1
|
Ozarslan N, Mong C, Ategeka J, Li L, Buarpung S, Robinson JF, Kizza J, Kakuru A, Kamya MR, Dorsey G, Rosenthal PJ, Gaw SL. Placental malaria induces a unique methylation profile associated with fetal growth restriction. Epigenetics 2025; 20:2475276. [PMID: 40051167 PMCID: PMC11901535 DOI: 10.1080/15592294.2025.2475276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
Fetal growth restriction (FGR) is associated with perinatal death and adverse birth outcomes, as well as long-term complications, including increased childhood morbidity, abnormal neurodevelopment, and cardio-metabolic diseases in adulthood. Placental epigenetic reprogramming associated with FGR may mediate these long-term outcomes. Placental malaria (PM), characterized by sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous space, is the leading global cause of FGR, but its impact on placental epigenetics is unknown. We hypothesized that placental methylomic profiling would reveal common and distinct mechanistic pathways of non-malarial and PM-associated FGR. We analyzed placentas from a US cohort with no malaria exposure (n = 12) and a cohort from eastern Uganda, a region with a high prevalence of malaria (n = 12). From each site, 8 cases of FGR and 4 healthy controls were analyzed. PM was diagnosed by placental histopathology. We compared the methylation levels of over 850K CpGs of the placentas using Infinium MethylationEPIC v1 microarray. Non-malarial FGR was associated with 65 differentially methylated CpGs (DMCs), whereas PM-FGR was associated with 133 DMCs, compared to their corresponding controls without FGR. One DMC (cg16389901, located in the promoter region of BMP4) was commonly hypomethylated in both groups. We identified 522 DMCs between non-malarial FGR vs. PM-FGR placentas, independent of differing geographic location or cellular composition. Placentas with PM-associated FGR have distinct methylation profiles compared to placentas with non-malarial FGR, suggesting novel epigenetic reprogramming in response to malaria. Larger cohort studies are needed to determine the distinct long-term health outcomes in PM-associated FGR pregnancies.
Collapse
Affiliation(s)
- Nida Ozarslan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Corina Mong
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - John Ategeka
- Infectious Diseases Research Collaboration, Uganda
| | - Lin Li
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Sirirak Buarpung
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jimmy Kizza
- Infectious Diseases Research Collaboration, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Uganda
| | - Moses R. Kamya
- Infectious Diseases Research Collaboration, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Philip J. Rosenthal
- Division of HIV, Global Medicine, and Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Center for Reproductive Sciences and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
2
|
Wu W, Zhang B, Zhao J, Hu W, Li Y, Feng Y, Zhang Y, Wang S. Cadmium levels in maternal blood, placenta, and cord blood in relation to preeclampsia and fetal growth: a case-control study in China. Hypertens Res 2025; 48:1321-1330. [PMID: 39843858 DOI: 10.1038/s41440-025-02122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
This study aims to delineate the levels of Cd exposure in maternal blood, placenta, and cord blood, and to explore the association between Cd levels and the risk of preeclampsia (PE), as well as its potential impact on fetal growth among affected individuals. A case-control study was performed at the First Hospital of Shanxi Medical University, involving 373 pregnant women diagnosed with PE and 485 controls. Cd was measured in maternal blood, placenta, and cord blood using ICP-MS. The association between Cd and birth weight z-score was analyzed by multivariate linear regression. Logistic regression analysis was used to investigate the relationships between Cd and the risk of PE, and Cd and the risk of fetal growth. The concentration of Cd in the placenta was higher than that in maternal blood and cord blood. The highest tertile of placental Cd was identified as a risk factor for PE (OR = 2.704, 95% CI: 1.865, 3.921). Among pregnant women with PE, higher levels of Cd exposure in the placenta were negatively associated with birth weight z-scores (per doubling: β = -0.134, 95% CI: -0.264, -0.004), and the highest tertile of placental Cd was associated with an elevated risk of SGA (OR = 2.103, 95% CI: 1.164, 3.801). Furthermore, an interaction between Cd and PE was identified. In conclusion, Cd can accumulate in the placenta of pregnant women, and high placental Cd exposure not only increases the risk of PE but also exacerbates the risk of SGA outcome in PE pregnant women.
Collapse
Affiliation(s)
- Weiwei Wu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Bole Zhang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Zhao
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weixuan Hu
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulin Li
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongliang Feng
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Suping Wang
- Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China.
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
4
|
Geng H, An Q, Song J, He D, Han H, Wang L. Cadmium-induced global DNA hypermethylation promoting mitochondrial dynamics dysregulation in hippocampal neurons. ENVIRONMENTAL TOXICOLOGY 2024; 39:2043-2051. [PMID: 38095104 DOI: 10.1002/tox.24083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Environmental cadmium exposure during pregnancy or adolescence can cause neurodevelopmental toxicity, lead to neurological impairment, and reduce cognitive abilities, such as learning and memory. However, the mechanisms by which cadmium causes neurodevelopmental toxicity and cognitive impairment are still not fully elucidated. This study used hippocampal neurons cultured in vitro to observe the impact of cadmium exposure on mitochondrial dynamics and apoptosis. Exposure to 5 μM cadmium causes degradation of hippocampal neuron cell bodies and axons, morphological destruction, low cell viability, and apoptosis increase. Cadmium exposure upregulates the expression of mitochondrial fission proteins Drp1 and Fis1, reduces the expression of mitochondrial fusion-related proteins MFN1, MFN2, and OPA1, as well as reduces the expression of PGC-1a. Mitochondrial morphology detection demonstrated that cadmium exposure changes the morphological structure of mitochondria in hippocampal neurons, increasing the number of punctate and granular mitochondria, reducing the number of tubular and reticular mitochondria, decreasing mitochondrial mass, dissipating mitochondrial membrane potential (ΔΨm), and reducing adenosine triphosphate (ATP) production. Cadmium exposure increases the global methylation level of the genome and upregulates the expression of DNMT1 and DNMT3α in hippocampal neurons. 5-Aza-CdR reduces cadmium-induced genome methylation levels in hippocampal neurons, increases the number of tubular and reticular mitochondria, and promotes cell viability. In conclusion, cadmium regulates the expression of mitochondrial dynamics-related proteins by increasing hippocampal neuron genome methylation, changing mitochondrial morphology and function, and exerting neurotoxic effects.
Collapse
Affiliation(s)
- Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Qihang An
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Jie Song
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Dongling He
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Huimin Han
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan Province, People's Republic of China
- School of Life Science, Henan University, Kaifeng, Henan Province, People's Republic of China
| |
Collapse
|
5
|
Kozlosky D, Doherty C, Buckley B, Goedken MJ, Miller RK, Huh DD, Barrett ES, Aleksunes LM. Fetoplacental Disposition and Toxicity of Cadmium in Mice Lacking the Bcrp Transporter. Toxicol Sci 2023; 197:kfad115. [PMID: 37941438 PMCID: PMC10823776 DOI: 10.1093/toxsci/kfad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The environmental toxicant cadmium (Cd) impairs the growth of rodents and humans in utero which in turn heightens susceptibility to diseases later in life. We previously demonstrated that the maternal-facing efflux transporter, breast cancer resistance protein (human BCRP/ABCG2, mouse Bcrp/Abcg2) confers resistance against Cd toxicity in human trophoblasts. In the current study, we sought to determine whether the absence of Bcrp alters the fetoplacental disposition and toxicity of Cd in mice. Pregnant female wild-type (WT) and Bcrp-null mice (n = 9-10/group) were administered a single injection of saline (5 ml/kg) or CdCl2 (5 mg/kg) on gestational day (GD) 9. Following Cd treatment, Bcrp-null offspring were shorter and accumulated more Cd in their placentas on GD 17 compared to WT mice. Because Cd can adversely impact placentation and transplacental nutrient delivery in mice, multiple pathways were assessed using morphometrics and immunohistochemistry including placenta zonation, vasculature development, and nutrient transporter expression. Most notably, the placentas of Bcrp-null mice had reduced immunostaining of the cell adhesion marker, β-catenin, and the trophoblast marker, cytokeratin, as well as decreased expression of divalent metal nutrient transporters (Dmt1, Zip14, and ZnT1) following Cd treatment. In summary, the absence of Bcrp expression increased placental concentrations of Cd which was associated with shorter fetal size that may be related to differential changes in molecular patterns of placental development and nutrition.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
| | - Cathleen Doherty
- Department of Earth and Planetary Sciences, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Dan Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
6
|
Kozlosky D, Lu A, Doherty C, Buckley B, Goedken MJ, Miller RK, Barrett ES, Aleksunes LM. Cadmium reduces growth of male fetuses by impairing development of the placental vasculature and reducing expression of nutrient transporters. Toxicol Appl Pharmacol 2023; 475:116636. [PMID: 37487938 PMCID: PMC10528997 DOI: 10.1016/j.taap.2023.116636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
In utero exposure to the toxic metal cadmium (Cd) alters fetoplacental growth in rodents and has been inversely associated with birth weight and infant size in some birth cohorts. Moreover, studies suggest that Cd may have differential effects on growth and development according to offspring sex. The purpose of the current study was to evaluate changes in male and female fetoplacental development following a single injection of saline (5 ml/kg ip) or cadmium chloride (CdCl2, 2.5, 5 mg/kg, ip) on gestational day (GD) 9. By GD18, no changes in fetal or placental weights were observed after treatment with 2.5 mg/kg CdCl2. By comparison, the weight and length of male fetuses and their placentas were reduced following treatment with 5 mg/kg CdCl2 whereas no change was observed in females. In addition, the area of maternal and fetal blood vessels as well as the expression of the glucose transporters, Glut1 and Glut3, and the endothelial marker, CD34, were reduced in the placentas of CdCl2-treated male offspring compared to females. Interestingly, the placentas of females accumulated 80% more Cd than males after CdCl2 (5 mg/kg) administration. Female placentas also had higher concentrations of zinc and the zinc transporter Znt1 compared to males which may explain the limited changes in fetal growth observed following CdCl2 treatment. Taken together, disruption of vasculature development and reduced expression of glucose transporters in the placenta provide potential mechanisms underlying reduced fetal growth in male offspring despite the greater accumulation of Cd in female placentas.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA..
| | - Richard K Miller
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA..
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.; School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA.; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA..
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA..
| |
Collapse
|
7
|
Xu P, Guo J, Jin Y, Lee SC, Li Z, Kong L, Liu M, Niu X, Liu Y, Bai G, Ren L, Ren B, Fan L, Zhao M, Wang L. Toxic effects of maternal cadmium exposure on the metabolism and transport system of amino acids in the maternal livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114726. [PMID: 36898312 DOI: 10.1016/j.ecoenv.2023.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fetal growth restriction (FGR) is one of the most common obstetric diseases, and affects approximately 10 % of all pregnancies worldwide. Maternal cadmium (Cd) exposure is one of the factors that may increase the risk of the development of FGR. However, its underlying mechanisms remain largely unknown. In this study, using Cd-treated mice as an experimental model, we analyzed the levels of some nutrients in the circulation and the fetal livers by biochemical assays; the expression patterns of several key genes involved in the nutrient uptake and transport, and the metabolic changes in the maternal livers were also examined by quantitative real-time PCR and gas chromatography-time of flight-mass spectrometry method. Our results showed that, the Cd treatment specifically reduced the levels of total amino acids in the peripheral circulation and the fetal livers. Concomitantly, Cd upregulated the expressions of three amino acid transport genes (SNAT4, SNAT7 and ASCT1) in the maternal livers. The metabolic profiling of maternal livers also revealed that, several amino acids and their derivatives were also increased in response to the Cd treatment. Further bioinformatics analysis indicated that the experimental treatment activated the metabolic pathways, including the alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism. These findings suggest that maternal Cd exposure activate the amino acid metabolism and increase the amino acid uptake in the maternal liver, which reduces the supply of amino acids to the fetus via the circulation. We suspect that this underlies the Cd-evoked FGR.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Lvliang Comprehensive Test Center, Lvliang 033000, China.
| | - Jing Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yaling Jin
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shao Chin Lee
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhilang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Kong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ming Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai 201300, China
| | - Guoqiang Bai
- Lvliang Comprehensive Test Center, Lvliang 033000, China
| | - Lu Ren
- The Eleventh Clinical College of Shanxi Medical University, Lvliang People's Hospital, Lvliang 033000, China
| | - Bei Ren
- Institute of Drug Testing Technology, Shanxi Provincial Inspection and Testing Center, Taiyuan 030001, China
| | - Linxiao Fan
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
8
|
Ogushi S, Nakanishi T, Kimura T. Cadmium inhibits differentiation of human trophoblast stem cells into extravillous trophoblasts and disrupts epigenetic changes within the promoter region of the HLA-G gene. Toxicol Sci 2023; 191:25-33. [PMID: 36370079 DOI: 10.1093/toxsci/kfac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal widely distributed in the environment. Maternal whole-blood Cd levels during pregnancy are positively associated with the risk of early preterm birth. We hypothesized that Cd inhibits trophoblast differentiation, resulting in the development of hypertensive disorders of pregnancy and a high risk of early preterm birth. Using the CT27 human trophoblast stem cell line, we found that exposing these cells to 0.1-0.4 µM Cd inhibited their differentiation into extravillous cytotrophoblasts (EVTs). Supporting this finding, we found that expression of the metal-binding protein metallothionein, which suppresses the toxicity of Cd, is low in EVTs. We also found that Cd exposure changes the methylation status of the promoter region of the HLA-G gene, which is specifically expressed in EVTs. Together, these results suggest that Cd inhibits placental formation by suppressing trophoblast differentiation into EVTs. This suppression may underlie the increased risk of gestational hypertension in women with high whole-blood Cd levels.
Collapse
Affiliation(s)
- Shoko Ogushi
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Gifu 501-1196, Japan
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| |
Collapse
|
9
|
Lawless L, Xie L, Zhang K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 2023; 11:1148906. [PMID: 37152287 PMCID: PMC10157395 DOI: 10.3389/fcell.2023.1148906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Exposure to cadmium during pregnancy, from environmental or lifestyle factors, has been shown to have detrimental fetal and placental developmental effects, along with negatively impacting maternal health during gestation. Additionally, prenatal cadmium exposure places the offspring at risk for developing diseases in infancy, adolescence, and adulthood. Although given much attention, the underlying mechanisms of cadmium-induced teratogenicity and disease development remain largely unknown. Epigenetic changes in DNA, RNA and protein modifications have been observed during cadmium exposure, which implies a scientific premise as a conceivable mode of cadmium toxicity for developmental origins of health and disease (DOHaD). This review aims to examine the literature and provide a comprehensive overview of epigenetic alterations induced by prenatal cadmium exposure, within the developing fetus and placenta, and the continued effects observed in childhood and across generations.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Ke Zhang,
| |
Collapse
|
10
|
Zhou M, Peng L, Wang J, Cao R, Ou Z, Fang Y. Cadmium exposure and the risk of GDM: evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77253-77274. [PMID: 35672642 DOI: 10.1007/s11356-022-21171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gestational diabetes mellitus (GDM) has become a global concern for its severe adverse effects on both mother and fetus. Recent epidemiological studies reported inconsistent results of the association between cadmium (Cd) exposure and GDM. Therefore, a systematic review and meta- analysis were performed. PubMed, Web of Science, Scopus, Embase, and SpringerLink were searched up to July 2021. Observational studies containing the adjusted relative risks between Cd exposure and GDM were included in the quantitative synthesis. The retrieval comprised 218 articles out of which 11 met our criteria and 9 were included in the meta-analysis, representing a total of 32,392 subjects (2881 GDM). In total, Cd exposure might increase the risk of GDM in some extent (OR = 1.21, 95% CI [0.89, 1.64]), even without statistical significance in high heterogeneity (Q = 28.45, p < 0.05, I2 = 71.9%). Filtering two outliers indicated by Galbraith plot yielded a similar risk (OR = 1.19, 95% CI [1.02, 1.39]) with statistical significance. However, the heterogeneity among studies was obviously reduced (Q = 11.75, p = 0.068, I2 = 48.9%). Additionally, biological specimen, study design, and diagnostic criteria contributed to the high heterogeneity according to the subgroup analysis. Since some important results do not deny that Cd exposure increases the risk of GDM, high-quality multi-centered large cohort studies are required in the future.
Collapse
Affiliation(s)
- Minqi Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lianqi Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zixuan Ou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Wang W, Liu G, Jiang X, Wu G. Resveratrol ameliorates toxic effects of cadmium on placental development in mouse placenta and human trophoblast cells. Birth Defects Res 2021; 113:1470-1483. [PMID: 34668346 DOI: 10.1002/bdr2.1962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cadmium (Cd) is a common heavy metal pollutant. Prenatal exposure to Cd results in adverse effects on fetal development. Placental apoptosis, inflammation, and epigenetic disruption have been implicated in Cd-induced placental toxicity. Resveratrol (Res) is a naturally occurring polyphenol with anti-apoptotic, anti-inflammatory, and epigenetic regulatory activities. In present study, the effects of Res on placental toxicity induced by Cd were evaluated. METHODS Pregnant CD-1 mice were fed with base diet containing 0.2% Res started on gestational day 0 (GD0), and intraperitoneally injected with 4.5 mg/kg CdCl2 or saline once on GD9. JEG-3 cells were treated with 20 μM Res for 24 hr in the absence or presence of 20 μM CdCl2 for the second 12 hr. The fetal outcomes, the apoptosis in placenta and JEG-3 cells, the expression of inflammatory cytokines and chemokines including tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein-2 (MIP-2) and chemokine (C-X-C motif) ligand 1 (KC), and expression of endoplasmic reticulum (ER) stress markers were evaluated. The expression and activities of DNA methyltransferase (DNMT), and the activation of Akt signaling pathway were detected. RESULTS Cd exposure resulted in decreased fetal weight and crown-rump length while Res ameliorated these outcomes. Res suppressed Cd-induced apoptosis in placenta and JEG-3 cells, and decreased Cd-induced expression of TNF-α, IFN-γ, MCP-1, MIP-2, and KC in placenta. Cd greatly increased ER stress in placenta in mice, which was partially ameliorated by Res treatment. Res decreased Cd-induced upregulation of DNMT activity and suppressed Cd-induced expression of DNMT3B. Res restored estradiol secretion, enhances activity and protein levels of SIRT1 and inhibited Cd-induced activation of Akt signaling pathway. CONCLUSION Res ameliorated Cd-induced placental toxicity and regulated DNMT3 expression and PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guiying Liu
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xuelian Jiang
- Department of Nursing, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guimei Wu
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
12
|
Gao L, Cui AQ, Wang J, Chen J, Zhang XY, Lin ZJ, Chen YH, Zhang C, Wang H, Xu DX. Paternal exposure to microcystin-LR induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in placental labyrinth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60032-60040. [PMID: 34155591 DOI: 10.1007/s11356-021-14725-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MC-LR) has reproductive and developmental toxicities. Previous studies indicated that gestational exposure to MC-LR induced fetal growth restriction in mice. The aim of this study was to further evaluate the effect of paternal MC-LR exposure before mating on fetal development. Male mice were intraperitoneally injected with either normal saline or MC-LR (10 μg/kg) daily for 35 days. Male mouse was then mated with female mice with 1:1 ratio. There was no significant difference on the rates of mating and pregnancy between MC-LR-exposed male mice and controls. Body weight and crown-rump length were reduced in fetuses whose fathers were exposed to MC-LR. Despite no difference on relative thickness of labyrinthine layer, cell proliferation, as measured by Ki67 immunostaining, was reduced in labyrinth layer of MC-LR-exposed mice. Moreover, blood sinusoid area in labyrinth layer was decreased in the fetus whose father was exposed to MC-LR before mating. Correspondingly, cross-sectional area of CD34-positive blood vessel in labyrinth layer was lower in fetuses whose fathers were exposed to MC-LR than in controls. These results provide evidence that paternal MC-LR exposure before mating induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in labyrinth layer.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Sun Y, Zong C, Liu J, Zeng L, Li Q, Liu Z, Li Y, Zhu J, Li L, Zhang C, Zhang W. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol 2021; 421:115536. [PMID: 33865896 DOI: 10.1016/j.taap.2021.115536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) can induce ovarian injury by microRNAs (miRNAs), however, the molecular mechanism of miRNAs after Cd exposure have not known. In this study, 56-day-old adult female Sprague-Dawley (SD) rats were injection with PMSG, after 48 h, ovarian granulosa cells (GCs) were extracted and cultured for 24 h, then treated with 0, 2.5, 5, 10 and 20 μM Cd for 24 h. The results showed that expression levels of miR-92a-2-5p (upregulated) and Bcl2 (downregulated) changed significantly after Cd exposure. The messenger RNA (mRNA) and protein expression levels of DNMT1, DNMT3A, and DNMT3B had changed, but no obvious differences were found in miR-92a-2-5p single site methylation. The transcription factors C-MYC (upregulated), E2F1 (downregulated), and SP1 (downregulated), which target miRNAs significantly changed after exposure to Cd. The human ovarian GC tumor line (COV434) was used to knocked down C-myc, and the expression of miR-92a-2-5p was downregulated in the COV434-C-myc + 10 μM Cd group compared with COV434 cells. The N6-methyladenosine (m6A) methylation modification levels of long noncoding RNA (lncRNA) MT1JP and lncRNA CDKN2B-AS, which regulate miR-92a-2-5p were detected. In the 10 μM Cd group, m6A methylation levels at MT1JP-84, CDKN2B-AS-257, and CDKN2B-AS-329 were reduced. In summary, after Cd exposure, expression of miR-92a-2-5p, which targets the antiapoptotic gene Bcl2, was upregulated, which may be primarily related to upregulation of C-myc. MiR-92a-2-5p promoter DNA methylation may has no obvious effect on miR-92a-2-5p. Otherwise, the role of m6A methylation modified lncRNA MT1JP and lncRNA CDKN2B-AS in the regulation of miR-92a-2-5p needs further study.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chaowei Zong
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
D'Errico JN, Fournier SB, Stapleton PA. Considering intrauterine location in a model of fetal growth restriction after maternal titanium dioxide nanoparticle inhalation. FRONTIERS IN TOXICOLOGY 2021; 3:643804. [PMID: 33997857 PMCID: PMC8121264 DOI: 10.3389/ftox.2021.643804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a condition with several underlying etiologies including gestational disease (e.g., preeclampsia, gestational diabetes) and xenobiotic exposure (e.g., environmental contaminants, pharmaceuticals, recreational drugs). Rodent models allow study of FGR pathogenesis. However, given the multiparous rodent pregnancy, fetal growth variability within uterine horns may arise. To ascertain whether intrauterine position is a determinant of fetal growth, we redesigned fetal weight analysis to include litter size and maternal weight. Our FGR model is produced by exposing pregnant Sprague Dawley rats to aerosolized titanium dioxide nanoparticles at 9.44 ± 0.26 mg/m3 on gestational day (GD) 4, GD 12 or GD 17 or 9.53 ± 1.01 mg/m3 between GD 4-GD 19. In this study fetal weight data was reorganized by intrauterine location [i.e., right/left uterine horn and ovarian/middle/vaginal position] and normalized by maternal weight and number of feti per uterine horn. A significant difference in fetal weight in the middle location in controls (0.061g ± 0.001 vs. 0.055g ± 0.002), GD 4 (0.033g ± 0.003 vs. 0.049g ± 0.004), and GD 17 (0.047g ± 0.002 vs. 0.038g ± 0.002) exposed animals was identified. Additionally, GD 4 exposure produced significantly smaller feti in the right uterine horn at the ovarian end (0.052g ± 0.003 vs. 0.029g ± 0.003) and middle of the right uterine horn (0.060g ± 0.001 vs. 0.033g ± 0.003). GD 17 exposure produced significantly smaller feti in the left uterine horn middle location (0.055g ± 0.002 vs. 0.033 ± 0.002). Placental weights were unaffected, and placental efficiency was reduced in the right uterine horn middle location after GD 17 exposure (5.74g ± 0.16 vs. 5.09g ± 0.14). These findings identified: 1) differences in fetal weight of controls between the right and left horns in the middle position, and 2) differential effects of single whole-body pulmonary exposure to titanium dioxide nanoparticles on fetal weight by position and window of maternal exposure. In conclusion, these results indicate that consideration for intrauterine position, maternal weight, and number of feti per horn provides a more sensitive assessment of FGR from rodent reproductive and developmental studies.
Collapse
Affiliation(s)
- J. N. D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S. B. Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| | - P. A. Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| |
Collapse
|
15
|
Fan F, Shen W, Wu S, Chen N, Tong X, Wang F, Zhang Q. Sp1 participates in the cadmium-induced imbalance of the placental glucocorticoid barrier by suppressing 11β-HSD2 expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113976. [PMID: 32044612 DOI: 10.1016/j.envpol.2020.113976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/10/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is widely present in the environment as a heavy metal poison. Prenatal Cd exposure can damage the placental glucocorticoid barrier, leading to foetal growth restriction (FGR), but the molecular mechanism is unknown. We aimed to study the effects of prenatal Cd exposure on 11β-HSD2 and its possible involvement in Cd induced damage in the placental glucocorticoid barrier. Pregnant rats were treated with CdCl2 (1.0 mg/kg/day) by gavage from gestational day (GD) 9-19. Maternal exposure to Cd increased the FGR rate of the offspring, and the levels of corticosterone in the placenta, maternal and foetal serum. Further in vitro experiments with placenta or JEG3 cells indicated that Cd was able to decrease 11β-HSD2 and Sp1 expression in trophoblast cells but did not affect 11β-HSD1. Additionally, decreased p300 and Sp1 enrichment at the 11β-HSD2 promoter region was observed in the cells treated with Cd. Decreasing or increasing Sp1 expression accordingly inhibited or promoted the expression of 11β-HSD2 and further decreased or increased p300 and Sp1 enrichment at the 11β-HSD2 promoter region. In conclusion, Cd inhibits the expression of 11β-HSD2 by affecting the binding of p300 to 11β-HSD2 via a decrease in Sp1 expression, which damages the placental glucocorticoid barrier and exposes the foetus to excessive glucocorticoids, resulting in FGR. These findings reveal a possible underlying molecular mechanism by which Cd exposure leads to FGR.
Collapse
Affiliation(s)
- Fengyun Fan
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wanting Shen
- Departments of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Wu
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Chen
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Tong
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Wang
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Qiong Zhang
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Xu P, Guo H, Wang H, Lee SC, Liu M, Pan Y, Zheng J, Zheng K, Wang H, Xie Y, Bai X, Liu Y, Zhao M, Wang L. Downregulations of placental fatty acid transporters during cadmium-induced fetal growth restriction. Toxicology 2019; 423:112-122. [PMID: 31152847 DOI: 10.1016/j.tox.2019.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/01/2019] [Accepted: 05/27/2019] [Indexed: 01/22/2023]
Abstract
Cadmium (Cd) is one of the environmental pollutants, which has multiple toxic effects on fetuses and placentas. Placental fatty acid (FA) uptake and transport are critical for the fetal and placental development. We aimed to analyze the triglyceride (TG) level, the expression patterns of several key genes involved in FA uptake and transport, and the molecular mechanisms for the altered gene expressions in placentas in response to Cd treatment. Our results showed that the placental TG level was significantly decreased in the Cd-exposed placentas. Fatty acid transporting protein 1 (FATP1), FATP6 and fatty acid binding protein 3 (FABP3) were significantly down-regulated in the placentas from Cd-exposed mice. The expression level of phospho-p38 MAPK was increased by Cd treatment, while the protein level of total p38 MAPK remained unchanged. The expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) and the hypoxia-inducible factor-1α (HIF-1α) were significantly decreased in the Cd-exposed placentas. The methylation levels of the promoter regions of FATP1, FATP6 and FABP3 showed no significant differences between the treatment and control groups. In addition, the circulating non-esterified fatty acid (NEFA), total cholesterol (TC), and TG levels were not decreased in the maternal serum from the Cd-exposed mice. Therefore, our results suggest Cd exposure dose not reduce the maternal FA supply, but reduces the placental TG level. Cd treatment also downregulates the placental expressions of FATP1, FATP6 and FABP3, respectively associated with p38-MAPK, p38 MAPK/PPAR-γ and HIF-1α pathways.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Huiqin Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Huan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Shao Chin Lee
- School of Life Science, Shanxi University, Taiyuan 030006, China; School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ming Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongliang Pan
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou 313000, China.
| | - Jian Zheng
- Department of Cardiopulmonary Function Examination, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China.
| | - Kang Zheng
- Special Ward, Shanxi Provincial Cancer Hospital, Taiyuan 030013, China.
| | - Huihui Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Yuxin Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| | - Xiaoxia Bai
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Yun Liu
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai 201300, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Geng HX, Wang L. Cadmium: Toxic effects on placental and embryonic development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:102-107. [PMID: 30797179 DOI: 10.1016/j.etap.2019.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Cadmium is a non-essential trace metal that has strong teratogenic and mutagenic effects in living organisms. The content is more highly enriched in women than in men and can enter the embryo through the placenta and destroy the placenta's morphological structure, resulting in fetal growth restriction. In this report, we review published data linking pregnancy exposure to cadmium to placenta and fetal growth and development toxicity and summarize the related mechanisms. An understanding of how cadmium exposure contributes to placental and fetal development is necessary for the development of prevention and control strategies for fetal development defects caused by cadmium exposure during pregnancy.
Collapse
Affiliation(s)
- Hui-Xia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan Province, PR China
| | - Lai Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng, 475004, Henan Province, PR China.
| |
Collapse
|
18
|
Vähäkangas K, Loikkanen J, Sahlman H, Karttunen V, Repo J, Sieppi E, Kummu M, Huuskonen P, Myöhänen K, Storvik M, Pasanen M, Myllynen P, Pelkonen O. Biomarkers of Toxicity in Human Placenta. BIOMARKERS IN TOXICOLOGY 2019:303-339. [DOI: 10.1016/b978-0-12-814655-2.00018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Cowley M, Skaar DA, Jima DD, Maguire RL, Hudson KM, Park SS, Sorrow P, Hoyo C. Effects of Cadmium Exposure on DNA Methylation at Imprinting Control Regions and Genome-Wide in Mothers and Newborn Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037003. [PMID: 29529597 PMCID: PMC6071808 DOI: 10.1289/ehp2085] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Imprinted genes are defined by their preferential expression from one of the two parental alleles. This unique mode of gene expression is dependent on allele-specific DNA methylation profiles established at regulatory sequences called imprinting control regions (ICRs). These loci have been used as biosensors to study how environmental exposures affect methylation and transcription. However, a critical unanswered question is whether they are more, less, or equally sensitive to environmental stressors as the rest of the genome. OBJECTIVES Using cadmium exposure in humans as a model, we aimed to determine the relative sensitivity of ICRs to perturbation of methylation compared to similar, nonimprinted loci in the genome. METHODS We assayed DNA methylation genome-wide using bisulfite sequencing of 19 newborn cord blood and 20 maternal blood samples selected on the basis of maternal blood cadmium levels. Differentially methylated regions (DMRs) associated with cadmium exposure were identified. RESULTS In newborn cord blood and maternal blood, 641 and 1,945 cadmium-associated DMRs were identified, respectively. DMRs were more common at the 15 maternally methylated ICRs than at similar nonimprinted loci in newborn cord blood (p=5.64×10-8) and maternal blood (p=6.22×10-14), suggesting a higher sensitivity for ICRs to cadmium. Genome-wide, Enrichr analysis indicated that the top three functional categories for genes that overlapped DMRs in maternal blood were body mass index (BMI) (p=2.0×10-5), blood pressure (p=3.8×10-5), and body weight (p=0.0014). In newborn cord blood, the top three functional categories were BMI, atrial fibrillation, and hypertension, although associations were not significant after correction for multiple testing (p=0.098). These findings suggest that epigenetic changes may contribute to the etiology of cadmium-associated diseases. CONCLUSIONS We analyzed cord blood and maternal blood DNA methylation profiles genome-wide at nucleotide resolution in individuals selected for high and low blood cadmium levels in the first trimester. Our findings suggest that ICRs may be hot spots for perturbation by cadmium, motivating further study of these loci to investigate potential mechanisms of cadmium action. https://doi.org/10.1289/EHP2085.
Collapse
Affiliation(s)
- Michael Cowley
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- W.M. Keck Center for Behavioral Biology , North Carolina State University , Raleigh, North Carolina, USA
| | - David A Skaar
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Dereje D Jima
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Kathleen M Hudson
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Sarah S Park
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Patricia Sorrow
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina, USA
| |
Collapse
|
20
|
Dharmadasa P, Kim N, Thunders M. Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food Chem Toxicol 2017; 109:714-720. [DOI: 10.1016/j.fct.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
|
21
|
Xu P, Wu Z, Yang W, Wang L. Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology 2017; 390:109-116. [DOI: 10.1016/j.tox.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
|
22
|
Jacobo-Estrada T, Santoyo-Sánchez M, Thévenod F, Barbier O. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. Int J Mol Sci 2017; 18:ijms18071590. [PMID: 28737682 PMCID: PMC5536077 DOI: 10.3390/ijms18071590] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Even decades after the discovery of Cadmium (Cd) toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters), the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization), in placenta and in fetus (teratogenicity, central nervous system, liver and kidney).
Collapse
Affiliation(s)
- Tania Jacobo-Estrada
- Departamento de Sociedad y Política Ambiental, CIIEMAD, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, La Laguna Ticomán, Ciudad de México 07340, Mexico.
| | - Mitzi Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Frank Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D 58453 Witten, Germany.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|