potentiate cell killing by UVA. It arrested cells in G2/M phase and induced apoptotic death through mitochondria mediated pathway. This sensitization was through enhancement of intracellular ROS. Our findings also indicated that the stem cells side population was reduced on such treatment. The findings are important as it indicates ACPH as a promising photosensitizer and indicates its possible role in photodynamic therapy.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| |
Collapse
|
8
|
Pagano C, Latterini L, Di Michele A, Luzi F, Puglia D, Ricci M, Antonio Viseras Iborra C, Perioli L. Polymeric Bioadhesive Patch Based on Ketoprofen-Hydrotalcite Hybrid for Local Treatments. Pharmaceutics 2020; 12:pharmaceutics12080733. [PMID: 32759858 PMCID: PMC7464538 DOI: 10.3390/pharmaceutics12080733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
Ketoprofen (KET) represents one of the most common drugs used in the topical treatment of pain and inflammations. However, its potential is rather limited due to the very low solubility and photochemical instability. The local administration of KET by conventional products, such as gels, emulgels, creams, and foams, does not guarantee an efficacious and safe treatment because of its low absorption (due to low solubility) and its sensitivity to UV rays. The photodegradation of KET makes many photoproducts responsible for different adverse effects. In the present work, KET was intercalated into the lamellar anionic clay ZnAl-hydrotalcite (ZnAl-HTlc), obtaining the hybrid ZnAl-KET with improved stability to UV rays and water solubility in comparison to the crystalline form (not intercalated KET). The hybrid was then formulated in autoadhesive patches for local pain treatment. The patches were prepared by casting method starting from a hydrogel based on the biocompatible and bioadhesive polymer NaCMC (Sodium carboxymethycellulose) and glycerol as a plasticizing agent. The introduction of ZnAl-KET in the patch composition demonstrated the improvement in the mechanical properties of the formulation. Moreover, a sustained and complete KET release was obtained within 8 h. This allowed reducing the frequency of anti-inflammatory administration, compared to the conventional formulations.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia Italy; (C.P.); (M.R.)
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
| | | | - Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (F.L.); (D.P.)
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (F.L.); (D.P.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia Italy; (C.P.); (M.R.)
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain;
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia Italy; (C.P.); (M.R.)
- Correspondence: ; Tel.: +39-075-585-5133 or +39-075-585-5123
| |
Collapse
|
9
|
Sensitive spectrofluorimetric and mass spectroscopic methods for the determination of nucleic acid damage induced by photosensitized anti-inflammatory drugs: Comparative study. J Pharm Biomed Anal 2020; 187:113326. [DOI: 10.1016/j.jpba.2020.113326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/28/2022]
|
10
|
Diaz-Uribe C, Vallejo W, Flórez J, Trilleras J, Gutierrez M, Rodriguez-Serrano A, Schott E, Zarate X. Furanyl chalcone derivatives as efficient singlet oxygen quenchers. An experimental and DFT/MRCI study. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Santaus TM, Greenberg K, Suri P, Geddes CD. Elucidation of a non-thermal mechanism for DNA/RNA fragmentation and protein degradation when using Lyse-It. PLoS One 2019; 14:e0225475. [PMID: 31790434 PMCID: PMC6886747 DOI: 10.1371/journal.pone.0225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
Rapid sample preparation is one of the leading bottlenecks to low-cost and efficient sample component detection. To overcome this setback, a technology known as Lyse-It has been developed to rapidly (less than 60 seconds) lyse Gram-positive and-negative bacteria alike, while simultaneously fragmenting DNA/RNA and proteins into tunable sizes. This technology has been used with a variety of organisms, but the underlying mechanism behind how the technology actually works to fragment DNA/RNA and proteins has hitherto been studied. It is generally understood how temperature affects cellular lysing, but for DNA/RNA and protein degradation, the temperature and amount of energy introduced by microwave irradiation of the sample, cannot explain the degradation of the biomolecules to the extent that was being observed. Thus, an investigation into the microwave generation of reactive oxygen species, in particular singlet oxygen, hydroxyl radicals, and superoxide anion radicals, was undertaken. Herein, we probe one aspect, the generation of reactive oxygen species (ROS), which is thought to contribute to a non-thermal mechanism behind biomolecule fragmentation with the Lyse-It technology. By utilizing off/on (Photoinduced electron transfer) PET fluorescent-based probes highly specific for reactive oxygen species, it was found that as oxygen concentration in the sample and/or microwave irradiation power increases, more reactive oxygen species are generated and ultimately, more oxidation and biomolecule fragmentation occurs within the microwave cavity.
Collapse
Affiliation(s)
- Tonya M. Santaus
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Ken Greenberg
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Prabhdeep Suri
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Srivastav AK, Dubey D, Chopra D, Singh J, Negi S, Mujtaba SF, Dwivedi A, Ray RS. Oxidative stress–mediated photoactivation of carbazole inhibits human skin cell physiology. J Cell Biochem 2019; 121:1273-1282. [DOI: 10.1002/jcb.29360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Ajeet K. Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
- Department of Research and Development Aryan Essentials Private Limited (Brand Name‐Wikka) New Delhi India
| | - Divya Dubey
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Jyoti Singh
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
- Department of Biochemistry, School of Dental sciences Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Syed Faiz Mujtaba
- Department of Zoology, Faculty of Science Shia P.G. College Lucknow Uttar Pradesh India
| | - Ashish Dwivedi
- Food Drug and Chemical Toxicology Division CSIR‐IITR Lucknow Uttar Pradesh India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| |
Collapse
|
13
|
Santaus TM, Zhang F, Li S, Stine OC, Geddes CD. Effects of Lyse-It on endonuclease fragmentation, function and activity. PLoS One 2019; 14:e0223008. [PMID: 31568482 PMCID: PMC6768537 DOI: 10.1371/journal.pone.0223008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Nucleases are enzymes that can degrade genomic DNA and RNA that decrease the accuracy of quantitative measures of those nucleic acids. Here, we study conventional heating, standard microwave irradiation, and Lyse-It, a microwave-based lysing technology, for the potential to fragment and inactivate DNA and RNA endonucleases. Lyse-It employs the use of highly focused microwave irradiation to the sample ultimately fragmenting and inactivating RNase A, RNase B, and DNase I. Nuclease size and fragmentation were determined visually and quantitatively by SDS polyacrylamide gel electrophoresis and the mini-gel Agilent 2100 Bioanalyzer system, with a weighted size calculated to depict the wide range of nuclease fragmentation. Enzyme activity assays were conducted, and the rates were calculated to determine the effect of various lysing conditions on each of the nucleases. The results shown in this paper clearly demonstrate that Lyse-It is a rapid and highly efficient way to degrade and inactivate nucleases so that nucleic acids can be retained for down-stream detection.
Collapse
Affiliation(s)
- Tonya M. Santaus
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Fan Zhang
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Shan Li
- Epidemiology and Public Health Department, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - O. Colin Stine
- Epidemiology and Public Health Department, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Chemistry and Biochemistry Department, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Agnihotry S, Dhusia K, Srivastav AK, Upadhyay J, Verma V, Shukla PK, Ramteke PW, Gautam B. Biochemical regulation and structural analysis of copper‐transporting ATPase in a human hepatoma cell line for Wilson disease. J Cell Biochem 2019; 120:18826-18844. [DOI: 10.1002/jcb.29199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shikha Agnihotry
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio‐Engineering, Sam Higginbottom University of AgricultureTechnology and Sciences Allahabad Uttar Pradesh India
| | - Kalyani Dhusia
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio‐Engineering, Sam Higginbottom University of AgricultureTechnology and Sciences Allahabad Uttar Pradesh India
| | - Ajeet K. Srivastav
- Photobiology Laboratory, System Toxicology and Health Risk Assessment GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow Uttar Pradesh India
| | - Jaya Upadhyay
- Department of GastroenterologySanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow Uttar Pradesh India
| | - Vinod Verma
- Department of Hematology, Stem Cell Research CentreSanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow Uttar Pradesh India
| | - Pradeep K. Shukla
- Department of Biological Sciences, Sam Higginbottom University of AgricultureTechnology and Sciences Allahabad Uttar Pradesh India
| | - Pramod W. Ramteke
- Department of Biological Sciences, Sam Higginbottom University of AgricultureTechnology and Sciences Allahabad Uttar Pradesh India
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio‐Engineering, Sam Higginbottom University of AgricultureTechnology and Sciences Allahabad Uttar Pradesh India
| |
Collapse
|
15
|
Efficiency comparison of the imidazole plus RNO method for singlet oxygen detection in biorelevant solvents. Anal Bioanal Chem 2019; 411:5287-5296. [DOI: 10.1007/s00216-019-01910-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
|
16
|
Lucas RM, Yazar S, Young AR, Norval M, de Gruijl FR, Takizawa Y, Rhodes LE, Sinclair CA, Neale RE. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem Photobiol Sci 2019; 18:641-680. [PMID: 30810559 DOI: 10.1039/c8pp90060d] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Montreal Protocol has limited increases in the UV-B (280-315 nm) radiation reaching the Earth's surface as a result of depletion of stratospheric ozone. Nevertheless, the incidence of skin cancers continues to increase in most light-skinned populations, probably due mainly to risky sun exposure behaviour. In locations with strong sun protection programs of long duration, incidence is now reducing in younger age groups. Changes in the epidemiology of UV-induced eye diseases are less clear, due to a lack of data. Exposure to UV radiation plays a role in the development of cataracts, pterygium and possibly age-related macular degeneration; these are major causes of visual impairment world-wide. Photodermatoses and phototoxic reactions to drugs are not uncommon; management of the latter includes recognition of the risks by the prescribing physician. Exposure to UV radiation has benefits for health through the production of vitamin D in the skin and modulation of immune function. The latter has benefits for skin diseases such as psoriasis and possibly for systemic autoimmune diseases such as multiple sclerosis. The health risks of sun exposure can be mitigated through appropriate sun protection, such as clothing with both good UV-blocking characteristics and adequate skin coverage, sunglasses, shade, and sunscreen. New sunscreen preparations provide protection against a broader spectrum of solar radiation, but it is not clear that this has benefits for health. Gaps in knowledge make it difficult to derive evidence-based sun protection advice that balances the risks and benefits of sun exposure.
Collapse
Affiliation(s)
- R M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australia. and Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - S Yazar
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | - M Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, Scotland, UK
| | - F R de Gruijl
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Y Takizawa
- Akita University School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - L E Rhodes
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - R E Neale
- QIMR Berghofer Institute of Medical Research, Herston, Brisbane, Australia and School of Public Health, University of Queensland, Australia
| |
Collapse
|
17
|
Barras A, Skandrani N, Gonzalez Pisfil M, Paryzhak S, Dumych T, Haustrate A, Héliot L, Gharbi T, Boulahdour H, Lehen'kyi V, Bilyy R, Szunerits S, Bidaux G, Boukherroub R. Improved photodynamic effect through encapsulation of two photosensitizers in lipid nanocapsules. J Mater Chem B 2018; 6:5949-5963. [PMID: 32254715 DOI: 10.1039/c8tb01759j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy (PDT) has developed into a new clinical and non-invasive treatment for cancer over the past 30 years. By the combination of three non-toxic partners, i.e. a photosensitizer (PS), molecular oxygen (O2) and light, cytotoxic reactive oxygen species (ROS) are locally produced leading to irreversible vascular and cellular damage. In the present study, we report for the first time that the combination of two photosensitizers (2 PSs: Protoporphyrin IX, PpIX and Hypericin, Hy) loaded in the same lipid nanocapsules (LNCs) leads to enhanced photodynamic therapy efficiency when compared with previously reported systems. The 2 PS-loaded LNCs are shown to increase the in vitro phototoxicity at the nanomolar range (IC50 = 274 and 278 nM on HeLa and MDA-MB-231 cell lines, respectively), whereas the corresponding single PS-loaded LNCs at the same concentration exhibit a phototoxicity two times lower. Intracellular localization in HeLa cells indicates a subcellular asymmetry of PpIX and Hy, in the plasma, ER membranes and round internal structures. The biodistribution of LNCs was studied upon different routes of injection into Swiss nude mice; based on the obtained data, LNCs were injected intratumorally and used to slow the growth of xenograft tumors in mice. The results obtained in this study suggest that the combination of two or more PSs may be a promising strategy to improve the efficacy of conventional photodynamic therapy as well as to reduce dark toxicity.
Collapse
Affiliation(s)
- Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Drug-induced photosensitivity reactions are significant adverse effects. Ketoprofen is one of the most common drugs that can cause skin rash in sun-exposed areas. Non-steroidal anti-inflammatory drugs (NSAIDs), such as ketoprofen, are often used for a variety of symptoms, including pain and fever. An understanding of the presentation and clinical course of ketoprofen-induced photosensitivity is necessary to correctly diagnose and manage this condition. Ketoprofen-induced photosensitivity reactions usually present as photoallergic dermatitis, which is a cell-mediated immune process. The benzophenone moiety in ketoprofen plays a major role in ketoprofen's ability to act as a photosensitizer. Several agents, such as fenofibrate and octocrylene have been found to be associated with aggravation of ketoprofen-induced photoallergic dermatitis or cross-photosensitization, and these reactions result from structural similarities with ketoprofen. Treatment of ketoprofen-induced photoallergic dermatitis includes discontinuation of ketoprofen, topical or systemic corticosteroids and avoidance of sun exposure and agents known to exacerbate dermatitis. In conclusion, photoallergic dermatitis is a significant adverse effect of ketoprofen. Some agents known to worsen dermatitis may be found in sun protection products (notably, octocrylene in sunscreen). Educating the patient to avoid these products is critical to treatment. Since NSAIDs, such as ketoprofen, are used commonly for a variety of illnesses, drug-induced photoallergic dermatitis should be high on the differential in individuals using these medications who present with acute onset of a rash in sun-exposed areas.
Collapse
Affiliation(s)
- Tiffany Yvonne Loh
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Philip R Cohen
- Department of Dermatology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Photosensitized methyl paraben induces apoptosis via caspase dependent pathway under ambient UVB exposure in human skin cells. Food Chem Toxicol 2017; 108:171-185. [DOI: 10.1016/j.fct.2017.07.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 11/19/2022]
|
20
|
Khandpur S, Porter R, Boulton S, Anstey A. Drug-induced photosensitivity: new insights into pathomechanisms and clinical variation through basic and applied science. Br J Dermatol 2017; 176:902-909. [DOI: 10.1111/bjd.14935] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- S. Khandpur
- Department of Dermatology and Venereology; All India Institute of Medical Sciences; New Delhi India
| | - R.M. Porter
- Academic Dermatology; Aneurin Bevan Health Board, Stow Hill; St Woolos Hospital; Newport NP20 4SZ U.K
| | - S.J. Boulton
- School of Biomedical Sciences; Faculty of Medical Sciences; Newcastle University Medical School, Framlington Place; Newcastle upon Tyne NE2 4HH U.K
| | - A. Anstey
- Betsi Cadwaladr University Health Board; Ysbyty Gwynedd, Penrhosgarnedd; Bangor Gwynedd LL57 2PY U.K
| |
Collapse
|
21
|
Goyal S, Amar SK, Srivastav AK, Chopra D, Pal MK, Arjaria N, Ray RS. ROS mediated crosstalk between endoplasmic reticulum and mitochondria by Phloxine B under environmental UV irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:284-94. [PMID: 27288659 DOI: 10.1016/j.jphotobiol.2016.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/16/2016] [Accepted: 05/31/2016] [Indexed: 11/25/2022]
Abstract
Phloxine B (PhB) is a most commonly used dye in cosmetic products throughout the world. It shows an absorption in visible and ultraviolet radiations. PhB was photodegraded within 4h of UV exposure. It generates reactive oxygen species (ROS) photochemically and intracellularly. Photosensitized PhB caused dose dependent cell viability reduction of human keratinocyte cell line (HaCaT) which was measured through MTT (75.4%) and NRU (77.3%) assays. It also induces cell cycle arrest and DNA damage. Photosensitized PhB induces Ca(2+) release from endoplasmic reticulum (ER). It causes the upregulation of ER stress marker genes ATF6 (1.79 fold) and CHOP (1.93 fold) at transcription levels. The similar response of ATF6 (3.6 fold) and CHOP (2.38 fold) proteins was recorded at translation levels. CHOP targeted the mitochondria and reduced the mitochondrial membrane potential analyzed through JC-1 staining. It further increases Bax/Bcl2 ratio (3.58 fold) and promotes the release of cytochrome c, finally leads to caspase-dependent apoptosis. Upregulation of APAF1 (1.79 fold) in PhB treated cells under UV B exposure supports the mitochondrial-mediated apoptotic cell death. The results support the involvement of ER and mitochondria in ROS mediated PhB phototoxicity. Therefore, the use of PhB in cosmetic products may be deleterious to users during sunlight exposure.
Collapse
Affiliation(s)
- Shruti Goyal
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - IITR, Lucknow 226001, India
| | - Saroj Kumar Amar
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - IITR, Lucknow 226001, India; Division of Forensic Science, School of Basic and Applied Science, Galgotias University, Uttar Pradesh, India
| | - Ajeet Kumar Srivastav
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Manish Kumar Pal
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nidhi Arjaria
- Central Instrumentation Facility (TEM), CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR - IITR, Lucknow 226001, India.
| |
Collapse
|
22
|
Srivastav AK, Mujtaba SF, Dwivedi A, Amar SK, Goyal S, Verma A, Kushwaha HN, Chaturvedi RK, Ray RS. Photosensitized rose Bengal-induced phototoxicity on human melanoma cell line under natural sunlight exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 156:87-99. [PMID: 26866294 DOI: 10.1016/j.jphotobiol.2015.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/29/2022]
Abstract
Rose Bengal (RB) is an anionic water-soluble xanthene dye, which used for many years to assess eye cornea and conjunctiva damage. RB showed strong absorption maxima (λmax) under visible light followed by UV-B and UV-A. RB under sunlight exposure showed a time-dependent photodegradation. Our results show that photosensitized RB generates (1)O2 via Type-II photodynamic pathway and induced DNA damage under sunlight/UV-R exposure. 2'dGuO degradation, micronuclei formation, and single- and double-strand breakage were the outcome of photogenotoxicity caused by RB. Quenching studies with NaN3 advocate the involvement of (1)O2 in RB photogenotoxicity. RB induced linoleic acid photoperoxidation, which was parallel to (1)O2-mediated DNA damage. Oxidative stress in A375 cell line (human melanoma cell line) was detected through DCF-DA assay. Photosensitized RB decreased maximum cellular viability under sunlight followed by UV-B and UV-A exposures. Apoptosis was detected as a pattern of cell death through the increased of caspase-3 activity, decreased mitochondrial membrane potential, and PS translocation through inner to outer plasma membrane. Increased cytosolic levels of Bax also advocate the apoptotic cell death. We propose a p53-mediated apoptosis via increased expression of Bax gene and protein. Thus, the exact mechanism behind RB phototoxicity was the involvement of (1)O2, which induced oxidative stress-mediated DNA and membrane damage, finally apoptotic cell death under natural sunlight exposure. The study suggests that after the use of RB, sunlight exposure may avoid to prevent from its harmful effects.
Collapse
Affiliation(s)
- Ajeet K Srivastav
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Syed Faiz Mujtaba
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Saroj K Amar
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Shruti Goyal
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Ankit Verma
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hari N Kushwaha
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research,Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
23
|
Amar SK, Goyal S, Mujtaba SF, Dwivedi A, Kushwaha HN, Verma A, Chopra D, Chaturvedi RK, Ray RS. Role of type I & type II reactions in DNA damage and activation of Caspase 3 via mitochondrial pathway induced by photosensitized benzophenone. Toxicol Lett 2015; 235:84-95. [DOI: 10.1016/j.toxlet.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
24
|
Diaz-Uribe CE, Vallejo W, Castellar W, Trilleras J, Ortiz S, Rodriguez-Serrano A, Zarate X, Quiroga J. Novel (E)-1-(pyrrole-2-yl)-3-(aryl)-2-(propen-1-one) derivatives as efficient singlet oxygen quenchers: kinetics and quantum chemical calculations. RSC Adv 2015. [DOI: 10.1039/c5ra13203g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kinetics of singlet oxygen (1O2) quenching by newly synthesized chalcone derivatives with potential antioxidant applications, and DFT/MRCI calculations.
Collapse
Affiliation(s)
- Carlos E. Diaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología
- Universidad del Atlántico
- Barranquilla
- Colombia
| | - William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología
- Universidad del Atlántico
- Barranquilla
- Colombia
| | - Wilmar Castellar
- Grupo de Investigación en Fotoquímica y Fotobiología
- Universidad del Atlántico
- Barranquilla
- Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos
- Universidad del Atlántico
- Barranquilla
- Colombia
| | - Stephanie Ortiz
- Grupo de Investigación en Compuestos Heterocíclicos
- Universidad del Atlántico
- Barranquilla
- Colombia
| | | | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas
- Facultad de Ingeniería
- Universidad Autónoma de Chile
- Santiago
- Chile
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos
- Universidad del Valle
- Cali
- Colombia
| |
Collapse
|