1
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
2
|
Yang H, Yang T, Ding J, Wang X, Chen X, Liu J, Shu T, Wu Z, Sun L, Huang X, Jiang Z, Zhang L. Taurocholic acid represents an earlier and more sensitive biomarker and promotes cholestatic hepatotoxicity in ANIT-treated rats. J Appl Toxicol 2024; 44:1742-1760. [PMID: 39030796 DOI: 10.1002/jat.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.
Collapse
Affiliation(s)
- Hang Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Tingting Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiaxin Ding
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xue Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xi Chen
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Jia Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ting Shu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ziteng Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Khayat MT, Mohammad KA, Mohamed GA, El-Agamy DS, Elsaed WM, Ibrahim SRM. γ-Mangostin abrogates AINT-induced cholestatic liver injury: Impact on Nrf2/NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD signalling. Life Sci 2023; 322:121663. [PMID: 37023956 DOI: 10.1016/j.lfs.2023.121663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
γ-Mangostin (γ-MN) is one of the abundant xanthones separated from Garcinia mangostana (Clusiaceae) pericarps that has been reported to have varied bioactivities such as neuroprotective, cytotoxic, antihyperglycemic, antioxidant, and anti-inflammation. Yet, its effect on cholestatic liver damage (CLI) has not been investigated. This study explored the protective activity of γ-MN against alpha-naphthyl isothiocyanate (ANIT)-induced CLI in mice. The results showed that γ-MN protected against ANIT-induced CLI as indicated by reduced serum levels of hepatic injury parameters (e.g., ALT, AST, γ-GT, ALP, LDH, bilirubin, and total bile acids). ANIT-induced pathological lesions were improved in γ-MN pre-treated groups. γ-MN exerted potent antioxidant effects as it lowered the parameters of lipid peroxidation (4-HNE, PC, and MDA) and intensified the content and activity of antioxidants (TAC, GSH, GSH-Px, GST, and SOD) in the hepatic tissue. Furthermore, γ-MN enhanced the signalling of Nrf2/HO-1 as it augmented the mRNA expression of Nrf2/downstream genes (HO-1/GCLc/NQO1/SOD). The binding capacity and the immuno-expression of Nrf2 were also increased. γ-MN showed anti-inflammatory capacity as it suppressed the activation of NF-κB signalling, it decreased mRNA expression and levels of NF-κB/TNF-α/IL-6 and the immuno-expression of NF-κB/TNF-α. In addition, γ-MN inhibited the activation of NLRP3 inflammasome as it lowered the mRNA expression of NLRP3/caspase-1/IL-1β along with their levels as well as the immuno-expression of caspase-1/IL-1β. γ-MN also reduced the level of the pyroptotic parameter GSDMD. Collectively, this study demonstrated the potent hepatoprotective potential of γ-MN against CLI which was linked to its ability to potentiate Nrf2/HO-1 and to offset NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD. Hence, γ-MN may be suggested as a new candidate for cholestatic patients.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khadijah A Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
4
|
Refat M, Zhang G, Ahmed A Saad A, Baldi S, Zheng F, Wu X. 7, 8-Dihydroxy-4-methyl coumarin alleviates cholestasis via activation of the Farnesoid X receptor in vitro and in vivo. Chem Biol Interact 2023; 370:110331. [PMID: 36581201 DOI: 10.1016/j.cbi.2022.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Cholestasis is primarily caused by bile acid homeostasis dysregulation, resulting in retention, aggregation, and accumulation of the toxic cholate in the hepatocytes. Existing therapies for cholestasis are limited, demanding the urgent development of novel drugs. As a result, targeting FXR specifically promises a unique treatment strategy for cholestasis. The current study aims to evaluate the influence of 7, 8-dihydroxy-4-methyl coumarin (DMC) against alpha-naphthyl isothiocyanate (ANIT)-induced liver injury in mice. The "Computer-Aided Drug Design" (CADD) and molecular docking study anticipated that DMC would proficiently bind and activate the FXR. Accordingly, the hepatoprotective activity of DMC against ANIT-induced hepatotoxicity and cholestasis was investigated in ANIT-treated HepaRG cells and the ANIT-induced cholestatic mouse model. Outcomes indicated the protective effects of DMC against ANIT toxicity in HepaRG cells after 24 h of intervention and animals after seven days of treatment. DMC partially blocks ANIT-induced increases in serum markers of hepatocellular injury, liver and gall bladder enlargement, and hepatic necrosis. Western blotting revealed that DMC alleviates ANIT-induced hepatotoxicity and cholestasis via activating the FXR receptor and regulating CYP7A1, the enzyme responsible for bile acid synthesis. DMC exhibited protective activity against cholestasis through activating FXR, suggesting it might be a promising strategy for preventing and treating cholestatic liver disease.
Collapse
Affiliation(s)
- Moath Refat
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China; Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Abdulaziz Ahmed A Saad
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, Guangdong, 518057, China
| | - Fang Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
5
|
Yuan Z, Wang J, Zhang H, Chai Y, Xu Y, Miao Y, Yuan Z, Zhang L, Jiang Z, Yu Q. Glycocholic acid aggravates liver fibrosis by promoting the up-regulation of connective tissue growth factor in hepatocytes. Cell Signal 2023; 101:110508. [PMID: 36341984 DOI: 10.1016/j.cellsig.2022.110508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
AIMS The precise role of bile acid in the progression of liver fibrosis has yet to be elucidated. In this study, common bile duct ligation was used as an in vivo mouse model for the evaluation of bile acids that promote liver connective tissue growth factor expression. MAIN METHODS Primary rat and mice hepatocytes, as well as primary rat hepatic stellate and HepaRG cells were evaluated as in vitro models for promoting the expression of connective tissue growth factor by bile acids. KEY FINDINGS Compared with taurochenodeoxycholic acid, glycochenodeoxycholic acid, and taurocholic acid, glycocholic acid (GCA) most strongly promoted the secretion of connective tissue growth factor in mouse primary hepatocytes, rat primary hepatocytes and HepaRGs. GCA did not directly promote the activation of hepatic stellate cells. The administration of GCA in mice with ligated bile ducts promotes the progression of liver fibrosis, which may promote the yes-associated protein of hepatocytes into the nucleus, resulting in the hepatocytes secreting more connective tissue growth factor for hepatic stellate cell activation. In conclusion, our data showed that GCA can induce the expression of connective tissue growth factor in hepatocytes by promoting the nuclear translocation of yes-associated protein, thereby activating hepatic stellate cells. SIGNIFICANCE Our findings help to elucidate the contribution of GCA to the progression of hepatic fibrosis in cholestatic disease and aid the clinical monitoring of cholestatic liver fibrosis development.
Collapse
Affiliation(s)
- Zihang Yuan
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Haoran Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yunxia Xu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinwei Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Lv XT, Wang RH, Liu XT, Ye YJ, Liu XY, Qiao JD, Wang GE. Theacrine ameliorates experimental liver fibrosis in rats by lowering cholesterol storage via activation of the Sirtuin 3-farnesoid X receptor signaling pathway. Chem Biol Interact 2022; 364:110051. [PMID: 35872049 DOI: 10.1016/j.cbi.2022.110051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Formulations against liver fibrosis (LF) mitigate the progression of hepatitis to cirrhosis. However, notable toxicity of the currently available anti-LF drugs limits their long-term use. In the study, we aimed to investigate the anti-LF effects of theacrine, a purine alkaloid without obvious toxicity, on high-fat diet-, alcohol-, and carbon tetrachloride-induced LF in rats. The results indicated that 10 and 20 mg/kg of theacrine ameliorated hepatic fibrosis, steatosis, and inflammation in LF rats. Mechanistically, theacrine reduced hepatic stellate cell (HSC)-related α-smooth muscle actin expression, and decreased cholesterol accumulation, followed by decreased expression of transforming growth factor-β1, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α. In addition, theacrine upregulated the phosphorylation of AMP-activated protein kinase, accompanied by decreased expression of β-catenin and stearoyl-CoA desaturase 1, and increased the expression of sirtuin 3 (SIRT3). Further investigation revealed that the theacrine-mediated decrease in cholesterol was independent of cholesterol synthesis or low-density lipoprotein (LDL) uptake in hyperlipidemia mice. However, theacrine activated farnesoid X receptor (FXR), a β-catenin conjugated protein, accompanied with decreased expression of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase. In conclusion, theacrine alleviated experimental LF in rats by lowering cholesterol storage and decreasing cholesterol-related HSC activation. A plausible mechanism of theacrine on cholesterol metabolism may involve activation of SIRT3-FXR signaling pathway followed by decreased intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Xi-Ting Lv
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruo-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Ting Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Jing Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin-Yu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing-Da Qiao
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guo-En Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Mao L, Chen J, Cheng K, Dou Z, Leavenworth JD, Yang H, Xu D, Luo L. Nrf2-Dependent Protective Effect of Paeoniflorin on-[Formula: see text]Naphthalene Isothiocyanate-Induced Hepatic Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1331-1348. [PMID: 35729506 DOI: 10.1142/s0192415x22500562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pathological mechanism of cholestatic hepatic injury is associated with oxidative stress, hepatocyte inflammation, and dysregulation of hepatocyte transporters. Paeonia lactiflora Pall. and its compound can improve hepatic microcirculation, dilate bile duct, and promote bile flow, which is advantageous to ameliorate liver damage. Paeoniflorin (PEA), as the main efficacy component of Paeonia lactiflora Pall., has multiple pharmacological effects. PEA improves liver injury, but it remains obscure whether the protective action on [Formula: see text]-naphthalene isothiocyanate (ANIT)-induced cholestatic liver injury is dependent on the NF-E2 p45-related Factor 2 (Nrf2) signaling pathway. In this study, C57BL/6 mice were administrated with 80 mg⋅kg[Formula: see text]⋅d[Formula: see text] ANIT followed by PEA (75, 150, and 300 mg⋅kg[Formula: see text]⋅d[Formula: see text]) orally for 10 days, respectively. Tissue histology and liver function were detected, including serum enzymes, gallbladder (GB) weight, phenobarbital-induced sleeping time (PEN-induced ST), hepatic uridine di-phosphoglucuronosyltransferase (UDPG-T), malondialdehyde (MDA), and glutathione (GSH). The expressions of protein Nrf2, sodium taurocholate cotransporting polypeptide (Ntcp), and NADPH oxidase 4 (Nox4) were evaluated. Nrf2 plasmid or siRNA-Nrf2 transfection on LO2 cells and Nrf2-/- mice were used to explore the liver protective mechanism of PEA. Compared to ANIT-treated mice, PEA decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), and phenobarbital-induced sleeping time. The bile secretion, hepatic UDPG-T, MDA, GSH, and liver histology were improved. The expressions of protein Nrf2 and Ntcp in liver tissues increased, but Nox4 decreased. After Nrf2 plasmid or small interfering RNA (siRNA)-Nrf2 transfection, the protective effects of PEA on LO2 cells were, respectively, strengthened or weakened. Moreover, PEA had no significant effects on ANIT-treated Nrf2-/- mice. Our results suggest that Nrf2 is essential for PEA protective effects on ANIT-induced liver injury.
Collapse
Affiliation(s)
- Liuliu Mao
- School of Pharmacy, Nantong, Jiangsu 226001, P. R. China
| | - Jun Chen
- Nantong Third People's Hospital, Nantong, Jiangsu 226001, P. R. China
| | - Kang Cheng
- Medical School, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Zhihua Dou
- Nantong Third People's Hospital, Nantong, Jiangsu 226001, P. R. China
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hengyue Yang
- School of Pharmacy, Nantong, Jiangsu 226001, P. R. China
| | - Diyuan Xu
- School of Pharmacy, Nantong, Jiangsu 226001, P. R. China
| | - Lin Luo
- School of Pharmacy, Nantong, Jiangsu 226001, P. R. China
| |
Collapse
|
8
|
Wu P, Qiao L, Yu H, Ming H, Liu C, Wu W, Li B. Arbutin Alleviates the Liver Injury of α-Naphthylisothiocyanate-induced Cholestasis Through Farnesoid X Receptor Activation. Front Cell Dev Biol 2021; 9:758632. [PMID: 34926449 PMCID: PMC8675020 DOI: 10.3389/fcell.2021.758632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is a kind of stressful syndrome along with liver toxicity, which has been demonstrated to be related to fibrosis, cirrhosis, even cholangiocellular or hepatocellular carcinomas. Cholestasis usually caused by the dysregulated metabolism of bile acids that possess high cellular toxicity and synthesized by cholesterol in the liver to undergo enterohepatic circulation. In cholestasis, the accumulation of bile acids in the liver causes biliary and hepatocyte injury, oxidative stress, and inflammation. The farnesoid X receptor (FXR) is regarded as a bile acid–activated receptor that regulates a network of genes involved in bile acid metabolism, providing a new therapeutic target to treat cholestatic diseases. Arbutin is a glycosylated hydroquinone isolated from medicinal plants in the genus Arctostaphylos, which has a variety of potentially pharmacological properties, such as anti-inflammatory, antihyperlipidemic, antiviral, antihyperglycemic, and antioxidant activity. However, the mechanistic contributions of arbutin to alleviate liver injury of cholestasis, especially its role on bile acid homeostasis via nuclear receptors, have not been fully elucidated. In this study, we demonstrate that arbutin has a protective effect on α-naphthylisothiocyanate–induced cholestasis via upregulation of the levels of FXR and downstream enzymes associated with bile acid homeostasis such as Bsep, Ntcp, and Sult2a1, as well as Ugt1a1. Furthermore, the regulation of these functional proteins related to bile acid homeostasis by arbutin could be alleviated by FXR silencing in L-02 cells. In conclusion, a protective effect could be supported by arbutin to alleviate ANIT-induced cholestatic liver toxicity, which was partly through the FXR pathway, suggesting arbutin may be a potential chemical molecule for the cholestatic disease.
Collapse
Affiliation(s)
- Peijie Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ming
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baixue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Wang Q, Qi Y, Shen W, Xu J, Wang L, Chen S, Hou T, Si J. The Aged Intestine: Performance and Rejuvenation. Aging Dis 2021; 12:1693-1712. [PMID: 34631215 PMCID: PMC8460310 DOI: 10.14336/ad.2021.0202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the growing elderly population, age-related problems are gaining increasing attention from the scientific community. With senescence, the intestine undergoes a spectrum of changes and infirmities that are likely the causes of overall aging. Therefore, identification of the aged intestine and the search for novel strategies to rescue it, are required. Although progress has been made in research on some components of the aged intestine, such as intestinal stem cells, the comprehensive understanding of intestinal aging is still limited, and this restricts the in-depth search for efficient strategies. In this concise review, we discuss several aspects of intestinal aging. More emphasis is placed on the appraisal of current and potential strategies to alleviate intestinal aging, as well as future targets to rejuvenate the aged intestine.
Collapse
Affiliation(s)
- Qiwen Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yadong Qi
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Weiyi Shen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jilei Xu
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Lan Wang
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shujie Chen
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Tongyao Hou
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Jianmin Si
- 1Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.,2Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
10
|
Ma N, Zhang Y, Sun L, Zhao Y, Ding Y, Zhang T. Comparative Studies on Multi-Component Pharmacokinetics of Polygonum multiflorum Thunb Extract After Oral Administration in Different Rat Models. Front Pharmacol 2021; 12:655332. [PMID: 34220500 PMCID: PMC8245786 DOI: 10.3389/fphar.2021.655332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
The clinical use of Polygonum multiflorum Thunb (PM) has been restricted or banned in many countries, due to its hepatotoxic adverse effects. Its toxicity research has become a hot topic. So far, the pharmacokinetic studies of PM, focusing on prototype compounds such as 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), emodin, and physcion, have been considered the main basis of pharmacodynamic material or of toxic effect. However, pharmacokinetic studies of its phase II metabolites have not yet been reported, mainly because the quantifications of such metabolites are difficult to do without the reference substance. In addition, pharmacokinetic studies on different pathological models treated with PM have also not been reported. On the other hand, toxic effects of PM have been reported in patients diagnosed with different liver pathologies. In the present work, a simultaneous quantitation method for eight prototypes components of PM and their five phase II metabolites has been performed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and used for the pharmacokinetic study of PM in two different liver pathological models in rats (normal, alpha-naphthylisothiocyanate (ANIT), and carbon tetrachloride (CCl4)). The results showed that the main blood-entering components of PM are TSG, emodin, physcion, emodin-8-O-β⁃D⁃glucoside (E-Glu), physcion-8-O-β⁃D⁃glucoside (P-Glu), aloe-emodin, gallic acid, resveratrol and catechin, among which TSG, emodin, and catechin were primary metabolized in phase II, while resveratrol was converted to all phase II metabolites, and the others were metabolized as drug prototypes. Meanwhile, their pharmacokinetic parameters in the different models also exhibited significant differences. For instance, the AUC (0-∞) values of the TSG prototype and its phase II metabolites were higher in the ANIT group, followed by CCl4 group and the normal group, while the AUC (0-∞) values of the emodin prototype and its phase II metabolites were higher in the CCl4 group. To further illustrate the reasons for the pharmacokinetic differences, bilirubin metabolizing enzymes and transporters in the liver were measured, and the correlations with the AUC of the main compounds were analyzed. TSG and aloe-emodin have significant negative correlations with UGT1A1, BSEP, OATP1A4, OCT1, NTCP, MRP2 and MDR1 (p < 0.01). These data suggest that when the expression of metabolic enzymes and transporters in the liver is inhibited, the exposure levels of some components of PM might be promoted in vivo.
Collapse
Affiliation(s)
- Ninghui Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zhao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chines Medicine, Shanghai, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Qiu J, Yan J, Liu W, Liu X, Lin J, Du Z, Qi L, Liu J, Xie G, Liu P, Wang X. Metabolomics analysis delineates the therapeutic effects of Huangqi decoction and astragalosides on α-naphthylisothiocyanate (ANIT) -induced cholestasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113658. [PMID: 33307056 DOI: 10.1016/j.jep.2020.113658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestasis caused by bile secretion and excretion disorders is a serious manifestation of liver disease. With limited treatment methods, it affects millions of people worldwide. Huangqi decoction (HQD), an effective traditional Chinese medicine, is used to treat chronic cholestatic liver diseases. However, the action mechanisms of it were not fully elucidated. AIM OF THE STUDY We aim to investigate the therapeutic effect of HQD, and its active component, astragalosides, against α-naphthylisothiocyanate (ANIT)-induced cholestasis in rats based on targeted metabolomics analysis and revel the potential mechanism. MATERIALS AND METHODS The therapeutic effect of HQD and astragalosides on ANIT-induced cholestasis model rats were evaluated by serum biochemical analysis. Liver damage was identified by histopathology. The levels of bile acids (BAs) and free fatty acids (FFAs) in serum and liver tissues were measured by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-TQMS). qRT-PCR and Western blot analysis were used to measure the expression of nuclear hormone receptor, membrane receptor and BA transporter protein in cholestatic rats before and after HQD and astragalosides treatment. RESULTS The obtained data showed that the administration of ANIT caused obvious cholestasis with significantly increased intrahepatic retention of hydrophobic BAs and altered FFAs, which were consistent with the liver histopathological and serum biochemical findings. HQD and astragalosides treatment were able to attenuate ANIT-induced BAs and FFAs perturbation, ameliorate the impaired liver function, histopathological ductular reaction, and lipid peroxidation damage by ANIT. Elevated mRNA and protein expression of transporters related to BA metabolism and genes related to lipogenesis and lipid oxidation metabolism in cholestasis were attenuated or normalized by HQD and astragalosides treatment. CONCLUSIONS Intervention by ANIT can significantly change the homeostasis of BAs and FFAs. HQD and astragalosides exerted a hepatoprotective effect against cholestatic liver injury by restoring the altered BA and FFA metabolism through the improvement of BA transporter, nucleus hormone receptor, and membrane receptor.
Collapse
Affiliation(s)
- Jiannan Qiu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingyu Yan
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanxi Technology and Business College, Taiyuan, 030006, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinzhu Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jingchao Lin
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Zeng Du
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li Qi
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jia Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guoxiang Xie
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Yang T, Wang X, Zhou Y, Yu Q, Heng C, Yang H, Yuan Z, Miao Y, Chai Y, Wu Z, Sun L, Huang X, Liu B, Jiang Z, Zhang L. SEW2871 attenuates ANIT-induced hepatotoxicity by protecting liver barrier function via sphingosine 1-phosphate receptor-1-mediated AMPK signaling pathway. Cell Biol Toxicol 2021; 37:595-609. [PMID: 33400020 DOI: 10.1007/s10565-020-09567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
Cholestatic liver injury, a group of diseases characterized with dysregulated bile acid (BA) homeostasis, was partly resulted from BA circulation disorders, which is commonly associated with the damage of hepatocyte barrier function. However, the underlying hepatocyte barrier-protective molecular mechanisms of cholestatic liver injury remain poorly understood. Interestingly, recent studies have shown that sphingosine-1-phosphate (S1P) participated in the process of cholestasis by activating its G protein-coupled receptors S1PRs, regaining the integrity of hepatocyte tight junctions (TJs). Here, we showed that SEW2871, a selective agonist of sphingosine-1-phosphate receptor 1(S1PR1), alleviated ANIT-induced TJs damage in 3D-cultured mice primary hepatocytes. Molecular mechanism studies indicated that AMPK signaling pathways was involved in TJs protection of SEW2871 in ANIT-induced hepatobiliary barrier function deficiency. AMPK antagonist compound C (CC) and agonist AICAR were all used to further identify the important role of AMPK signaling pathway in SEW2871's TJs protection of ANIT-treated mice primary hepatocytes. The in vivo data showed that SEW2871 ameliorated ANIT-induced cholestatic hepatotoxicity. Further protection mechanism research demonstrated that SEW2871 not only regained hepatocyte TJs by the upregulated S1PR1 via AMPK signaling pathway, but also recovered hepatobiliary barrier function deficiency, which was verified by the restored BA homeostasis by using of high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results revealed that the increased expression of S1PR1 induced by SEW2871 could ameliorate ANIT-induced cholestatic liver injury through improving liver barrier function via AMPK signaling and subsequently reversed the disrupted BA homeostasis. Our study provided strong evidence that S1PR1 may be a promising therapeutic approach for treating intrahepatic cholestatic liver injury. Graphical abstract.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue Wang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiongna Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zihang Yuan
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Miao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Chai
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziteng Wu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Lixin Sun
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Yang T, Wang X, Yuan Z, Miao Y, Wu Z, Chai Y, Yu Q, Wang H, Sun L, Huang X, Zhang L, Jiang Z. Sphingosine 1-phosphate receptor-1 specific agonist SEW2871 ameliorates ANIT-induced dysregulation of bile acid homeostasis in mice plasma and liver. Toxicol Lett 2020; 331:242-253. [PMID: 32579994 DOI: 10.1016/j.toxlet.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice. BA metabolic profiles showed that SEW2871 not only reversed the disruption of plasma BA homeostasis, but also alleviated BA accumulation in the liver of ANIT-treated mice. Further quantitative analysis of 19 BAs showed that ANIT increased almost all BAs in mice plasma and liver, all of which were restored by SEW2871. Our data demonstrated that the top performing BAs were taurine conjugated bile acids (T-), especially taurocholic acid (TCA). Molecular mechanism studies indicated that BA transporters, synthetase, and BAs nuclear receptors (NRs) might be the important factors that maintained BA homeostasis by SEW2871 in ANIT-induced cholestasis. In conclusion, these results demonstrated that S1PR1 selective agonists might be the novel and potential effective agents for the treatment of intrahepatic cholestasis by recovering dysregulated BA homeostasis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yingying Miao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ziteng Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Chai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Qiongna Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Li T, Xu L, Zheng R, Wang X, Li L, Ji H, Hu Q. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153153. [PMID: 32018210 DOI: 10.1016/j.phymed.2019.153153] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Cholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear. PURPOSE This study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro. METHODS The ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro. RESULTS Picroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II. CONCLUSION Our findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjie Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liwen Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Yang J, Xiang D, Xiang D, He W, Liu Y, Lan L, Li G, Jiang C, Ren X, Liu D, Zhang C. Baicalin Protects Against 17α-Ethinylestradiol-Induced Cholestasis via the Sirtuin 1/Hepatic Nuclear Receptor-1α/Farnesoid X Receptor Pathway. Front Pharmacol 2020; 10:1685. [PMID: 32116682 PMCID: PMC7026019 DOI: 10.3389/fphar.2019.01685] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen-induced cholestasis (EIC) is characterized by impairment of bile flow and accumulated bile acids (BAs) in the liver, always along with the liver damage. Baicalin is a major flavonoid component of Scutellaria baicalensis, and has been used in the treatment of liver diseases for many years. However, the role of baicalin in EIC remains to be elucidated. In this study, we demonstrated that baicalin showed obvious hepatoprotective effects in EIC rats by reducing serum biomarkers and increasing the bile flow rate, as well as by alleviating liver histology and restoring the abnormal composition of hepatic BAs. In addition, baicalin protected against estrogen-induced liver injury by up-regulation of the expression of hepatic efflux transporters and down-regulation of hepatic uptake transporters. Furthermore, baicalin increased the expression of hepatic BA synthase (CYP27A1) and metabolic enzymes (Bal, Baat, Sult2a1) in EIC rats. We showed that baicalin significantly inhibited hepatic inflammatory responses in EIC rats through reducing elevated levels of TNF-α, IL-1β, IL-6, and NF-κB. Finally, we confirmed that baicalin maintains hepatic BA homeostasis and alleviates inflammation through sirtuin 1 (Sirt1)/hepatic nuclear receptor-1α (HNF-1α)/farnesoid X receptor (FXR) signaling pathway. Thus, baicalin protects against estrogen-induced cholestatic liver injury, and the underlying mechanism involved is related to activation of the Sirt1/HNF-1α/FXR signaling pathway.
Collapse
Affiliation(s)
- Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daochun Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Jiang
- College of Pharmacy, Jilin University, Changchun, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Nong C, Zou M, Xue R, Bai L, Liu L, Jiang Z, Sun L, Huang X, Zhang L, Wang X. The role of invariant natural killer T cells in experimental xenobiotic-induced cholestatic hepatotoxicity. Biomed Pharmacother 2020; 122:109579. [DOI: 10.1016/j.biopha.2019.109579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
|
17
|
Zhang R, Huang T, Zhang Q, Yao Y, Liu C, Lin C, Zhu C. Xiaoyan lidan formula ameliorates α-naphthylisothiocyanate-induced intrahepatic cholestatic liver injury in rats as revealed by non-targeted and targeted metabolomics. J Pharm Biomed Anal 2020; 179:112966. [DOI: 10.1016/j.jpba.2019.112966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023]
|
18
|
Salas-Silva S, Simoni-Nieves A, Razori MV, López-Ramirez J, Barrera-Chimal J, Lazzarini R, Bello O, Souza V, Miranda-Labra RU, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Roma MG, Bucio-Ortiz L. HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochem Pharmacol 2020; 174:113812. [PMID: 31954718 DOI: 10.1016/j.bcp.2020.113812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Cholestasis is a clinical syndrome common to a large number of hepatopathies, in which either bile production or its transit through the biliary tract is impaired due to functional or obstructive causes; the consequent intracellular retention of toxic biliary constituents generates parenchyma damage, largely via oxidative stress-mediated mechanisms. Hepatocyte growth factor (HGF) and its receptor c-Met represent one of the main systems for liver repair damage and defense against hepatotoxic factors, leading to an antioxidant and repair response. In this study, we evaluated the capability of HGF to counteract the damage caused by the model cholestatic agent, α-naphthyl isothiocyanate (ANIT). HGF had clear anti-cholestatic effects, as apparent from the improvement in both bile flow and liver function test. Histology examination revealed a significant reduction of injured areas. HGF also preserved the tight-junctional structure. These anticholestatic effects were associated with the induction of basolateral efflux ABC transporters, which facilitates extrusion of toxic biliary compounds and its further alternative depuration via urine. The biliary epithelium seems to have been also preserved, as suggested by normalization in serum GGT levels, CFTR expression and cholangyocyte primary cilium structure our results clearly show for the first time that HGF protects the liver from a cholestatic injury.
Collapse
Affiliation(s)
- Soraya Salas-Silva
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Arturo Simoni-Nieves
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - María Valeria Razori
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina
| | - Jocelyn López-Ramirez
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico; Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico
| | - Jonatan Barrera-Chimal
- Departmento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roberto Lazzarini
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Oscar Bello
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Ciudad de México, Mexico
| | - Verónica Souza
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Roxana U Miranda-Labra
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Marcelo G Roma
- Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad de Rosario, Argentina.
| | - Leticia Bucio-Ortiz
- Departmento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México, Mexico; Unidad de Medicina Traslacional, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
20
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
21
|
Wang X, Han L, Bi Y, Li C, Gao X, Fan G, Zhang Y. Paradoxical Effects of Emodin on ANIT-Induced Intrahepatic Cholestasis and Herb-Induced Hepatotoxicity in Mice. Toxicol Sci 2018; 168:264-278. [DOI: 10.1093/toxsci/kfy295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Caiyu Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Yu H, Li Y, Xu Z, Wang D, Shi S, Deng H, Zeng B, Zheng Z, Sun L, Deng X, Zhong X. Identification of potential biomarkers in cholestasis and the therapeutic effect of melatonin by metabolomics, multivariate data and pathway analyses. Int J Mol Med 2018; 42:2515-2526. [PMID: 30226547 PMCID: PMC6192756 DOI: 10.3892/ijmm.2018.3859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
The present study investigated the anti‑cholestatic effect of melatonin (MT) against α‑naphthyl isothiocyanate (ANIT)‑induced liver injury in rats and screened for potential biomarkers of cholestasis. Rats were administered ANIT by intraperitoneal injection and then sacrificed 36 h later. Serum biochemical parameters were measured and liver tissue samples were subjected to histological analysis. Active components in the serum were identified by gas chromatography‑mass spectrometry, while biomarkers and biochemical pathways were identified by multivariate data analysis. The results revealed that the serum levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, γ‑glutamyl transpeptidase, and alkaline phosphatase were reduced in rats with ANIT‑induced cholestasis that were treated with MT. The histological observations indicated that MT had a protective effect against ANIT‑induced hepatic tissue damage. Metabolomics analysis revealed that this effect was likely to be associated with the regulation of compounds related to MT synthesis and catabolism, and amino acid metabolism, including 5‑aminopentanoate, 5‑methoxytryptamine, L‑tryptophan, threonine, glutathione, L‑methionine, and indolelactate. In addition, principal component analysis demonstrated that the levels of these metabolites differed significantly between the MT and control groups, providing further evidence that they may be responsible for the effects induced by MT. These results provide an insight into the mechanisms underlying cholestasis development and highlight potential biomarkers for disease diagnosis.
Collapse
Affiliation(s)
- Han Yu
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Yunzhou Li
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Zongying Xu
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Dingnan Wang
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Shaohua Shi
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Huifang Deng
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Baihui Zeng
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Zhili Zheng
- Pharmacology Departments, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Lili Sun
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Xiulan Deng
- Pharmacology Departments, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| | - Xianggen Zhong
- Synopsis of Golden Chamber, Chinese Medicine College, Beijing University of Chinese Medicine, Chaoyang, Beijing 100029, P.R. China
| |
Collapse
|
23
|
Qu X, Zhang Y, Zhang S, Zhai J, Gao H, Tao L, Song Y. Dysregulation of BSEP and MRP2 May Play an Important Role in Isoniazid-Induced Liver Injury via the SIRT1/FXR Pathway in Rats and HepG2 Cells. Biol Pharm Bull 2018; 41:1211-1218. [DOI: 10.1248/bpb.b18-00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University
| | - Sixi Zhang
- Department of Pharmacy, The First Hospital of Jilin University
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University
| |
Collapse
|
24
|
Yi YX, Ding Y, Zhang Y, Ma NH, Shi F, Kang P, Cai ZZ, Zhang T. Yinchenhao Decoction Ameliorates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis in Rats by Regulating Phase II Metabolic Enzymes and Transporters. Front Pharmacol 2018; 9:510. [PMID: 29867509 PMCID: PMC5962729 DOI: 10.3389/fphar.2018.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
Yinchenhao Decoction (YCHD), a famous traditional Chinese formula, has been used for treating cholestasis for 1000s of years. The cholagogic effect of YCHD has been widely reported, but its pharmacodynamic material and underlying therapeutic mechanism remain unclear. By using ultra-high-performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry, 11 original active components and eight phase II metabolites were detected in rats after oral administration of YCHD, including three new phase II metabolites. And it indicated that phase II metabolism was one of the major metabolic pathway for most active components in YCHD, which was similar to the metabolism process of bilirubin. It arouses our curiosity that whether the metabolism process of YCHD has any relationship with its cholagogic effects. So, a new method for simultaneous quantitation of eight active components and four phase II metabolites of rhein, emodin, genipin, and capillarisin has been developed and applied for their pharmacokinetic study in both normal and alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis rats. The results indicated the pharmacokinetic behaviors of most components of YCHD were inhibited, which was hypothesized to be related to different levels of metabolic enzymes and transporters in rat liver. So dynamic changes of intrahepatic enzyme expression in cholestasis and YCHD treated rats have been monitored by an UHPLC-tandem mass spectrometry method. The results showed expression levels of UDP-glucuronosyltransferase 1-1 (UGT1A1), organic anion-transporting polypeptide 1A4 (OATP1A4), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1, sodium-dependent taurocholate cotransporter, and organic anion-transporting polypeptide 1A2 were significantly inhibited in cholestasis rats, which would account for reducing the drug absorption and the metabolic process of YCHD in cholestatic rats. A high dose (12 g/kg) of YCHD remarkably increased the expression of UGT1A1, bile salt export pump, MRP2, OATP1A4 in cholestasis rats presented it exhibited the greatest ameliorative effect on cholestasis, also particularly in histopathological examination and reducing levels of alanine transaminase, aspartate transaminase, total bilirubin, direct bilirubin, and total bile acid. Considering the metabolic process of bilirubin in vivo, the choleretic effect of YCHD is proven to be related to its regulatory action on expression of metabolic enzymes and transporters in cholestatic liver.
Collapse
Affiliation(s)
- Ya-Xiong Yi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Ding
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning-Hui Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Shi
- Pharmaceutical Preparation Section, Guangming Chinese Medicine Hospital of Pudong New Area, Shanghai, China
| | - Ping Kang
- Headmaster's Office, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Zhen Cai
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Xiong X, Ren Y, Cui Y, Li R, Wang C, Zhang Y. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation. Biomed Pharmacother 2017; 96:1292-1298. [PMID: 29174575 DOI: 10.1016/j.biopha.2017.11.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. OBJECTIVE The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. RESULTS 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. CONCLUSION Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes.
Collapse
Affiliation(s)
- Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Yuqian Ren
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Rui Li
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China
| | - Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China.
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Institute of Pediatric Critical Care, Shanghai Jiao Tong University, No.355 Luding Road, Putuo District, Shanghai, 200062, China.
| |
Collapse
|
26
|
Yang T, Mei H, Xu D, Zhou W, Zhu X, Sun L, Huang X, Wang X, Shu T, Liu J, Ding J, Hassan HM, Zhang L, Jiang Z. Early indications of ANIT-induced cholestatic liver injury: Alteration of hepatocyte polarization and bile acid homeostasis. Food Chem Toxicol 2017; 110:1-12. [PMID: 28986171 DOI: 10.1016/j.fct.2017.09.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/29/2017] [Indexed: 02/08/2023]
Abstract
Hepatocyte polarization is essential for biliary secretion, and loss of polarity causes bile secretory failure and hepatotoxicity. Here, we showed that alpha-naphthyl isothiocyanate (ANIT)-induced liver injury was accompanied by the dynamic interruption of bile acid homeostasis in rat plasma, liver and bile, which was characterized by the redistribution of bile acids in plasma and bile and a small range of fluctuations in the liver. Molecular mechanism studies indicated that these factors are dynamically mediated by the disruption of bile acid transporters and hepatic tight junctions. Dynamic changes in tight junction (TJ) permeability were observed by hepatobiliary barrier function assessment. Hepatocyte polarization was disrupted by ANIT before the development of cholestatic hepatotoxicity and alteration of bile acid metabolic profiles, which were assayed by high-performance liquid chromatography-tandem mass spectrometry, further verifying TJ deficiency. S1PR1 activation with SEW2871 reduced ANIT-induced liver injury by reducing the total serum bile acid concentration, liver functional enzyme activity and inflammation. Our data suggest that hepatocyte polarization plays an important role in maintaining bile acid homeostasis before the development of cholestatic hepatotoxicity and that TJs were more prominent in the early stage of cholestasis. S1PR1 may be a potential target for the prevention of drug-induced cholestatic liver injury.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Huifang Mei
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Wang Zhou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu Zhu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Shu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaxin Ding
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - H M Hassan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
27
|
Li X, Liu R, Zhang L, Jiang Z. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res 2017; 125:105-113. [PMID: 28889972 DOI: 10.1016/j.phrs.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK), recognized as an energy sensor with three heterotrimeric subunits (α, β and γ), not only maintains basal intracellular adenosine triphosphate levels but also regulates energy-intensive pathological responses, such as neurodegenerative and metabolic diseases, through multiple signaling pathways. Recent studies open a new direction for AMPK research and demonstrate that AMPK is a critical player in the pathogenesis of cholestatic liver injury and plays paradoxical roles in the regulation of different pathological processes, including the disruption of bile acid homeostasis and the regulation of hepatic polarity, inflammation and fibrosis. In the present review, we summarize recent findings that implicate AMPK-mediated signaling pathways in the pathogenesis of cholestatic liver injury. These findings provide novel insight regarding the potential use of AMPK as a therapeutic target for the treatment of cholestatic liver injury.
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, Sun L, Zhang L, Jiang Z. SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model. Front Pharmacol 2017; 8:256. [PMID: 28553227 PMCID: PMC5425580 DOI: 10.3389/fphar.2017.00256] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intrahepatic cholestasis is a kind of clinical syndrome along with hepatotoxicity which caused by intrahepatic and systemic accumulations of bile acid. There are several crucial generating factors of the pathogenesis of cholestasis, such as inflammation, dysregulation of bile acid transporters and oxidative stress. SIRT1 is regarded as a class III histone deacetylase (HDAC). According to a set of researches, SIRT1 is one of the most important factors which can regulate the hepatic bile acid metabolism. SRT1720 is a kind of activator of SIRT1 which is 1000 times more potent than resveratrol, and this paper is aimed to study its protective influence on hepatotoxicity and cholestasis induced by alpha-naphthylisothiocyanate (ANIT) in mice. The findings revealed that SRT1720 treatment increased FXR and Nrf2 gene expressions to shield against hepatotoxicity and cholestasis induced by ANIT. The mRNA levels of hepatic bile acid transporters were also altered by SRT1720. Furthermore, SRT1720 enhanced the antioxidative system by increasing Nrf2, SOD, GCLc, GCLm, Nqo1, and HO-1 gene expressions. In conclusion, a protective influence could be provided by SRT1720 to cure ANIT-induced hepatotoxicity and cholestasis, which was partly through FXR and Nrf2 activations. These results indicated that SIRT1 could be regarded as a therapeutic target to cure the cholestasis.
Collapse
Affiliation(s)
- Linxi Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaoxin Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Zihang Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Hang Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Ziqiao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical UniversityNanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Zhengzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University - Ministry of EducationNanjing, China
| |
Collapse
|