1
|
Cantua R, Mulligan K. Developmental neurotoxicity of bisphenol F and bisphenol S in animal model systems: A literature review. Neurotoxicology 2025; 108:263-280. [PMID: 40280242 DOI: 10.1016/j.neuro.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neurodevelopmental disorders have complex etiologies, stemming both from genetic and environmental risk factors, including gestational exposure to bisphenol A (BPA). BPA is an endocrine-disrupting chemical widely used in the synthesis of plastics and epoxy-resins. In 2012, the Food and Drug Administration issued a ban on the use of BPA in certain baby and childhood products, which contributed to the proliferation of BPA-free products. To make products without BPA, plastic and epoxy manufacturers often use chemical analogs, including bisphenol F (BPF) and bisphenol S (BPS). However, the structural and biochemical similarities BPF and BPS share with BPA suggest they may have similar molecular and cellular impacts on the developing nervous system, despite consumers generally regarding BPA-free products as safer alternatives. In this review, we synthesized all available peer-reviewed primary literature to date reporting on the neurodevelopmental impacts of BPF and/or BPS in animal models. In total, 61 papers were identified as relevant to the topic, including evaluation of BPF- and BPS-associated neurodevelopmental phenotypes such as changes in neurodevelopmental gene expression, the proliferation and differentiation of neural stem cells, synaptogenesis, central nervous system morphology, neuronal cell death, and behavior. Though less extensively studied than BPA, the collective works described here indicate that BPF and BPS can act as developmental neurotoxicants in animal models, urging further mechanistic and epidemiological analyses of these bisphenol analogs, as well as a reconsideration by regulatory agencies of policies surrounding their usage.
Collapse
Affiliation(s)
- Ricardo Cantua
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA.
| |
Collapse
|
2
|
Al-Shami AS, Haroun M, Essawy AE, Moussa N, Abd Elkader HTAE. Early-life bisphenol A exposure causes detrimental age-related changes in anxiety, depression, learning, and memory in juvenile and adult male rats: Involvement of NMDAR/PSD-95-PTEN/AKT signaling pathway. Neurotoxicology 2025; 106:17-36. [PMID: 39617347 DOI: 10.1016/j.neuro.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor monomer that is widely used in the manufacturing of epoxy resins and polycarbonate plastics. Several lines of evidence indicate the function of the pre- or perinatally PI3K/AKT signaling pathway in the development of psychiatric disorders. The present study aimed to evaluate for the first time the effect of modifying the NMDAR/PSD-95-PTEN/AKT signaling pathway on behavioral and synaptic plasticity of early-life BPA exposure and its long-lasting influence on juvenile and adulthood stages of development. We investigated the effects of oral BPA doses of 50 and 125 mg/kg/day on the prefrontal cortex (PFC) and hippocampus of male Sprague Dawley rats from postnatal day (PND) 18-60 and PND 18-95, which correspond to juvenile and adolescent stages, respectively. Subsequently, we performed a series of rat behavioral tests, including the open field, elevated plus-maze, forced swimming, and Y-maze. Notably, neurotransmitter levels such as dopamine, serotonin, and gamma-aminobutyric acid, levels of postsynaptic density protein 95 and cAMP response element-binding protein, as well as mRNA levels of N-methyl-D-aspartate receptor subunits, fluctuated between reduction and elevation in the PFC and hippocampus. Furthermore, phosphatase and tensin (PTEN) mRNA and protein levels were upregulated in both brain areas, while PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) mRNA and protein levels were decreased. Finally, our findings indicate that postnatal BPA exposure promotes long-term anxiety and depressive-like behaviors, as well as cognitive impairment, via modulation of the NMDAR/PSD-95-PTEN/AKT pathway. These findings could help to elucidate the potential developmental and neurobehavioral effects of early-life BPA exposure.
Collapse
Affiliation(s)
- Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Medhat Haroun
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
3
|
Abd Elkader HTAE, Al-Shami AS, Darwish HS. Perinatal bisphenol A exposure has an age- and dose-dependent association with thyroid allostasis adaptive response, as well as anxiogenic-depressive-like and asocial behaviors in juvenile and adult male rats. Physiol Behav 2024; 288:114732. [PMID: 39510223 DOI: 10.1016/j.physbeh.2024.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Thyroid hormones are essential for brain development, and a shortage throughout the fetal and postnatal periods can result in mood disorders. Perinatal exposure to bisphenol A (BPA) affects thyroid activity and dependent processes indirectly during pregnancy or early postnatal life. This is particularly important because it may cause changes in tissue ontogeny, increasing the risk of developing disorders later in life. The study aimed to investigate the consequences of thyroid hormone deficiency on anxiety, social, and depressive behaviors, as well as disruption in thyroid peroxidase (TPO) gene expression, which influences the NF-κB/Nrf-2/HO-1/iNOS signaling pathway, leading to oxidative stress, inflammation, and DNA fragmentation in perinatal BPA exposure (PND18), and whether these effects can be observed in juvenile (PND60) and adult (PND95) male offspring rats. BPA increased anxiety-like behavior while decreasing sucrose preference and sociability on a choice task between novel conspecific male rats and enhanced immobility on the forced swim test. Perinatal exposure to BPA causes thyroid insult by overproducing ROS, increasing iNOS, and NF-κB levels-these effects, in turn, down-regulate Nrf-2/HO-1 signaling, resulting in DNA fragmentation within thyroid tissues. Furthermore, perinatal BPA exposure for 60 and 95 days resulted in a significant fold decrease in TPO mRNA levels in the thyroid tissues, with an insignificant fold rise in TPO expression levels in BPA 50-60. In conclusion, the present study found that perinatal BPA exposure induced thyroid allostasis-adaptive response by inhibiting the NF-κB/Nrf-2/HO-1/iNOS signaling pathway and altering the transcriptional expression of TPO, where TSH reinforced a possible association with TPO activity, disrupting thyroid hormone synthesis in juvenile rats and gradual deterioration reaching the adult stage.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hanaa Said Darwish
- Zoology, Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Zsarnovszky A, Alymbaeva D, Jocsak G, Szabo C, Mária Schilling-Tóth B, Sandor Kiss D. Endocrine disrupting effects on morphological synaptic plasticity. Front Neuroendocrinol 2024; 75:101157. [PMID: 39393417 DOI: 10.1016/j.yfrne.2024.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.
Collapse
Affiliation(s)
- Attila Zsarnovszky
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary; Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary.
| | - Daiana Alymbaeva
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Gergely Jocsak
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Csaba Szabo
- Department of Physiology and Animal Health, Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | | | - David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| |
Collapse
|
5
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
6
|
Prvulovic M, Sokanovic S, Simeunovic V, Vukojevic A, Jovic M, Todorovic S, Mladenovic A. The complex relationship between late-onset caloric restriction and synaptic plasticity in aged Wistar rats. IUBMB Life 2024; 76:548-562. [PMID: 38390757 DOI: 10.1002/iub.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
8
|
Zhang W, Zhang L, Liang W, Wang H, Hu F. Neurodevelopment effects of early life bisphenol-A exposure on visual memory: Insights into recovery dynamics. Toxicology 2024; 502:153718. [PMID: 38160929 DOI: 10.1016/j.tox.2023.153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.
Collapse
Affiliation(s)
- Wentai Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Huan Wang
- School of Life Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.
| |
Collapse
|
9
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
10
|
Wang R, Liu ZH, Bi N, Gu X, Huang C, Zhou R, Liu H, Wang HL. Dysfunction of the medial prefrontal cortex contributes to BPA-induced depression- and anxiety-like behavior in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115034. [PMID: 37210999 DOI: 10.1016/j.ecoenv.2023.115034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA), a well-known environmental endocrine disruptor, has been implicated in anxiety-like behavior. But the neural mechanism remains elusive. Herein, we found that mice exposed to 0.5 mg/kg/day BPA chronically from postnatal days (PND) 21 to PND 80 exhibited depression- and anxiety-like behavior. Further study showed that medial prefrontal cortex (mPFC), was associated with BPA-induced depression- and anxiety-like behavior, as evidenced by decreased c-fos expression in mPFC of BPA-exposed mice. Both the morphology and function of glutamatergic neurons (also called pyramidal neurons) in mPFC of mice were impaired following BPA exposure, characterized by reduced primary branches, weakened calcium signal, and decreased mEPSC frequency. Importantly, optogenetic activation of the pyramidal neurons in mPFC greatly reversed BPA-induced depression- and anxiety-like behavior in mice. Furthermore, we reported that microglial activation in mPFC of mice may also have a role in BPA-induced depression- and anxiety-like behavior. Taken together, the results indicated that mPFC is the brain region that is greatly damaged by BPA exposure and is associated with BPA-induced depression- and anxiety-like behavior. The study thus provides new insights into BPA-induced neurotoxicity and behavioral changes.
Collapse
Affiliation(s)
- Rongrong Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Nanxi Bi
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Ruiqing Zhou
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China
| | - Haoyu Liu
- School of Pharmacy, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui 230032, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, No 485 Danxia Road, Hefei, Anhui 230601, PR China.
| |
Collapse
|
11
|
Yavuz Y, Ozen DO, Erol ZY, Goren H, Yilmaz B. Effects of endocrine disruptors on the electrical activity of leptin receptor neurons in the dorsomedial hypothalamus and anxiety-like behavior in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121366. [PMID: 36858099 DOI: 10.1016/j.envpol.2023.121366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 μg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.
Collapse
Affiliation(s)
- Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Deniz Oyku Ozen
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Zehra Yagmur Erol
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Habibe Goren
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
12
|
Wang S, Ning H, Wang X, Chen L, Hua L, Ren F, Hu D, Li R, Ma Z, Ge Y, Yin Z. Exposure to bisphenol A induces neurotoxicity associated with synaptic and cytoskeletal dysfunction in neuro-2a cells. Toxicol Ind Health 2023; 39:325-335. [PMID: 37122122 DOI: 10.1177/07482337231172827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bisphenol A (BPA) has been reported to injure the developing and adult brain. However, the underlying mechanism still remains elusive. This study used neuro-2a cells as a cellular model to investigate the neurotoxic effects of BPA. Microtubule-associated protein 2 (MAP2) and tau protein maintain microtubule normal function and promote the normal development of the nervous system. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic plasticity. Cells were exposed to the minimum essential medium (MEM), 0.01% (v/v) DMSO, and 150 μM BPA for 12, 24, or 36 h. Morphological analysis revealed that the cells in the BPA-treated groups shrank and collapsed compared with those in the control groups. CCK-8 and lactate dehydrogenase assay (LDH) assays showed that the mortality of neuro-2a cells increased as the BPA treatment time was prolonged. Ultrastructural analysis further revealed that cells demonstrated nucleolar swelling, dissolution of nuclear and mitochondrial membranes, and partial mitochondrial condensation following exposure to BPA. BPA also decreased the relative protein expression levels of MAP2, tau, and Dbn. Interestingly, the relative protein expression levels of SYP increased. These results indicated that BPA inhibited the proliferation and disrupted cytoskeleton and synaptic integrity of neuro-2a cells.
Collapse
Affiliation(s)
- Siting Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Xinrui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Fei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Rongbo Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhisheng Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, P. R. China
| |
Collapse
|
13
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
14
|
Lama A, Del Piano F, Annunziata C, Comella F, Opallo N, Melini S, Grumetto L, Pirozzi C, Mattace Raso G, Meli R, Ferrante MC. Bisphenol A exacerbates anxiety-like behavior and neuroinflammation in prefrontal cortex of adult obese mice. Life Sci 2023; 313:121301. [PMID: 36535405 DOI: 10.1016/j.lfs.2022.121301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS Bisphenol A (BPA) is an endocrine-disrupting chemical inducing several damages such as neurotoxicity, immunotoxicity, and metabolic disorders. Obesity is the main risk factor for the increased occurrence of metabolic alterations as well as mood disorders. Here, we investigated in obese mice the effects of BPA on anxiety-like behavior, associated with neuroinflammation and immune activation. MAIN METHODS Male C57Bl/6J mice were divided into 4 groups: control group (STD) receiving chow diet and BPA vehicle; STD group treated with BPA (50 μg/kg/die); high-fat diet (HFD) group receiving BPA vehicle; HFD group treated with BPA. BPA treatment started 12 weeks after HFD feeding and lasted 3 weeks. KEY FINDINGS The open field and elevated plus-maze tests showed in HFD + BPA group the worsening of HFD-induced anxiety-like behavior. The anxiogenic effects of BPA also emerged from hyperactivation of the hypothalamus-pituitary-adrenal gland axis, determined by the increased transcription of Crh and its receptor in the prefrontal cortex (PFC). Furthermore, BPA activated NLRP3 inflammasome and exacerbated the neuroinflammation induced by HFD, increasing IL-1β, TNF-α and monocyte chemoattractant protein (MCP)-1 in PFC. Furthermore, it induced inflammation and monocyte recruitment in hypothalamus and amygdala. Contextually, BPA significantly amplified the immune activation caused by lipid overload as evidenced by the increased expression of TLR-4 and MCP-1 in the PFC and triggered mastocytosis in the hypothalamus rather than STD mice. SIGNIFICANCE All these data show that sub-chronic BPA exposure represents an additional risk factor for mood disorders strictly related to obesity, enhancing neuroinflammation and immune activation triggered by HFD feeding.
Collapse
Affiliation(s)
- A Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - F Del Piano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - C Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - F Comella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - N Opallo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - S Melini
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - L Grumetto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - C Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - G Mattace Raso
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - R Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - M C Ferrante
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Amran NH, Zaid SSM, Mokhtar MH, Manaf LA, Othman S. Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence. TOXICS 2022; 10:597. [PMID: 36287877 PMCID: PMC9611505 DOI: 10.3390/toxics10100597] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources (micro-sized plastics manufactured on purpose) and secondary sources (breakdown of large plastic items through physical, chemical, and biological processes). Consequently, serious concerns are escalating because MPs can be easily disseminated and contaminate environments, including terrestrial, air, groundwater, marine, and freshwater systems. Furthermore, an exposure to even low doses of MPs during the early developmental stage may induce long-term health effects, even later in life. Accordingly, this study aims to gather the current evidence regarding the effects of MPs exposure on vital body systems, including the digestive, reproductive, central nervous, immune, and circulatory systems, during the early developmental stage. In addition, this study provides essential information about the possible emergence of various diseases later in life (i.e., adulthood).
Collapse
Affiliation(s)
- Nur Hanisah Amran
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia
| | - Latifah Abd Manaf
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| |
Collapse
|
16
|
Singh P, Paramanik V. Neuromodulating roles of estrogen and phytoestrogens in cognitive therapeutics through epigenetic modifications during aging. Front Aging Neurosci 2022; 14:945076. [PMID: 35992599 PMCID: PMC9381870 DOI: 10.3389/fnagi.2022.945076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogen (E2) plays important role in regulating hippocampal learning and memory. The decline of E2 after menopause affects learning and memory and increases the risk of neurodegenerative diseases like Alzheimer's disease (AD). Additionally, from the estrogen receptor (ER) mediated gene regulation; E2 also regulates gene expression at the transcriptional and posttranscriptional levels through epigenetic modifications. E2 recruits a number of proteins called co-regulators at the promoter region of genes. These co-regulators act as chromatin modifiers, alter DNA and histone modifications and regulate gene expression. Several studies show that E2 regulates learning and memory by altering chromatin at the promoters of memory-linked genes. Due to structural similarities with E2 and low side effects, phytoestrogens are now used as neuroprotective agents to recover learning and memory in animal models as well as human subjects during aging and different neurological disorders. Growing evidence suggests that apart from anti-oxidative and anti-inflammatory properties, phytoestrogens also act as epigenetic modifiers and regulate gene expression through epigenetic modifications. The epigenetic modifying properties of phytoestrogens are mostly studied in cancer cells but very little is known regarding the regulation of synaptic plasticity genes, learning and memory, and neurological disorders. In this article, we discuss the epigenetic modifying properties of E2 and the roles of phytoestrogens as epigenetic modifiers in the brain to recover and maintain cognitive functions.
Collapse
|
17
|
Chen L, Liu Y, Jia P, Zhang H, Yin Z, Hu D, Ning H, Ge Y. Acute lead acetate induces neurotoxicity through decreased synaptic plasticity-related protein expression and disordered dendritic formation in nerve cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58927-58935. [PMID: 35377123 DOI: 10.1007/s11356-022-20051-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a widespread environmental heavy metal that can damage the cerebral cortex and hippocampus, and reduce the learning and memory ability in humans and animals. In vivo and in vitro models of acute lead acetate exposure were established to further study the mechanism of neurons injury. In this study, 4-week-old female Kunming mice were randomly divided into four groups. Each group was treated with distilled water with different Pb concentrations (0, 2.4, 4.8 and 9.6 mM). Mice were killed, and brain tissues were collected to detect the changes in synaptic plasticity-related protein expression. Furthermore, Neuro-2A cells were treated with 0, 5, 25 and 50 μM lead acetate for 24 h to observe the changes in cell morphology and function. In in vivo experiment, results showed that the expression levels of cytoskeleton-associated and neural function-related proteins decreased in a dose-dependent manner in the mouse brain tissue. In in vitro experiment, compared with the control group, Pb treatment groups were observed with smaller and round cells, decreased cell density and number of synapses. In the Pb exposure group, the survival rate of nerve cells decreased evidently, and the permeability of the cell membrane was increased. Western blot results showed that the expression of cytoskeleton-associated and function-related proteins decreased gradually with increased Pb exposure dose. Confocal laser scanning microscopy results revealed the morphological and volumetric changes in Neuro-2A cells, and a dose-dependent reduction in the number of axon and dendrites. These results suggested that abnormal neural structures and inhibiting expression of synaptic plasticity-related proteins might be the possible mechanisms of Pb-induced mental retardation in human and animals, thereby laying a foundation for the molecular mechanism of Pb neurotoxicity.
Collapse
Affiliation(s)
- Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Penghuan Jia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Hongli Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
- Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan, People's Republic of China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, People's Republic of China.
| |
Collapse
|
18
|
Li J, Yin Z, Hua L, Wang X, Ren F, Ge Y. Evaluation of BPA effects on autophagy in Neuro-2a cells. Toxicol Ind Health 2022; 38:151-161. [PMID: 35261310 DOI: 10.1177/07482337221076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA), which is used for the industrial production of polycarbonate plastics and epoxy resins, is found in many commercially available products. Plasticizer BPA produces chemical substances worldwide, and knowledge of its effects on humans and animals is increasing. In the present work, the morphology of cells was observed by optical microscopy and phalloidin staining to evaluate the toxic effect of BPA on Neuro-2a cells. Autophagy has an important role in the regulation of cell metabolism. To study the effect of BPA on the autophagy in Neuro-2a cells, the expression distribution of LC3 was detected by immunofluorescence, and the expression levels of p62 and Beclin1 were determined using western blot and quantitative real-time PCR (qRT-PCR), respectively. Optical microscopy and phalloidin staining revealed that the cells became rounded and small and that the dendritic spine of the cells were reduced at high BPA doses. Immunofluorescence analysis demonstrated that the expression of LC3 fluorescence intensity was weak at increasing BPA concentrations. Western blot results showed that the relative expression of protein p62 increased significantly and that the relative expression levels of the Beclin1 and the LC3 proteins significantly decreased with increasing BPA concentration. qRT-PCR results showed that the relative expression level of autophagy-related p62 mRNA increased significantly and that the relative expression level of Beclin1 mRNA decreased significantly with increasing BPA concentration. The above results indicated that BPA treatment exerted dose-dependent toxic effects on Neuro-2a cells, and BPA inhibited the autophagy level of Neuro-2a cells, thereby providing a new perspective in studying the toxic effect of BPA on Neuro-2a cells.
Collapse
Affiliation(s)
- Jinglong Li
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| | - Zhihong Yin
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| | - Liushuai Hua
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| | - Xinrui Wang
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| | - Fei Ren
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- School of Physical Education, 177560Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
19
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
20
|
Bonaldo B, Casile A, Bettarelli M, Gotti S, Panzica G, Marraudino M. Effects of chronic exposure to bisphenol A in adult female mice on social behavior, vasopressin system, and estrogen membrane receptor (GPER1). Eur J Histochem 2021; 65:3272. [PMID: 34755506 PMCID: PMC8607277 DOI: 10.4081/ejh.2021.3272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific "critical periods" of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO).
| | | | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano (TO); Department of Neuroscience "Rita Levi-Montalcini", University of Turin.
| | | |
Collapse
|
21
|
Bakoyiannis I, Kitraki E, Stamatakis A. Endocrine-disrupting chemicals and behaviour: A high risk to take? Best Pract Res Clin Endocrinol Metab 2021; 35:101517. [PMID: 33744126 DOI: 10.1016/j.beem.2021.101517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early life exposure to endocrine-disrupting chemicals (EDCs) is considered a potential risk factor for aberrant brain development and the emergence of behavioral deficits. The purpose of this review is to summarize the toxic effects of bisphenol-A (BPA) and phthalate exposure during pre-, -post- or perinatal life on different types of behaviour in male and female rodents. Despite results not being always consistent, most probably due to methodological issues, it is highly probable that early life exposure to BPA or/and phthalates, affects various aspects of behaviour in the offspring. Adverse effects include: Increased levels of anxiety, altered exploratory behaviour, reduced social interaction or increased aggression and deficits in spatial or recognition learning and memory. These effects have been observed with a wide range of doses, in some cases even below the currently employed Tolerable Daily Intake dose for either BPA or phthalates.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efthymia Kitraki
- Basic Sciences Lab, Faculty of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
22
|
Angiotensin II induces cognitive decline and anxiety-like behavior via disturbing pattern of theta-gamma oscillations. Brain Res Bull 2021; 174:84-91. [PMID: 34090935 DOI: 10.1016/j.brainresbull.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Hypertension is the most common chronic disease accompanied by cognitive decline and anxiety-like behavior. Angiotensin II (Ang II) induces hypertension by activating angiotensin II receptor subtype 1 (AT1R). The purpose of the study was to examine the potential underlying mechanism of alterations in cognition and anxiety-like behavior induced by Ang II. Adult C57 mice were intraperitoneal injected with either 1 mg/kg/d Ang II or saline individually for 14 consecutive days. Ang II resulted in cognitive decline and anxious like behavior in C57 mice. Moreover, Ang II disturbed bidirectional synaptic plasticity and neural oscillation coupling between high theta and gamma on PP (perforant pathway)-DG (dentate gyrus) pathway. In addition, Ang II decreased the expression of N-methyl-d-aspartate receptor (NR) 2A and NR 2B and increased the expression of GABAAR α1. The data suggest that Ang II disturb neural oscillations via altering excitatory and inhibitory (E/I) balance and eventually damage cognition and anxiety-like behavior in mice.
Collapse
|
23
|
Luo Y, Xu W, Ou W, Wang T, Yang C, Xie S, Yu J, Xu J. Hospital-based case control study and animal study on the relationship between nonylphenol exposure and depression. PeerJ 2021; 9:e11384. [PMID: 34046258 PMCID: PMC8139269 DOI: 10.7717/peerj.11384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives The aim of this work is to explore the association between chronic exposure to nonylphenol (NP), a representative environmental endocrine disruptor (EED), and the risk of depression and its potential mechanism. Methods A hospital-based case control study was conducted from August to December 2018. Forty-one patients with confirmed depression and 47 healthy volunteers were recruited. In vitro, 20 rats were randomly divided into the control group (corn oil) and NP exposure group (n=10 per group), which were gavaged at a dose of 4 mg/kg w/day for 180 days. Results The depressed patient group had higher Zung Self-Rating Depression Scale (SDS) (P<0.001) and Self-Rating Anxiety Scale (SAS) (P<0.001) scores than the healthy group. The serum NP level (P=0.009) in the depressed group was higher than that in the healthy group, and the BDNF level (P=0.001) was lower. The serum levels of monoamine neurotransmitters dopamine (DA) (P=0.070), epinephrine (E) (P=0.001), and noradrenaline (NE) (P=0.000) were lower than those in the healthy group. In the sucrose preference test, the sucrose preference time for the exposure group of rats was lower than that of the control group (P<0.001). In the forced swim test, a longer resting time was measured for the exposure group of rats as compared to the control group (P<0.05). The level of NP (P<0.001) in the brain tissue of the NP exposure group was higher than that in the control group, and the serum level of brain-derived neurotrophic factor (BDNF) (P=0.004) was lower. Histopathological examination of the brain biopsies illustrated that the neuronal cells and nuclei in the hippocampus of the exposed group exhibited slight shrinkage. Conclusion Chronic exposure to NP at environmental doses will result in the accumulation of NP in the brain and blood, and induction of depression, which might be associated with the alterations in the expression levels of BDNF and monoamine neurotransmitters.
Collapse
Affiliation(s)
- Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Weihong Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Wei Ou
- Department of Medicopsychology, School of Management, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Ting Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Changwei Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Songying Xie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, PR China
| |
Collapse
|
24
|
Kaur S, Kinkade JA, Green MT, Martin RE, Willemse TE, Bivens NJ, Schenk AK, Helferich WG, Trainor BC, Fass J, Settles M, Mao J, Rosenfeld CS. Disruption of global hypothalamic microRNA (miR) profiles and associated behavioral changes in California mice (Peromyscus californicus) developmentally exposed to endocrine disrupting chemicals. Horm Behav 2021; 128:104890. [PMID: 33221288 PMCID: PMC7897400 DOI: 10.1016/j.yhbeh.2020.104890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Developmental exposure to endocrine disrupting chemicals (EDCs), e.g., bisphenol A (BPA) or genistein (GEN), causes longstanding epigenome effects. MicroRNAs (miRs) regulate which mRNAs will be translated to proteins and thereby serve as the final checkpoint in epigenetic control. Scant amount is known, however, whether EDCs affect neural miRNA (miR) patterns. We aimed to test the hypothesis that developmental exposure of California mice (Peromyscus californicus) to GEN, BPA, or both chemicals influences hypothalamic miR/small RNA profiles and ascertain the extent such biomolecular alterations correlate with behavioral and metabolic changes. California mice were developmentally exposed to GEN (250 mg/kg feed weight, FW), GEN (250 mg/kg FW)+BPA (5 mg/kg FW), low dose (LD) BPA (5 mg/kg FW), or upper dose (UD) BPA (50 mg/kg FW). Adult offspring were tested in a battery of behavioral and metabolic tests; whereupon, mice were euthanized, brains were collected and frozen, small RNAs were isolated from hypothalamic punches, and subsequently sequenced. California mice exposed to one or both EDCs engaged in one or more repetitive behaviors. GEN, LD BPA, and UD BPA altered aspects of ultrasonic and audible vocalizations. Each EDC exposure led to sex-dependent differences in differentially expressed miR/small RNAs with miR7-2, miR146, and miR148a being increased in all female and male EDC exposed groups. Current findings reveal that developmental exposure to GEN and/or BPA affects hypothalamic miR/small RNA expression patterns, and such changes correlate with EDC-induced behavioral and metabolic alterations. miR146 is likely an important mediator and biomarker of EDC exposure in mammals, including humans.
Collapse
Affiliation(s)
- Sarabjit Kaur
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jessica A Kinkade
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Madison T Green
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Rachel E Martin
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tess E Willemse
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211, USA
| | | | - William G Helferich
- Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Joseph Fass
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Matthew Settles
- Bioinformatics Core, UC Davis Genome Center, Davis, CA 95616, USA
| | - Jiude Mao
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Cheryl S Rosenfeld
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Informatics Institute, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
25
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
4-tert-Octylphenol Exposure Disrupts Brain Development and Subsequent Motor, Cognition, Social, and Behavioral Functions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8875604. [PMID: 33294128 PMCID: PMC7691001 DOI: 10.1155/2020/8875604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
The endocrine-disrupting chemical 4-tert-octylphenol (OP) is a widespread estrogenic chemical used in consumer products such as epoxy resins and polycarbonate plastic. However, the effects of OP on brain development are unknown. The present study examined the effects of OP on neuron and neurobehavioral development in mice. By using primary cortical neuron cultures, we found that OP-treated showed a decreased length of axons and dendrites and an increased number of primary and secondary dendrites. OP reduced bromodeoxyuridine (BrdU), mitotic marker Ki67, and phospho-histone H3 (p-Histone-H3), resulting in a reduction of neuronal progenitor proliferation in offspring mouse brain. Moreover, OP induced apoptosis in neuronal progenitor cells in offspring mouse brain. Furthermore, offspring mice from OP-treated dams showed abnormal cognitive, social, and anxiety-like behaviors. Taken together, these results suggest that perinatal exposure to OP disrupts brain development and behavior in mice.
Collapse
|
27
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
28
|
Mi P, Tang YQ, Feng XZ. Acute fluorene-9-bisphenol exposure damages early development and induces cardiotoxicity in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110922. [PMID: 32800257 DOI: 10.1016/j.ecoenv.2020.110922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is a substitute for bisphenol A (BPA), which is widely used to manufacture plastic products. Previous studies indicate that BHPF has an anti-estrogenic effect and induces cytotoxicity in mice oocytes. However, the effects of acute BHPF exposure on the aquatic organism obtain little attention. In this study, a series of BHPF concentrations (1 μM, 2 μM, 5 μM, 10 μM, 20 μM) was used to exposed zebrafish embryos from 2 h post-fertilization (hpf). The results showed the LC50 at 96hpf was 2.88 μM (1.01 mg/L). Acute exposure induced malformation in morphology, and retarded epiboly rate at 10hpf, increased apoptosis. Moreover, acute BHPF exposure led cardiotoxicity, by impeding cardiac looping, decreasing cardiac contractility (reducing the stroke volume and cardiac output, decreasing fractional shortening of ventricle). Besides that, BHPF exposure altered the expression of cardiac transcriptional regulators and development related genes. In conclusion, acute BHPF exposure induced developmental abnormality, retarded cardiac morphogenesis and injured the cardiac contractility. This study indicated BHPF would be an unneglected threat for the safety of aquatic organisms.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Yao J, Wang J, Wu L, Lu H, Wang Z, Yu P, Xiao H, Gao R, Yu J. Perinatal exposure to bisphenol A causes a disturbance of neurotransmitter metabolic pathways in female mouse offspring: A focus on the tryptophan and dopamine pathways. CHEMOSPHERE 2020; 254:126715. [PMID: 32334245 DOI: 10.1016/j.chemosphere.2020.126715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Perinatal exposure to bisphenol A (BPA) contributes to neurological disorders in offspring, but the underlying mechanisms are still poorly understood. The abnormal release of neuroactive metabolites in the tryptophan (TRP) and dopamine (DA) pathways is considered to be closely associated with some disorders. Thus, in this study, TRP and DA pathways in adult female mouse offspring were investigated when the pregnant mice were given either vehicle or BPA (2, 10, or 100 μg/kg/d) from day 6 of gestation until weaning. Then, the serum and brain samples of offspring were collected at 3, 6 and 9 months, and 12 neuroactive metabolites in the TRP and DA pathways were detected. The results showed that, in the TRP pathway, TRP levels decreased, whereas kynurenine (KYN) levels and TRP turnover increased in the brain. In the serum, TRP, KYN and 5-hydroxytryptamine (5-HT) levels decreased significantly. For the DA pathway, DA and DA metabolites, including 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT) and homovanillic acid (HVA), reduced significantly in the brain and serum. DA turnover decreased dramatically in the brain but enhanced in the serum. The disturbance of these two metabolic pathways might be one of the potential mechanisms of BPA-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiaxi Yao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China; Haining Center for Disease Control and Prevention, No. 82 West Qianjiang Road, Haining, Zhejiang, 314400, China
| | - Jun Wang
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Haihua Lu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Zhonghe Wang
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Pengfei Yu
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Hang Xiao
- Department of Toxicology, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China.
| | - Jing Yu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, No. 101 Longmian Avenue, Nanjing, 211166, China.
| |
Collapse
|
30
|
Solleiro‐Villavicencio H, Gomez‐De León CT, Del Río‐Araiza VH, Morales‐Montor J. The detrimental effect of microplastics on critical periods of development in the neuroendocrine system. Birth Defects Res 2020; 112:1326-1340. [DOI: 10.1002/bdr2.1776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 01/13/2023]
Affiliation(s)
| | - Carmen T. Gomez‐De León
- Departamento de Inmunologia Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| | - Víctor H. Del Río‐Araiza
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autónoma de México Ciudad de México Mexico
| | - Jorge Morales‐Montor
- Departamento de Inmunologia Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico Ciudad de México Mexico
| |
Collapse
|
31
|
Yin Z, Hua L, Chen L, Hu D, Li J, An Z, Tian T, Ning H, Ge Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol In Vitro 2020; 67:104911. [PMID: 32512148 DOI: 10.1016/j.tiv.2020.104911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Bisphenol A (BPA) is an environmental chemical that induces neurotoxic effects for human. Synaptophysin (SYP) and drebrin (Dbn) proteins are involved in regulating synaptic morphology. The stability of the cytoskeleton in nerve cells in the brain is regulated by Tau and MAP2. This study aimed to determine the toxicity of BPA to Neuro-2a cells by investigating the synaptic and cytoskeletal damage induced in these cells by 24 h of exposure to 0 (MEM), 50, 100, 150, or 200 μM BPA or DMSO. MTT and LDH assays showed that the death rates of Neuro-2a cells increased, as the BPA concentration increased. Ultrastructural assays revealed that cells underwent nucleolar swelling as well as nuclear membrane and partial mitochondrial dissolution or condensation, following BPA exposure. Morphological analysis further revealed that compared with the cells in the control group, the cells in the BPA-treated groups shrank, became rounded, and exhibited a reduced number of synapses. BPA also significantly decreased the relative protein and mRNA expression levels of Dbn, MAP2 and Tau (P < .01), but increased the relative protein and mRNA expression levels of SYP (P < .01). These results indicated that BPA suppressed the development and proliferation of Neuro-2a cells by disrupting cellular and synaptic integrity and inflicting cytoskeleton injury.
Collapse
Affiliation(s)
- Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Liushuai Hua
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jinglong Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhixing An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Tian Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
32
|
Bisphenol a Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling. Int J Mol Sci 2020; 21:ijms21093129. [PMID: 32365465 PMCID: PMC7246794 DOI: 10.3390/ijms21093129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound detected in the urine of more than 92% of humans, easily crosses the placental barrier, and has been shown to influence gene expression during fetal brain development. The purpose of this study was to investigate the effect of in utero BPA exposure on gene expression in the anterior hypothalamus, the basal nucleus of the stria terminalis (BNST), and hippocampus in C57BL/6 mice. Mice were exposed in utero to human-relevant doses of BPA, and then RNA sequencing was performed on male PND 28 tissue from whole hypothalamus (n = 3/group) that included the medial preoptic area (mPOA) and BNST to determine whether any genes were differentially expressed between BPA-exposed and control mice. A subset of genes was selected for further study using RT-qPCR on adult tissue from hippocampus to determine whether any differentially expressed genes (DEGs) persisted into adulthood. Two different RNA-Seq workflows indicated a total of 259 genes that were differentially expressed between BPA-exposed and control mice. Gene ontology analysis indicated that those DEGs were overrepresented in categories relating to mating, cell-cell signaling, behavior, neurodevelopment, neurogenesis, synapse formation, cognition, learning behaviors, hormone activity, and signaling receptor activity, among others. Ingenuity Pathway Analysis was used to interrogate novel gene networks and upstream regulators, indicating the top five upstream regulators as huntingtin, beta-estradiol, alpha-synuclein, Creb1, and estrogen receptor (ER)-alpha. In addition, 15 DE genes were identified that are suspected in autism spectrum disorders.
Collapse
|
33
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
34
|
Yu J, Xu W, Luo Y, Ou W, Li S, Chen X, Xu J. Dynamic monitoring of depressive behavior induced by nonylphenol and its effect on synaptic plasticity in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1012-1022. [PMID: 31280147 DOI: 10.1016/j.scitotenv.2019.06.250] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
The etiology of depression is not known, it is thought that endocrine-disrupting chemicals (EDCs) contribute to the disease. Results of our previous research have shown that nonylphenol (NP), a well-known EDC, has neurotoxic effects, however, whether NP can induce depressive behavior by affecting synaptic plasticity has not yet been clearly elucidated. The depressive behavior induced by subchronic exposure to NP and its effect on the neuronal synaptic plasticity in rats are dynamically observed. Thirty Sprague-Dawley rats were randomly divided into 3 groups: control group (C, corn oil), NP group (NP, 4 mg/kg), and depression model group (D, corticosterone 20 mg/kg). There were 8 rats in each group. The depressive behavior of rats was tested by sucrose preference test, open-field test, and forced swimming test once a month for 3 months. The serum levels of brain-derived neurotrophic factor (BDNF) and corticosterone were detected by ELISA assay, and cellular morphological changes were observed by hematoxylin-eosin (HE) staining. The number of nerve cells, the length of dendrites, and the density of dendritic spines were observed by Golgi staining, and the synaptic cleft width, the postsynaptic density (PSD) thickness, and the synaptic interface curvature were observed by transmission electron microscope. Compared with the control group, the consumption of sucrose solution decreased in the NP group at the 2nd and 3rd month compared to the 1st month (F = 9.887, P = 0.002). The number of central square entries, the central square duration, and the total distance of movement were all decreased, and the decreasing degrees at the 3rd month were greater than those at the 1st month (F = 21.191, P < 0.001; F = 9.836, P = 0.002). The time of immobility for the NP group at the 1st month was higher than that in the control group (F = 6.912, P = 0.002). The expression of BDNF in the NP-treated group was higher than the control, while the expression of corticosterone in the NP-treated group was lower than the control. In the NP group, the cytoplasm of nerve cells contracted and appeared disordered. The neuron arrangement was disordered, and the number of cells, the length of the apex, the length of the basal dendrites, and the dendritic spine density were all lower in the NP group than those in the control group. The PSD thickness, the synaptic cleft width, and synaptic interface curvatures were all decreased in the NP group when compared to the control group. Subchronic exposure to 4 mg/kg NP led to depressive behavior in rats, and the depressive behavior and alterations in synaptic plasticity were more obvious with longer exposure time.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Weihong Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Wei Ou
- Department of Medicopsychology, School of Management, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Shengnan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Xu Chen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
35
|
Effects of bisphenol S, a major substitute of bisphenol A, on neurobehavioral responses and cerebral monocarboxylate transporters expression in mice. Food Chem Toxicol 2019; 132:110670. [DOI: 10.1016/j.fct.2019.110670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
36
|
Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, Flaws JA, Rissman EF. Transgenerational Bisphenol A Causes Deficits in Social Recognition and Alters Postsynaptic Density Genes in Mice. Endocrinology 2019; 160:1854-1867. [PMID: 31188430 PMCID: PMC6637794 DOI: 10.1210/en.2019-00196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical. Developmental exposure produces changes in behavior and gene expression in the brain. Here, we examined social recognition behaviors in mice from the third familial generation (F3) after exposure to gestational BPA. Second-generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory postsynaptic densities (PSDs) were examined in F3 brains using quantitative PCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes-SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95)-were differentially expressed in control- vs BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established, and our data suggest that BPA may contribute in a transgenerational manner to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia
| | - Jessica A Goldsby
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachel Stevenson
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Joshua W Irvin
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Correspondence: Emilie F. Rissman, PhD, North Carolina State University, Thomas Hall Room 3526, Raleigh, North Carolina 27695. E-mail:
| |
Collapse
|
37
|
Retraction: Perinatal Exposure to Bisphenol-A Impairs Spatial Memory through Upregulation of Neurexin1 and Neuroligin3 Expression in Male Mouse Brain. PLoS One 2019; 14:e0220212. [PMID: 31318945 PMCID: PMC6638963 DOI: 10.1371/journal.pone.0220212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Sex Differences in the Effects of Prenatal Bisphenol A Exposure on Genes Associated with Autism Spectrum Disorder in the Hippocampus. Sci Rep 2019; 9:3038. [PMID: 30816183 PMCID: PMC6395584 DOI: 10.1038/s41598-019-39386-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.
Collapse
|
39
|
Mi P, Zhang QP, Li SB, Liu XY, Zhang SH, Li M, Chen DY, Zhao X, Feng DF, Feng XZ. Melatonin protects embryonic development and maintains sleep/wake behaviors from the deleterious effects of fluorene-9-bisphenol in zebrafish (Danio rerio). J Pineal Res 2019; 66:e12530. [PMID: 30269372 DOI: 10.1111/jpi.12530] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Environmental endocrine chemicals have various adverse effects on the development of vertebrates. Fluorene-9-bisphenol (BHPF), a substitute of bisphenol A (BPA), is widely used in commercial production. The effects of BHPF on development and behavior are unclear. Melatonin plays a protective role under many unfavorable conditions. In this study, we investigated the effects of BHPF on the development and behaviors of zebrafish and whether melatonin reverses effects induced by BHPF. Zebrafish embryos were exposed to 0.1, 10, or 1000 nmol/L BHPF with or without 1 μmol/L melatonin from 2 hours postfertilization to 6 days postfertilization. The results showed that 0.1 and 10 nmol/L BHPF had little effect on development. High-dose BHPF (1000 nmol/L) delayed the development, increased mortality and surface tension of embryonic chorions, caused aberrant expression of the key genes (ntl, shh, krox20, pax2, cmlc2) in early development detected by in situ hybridization, and damaged the CaP motor neurons, which were associated with locomotion ability detected by immunofluorescence. Melatonin addition reversed or weakened these adverse effects of BHPF on development, and melatonin alone increased surface tension as the effects of high-dose BHPF. However, all groups of BHPF exposure triggered insomnia-like behaviors, with increased waking activity and decreased rest behaviors. BHPF acted on the hypocretin (hcrt) system and upregulated the expression of sleep/wake regulators such as hcrt, hcrt receptor (hcrtr), arylalkylamine N-acetyltransferase-2 (aanat2). Melatonin recovered the alternation of sleep/wake behaviors induced by BHPF and restored abnormal gene expression to normal levels. This study showed that high-dose BHPF had adverse effects on early development and induced behavioral alternations. However, melatonin prevented BHPF-induced aberrant development and sleep/wake behaviors.
Collapse
Affiliation(s)
- Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Qiu-Ping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Shi-Bao Li
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Xing-Yu Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Shu-Hui Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, China
| | - Dao-Fu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
40
|
Chen Z, Li T, Zhang L, Wang H, Hu F. Bisphenol A exposure remodels cognition of male rats attributable to excitatory alterations in the hippocampus and visual cortex. Toxicology 2018; 410:132-141. [PMID: 30312744 DOI: 10.1016/j.tox.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022]
Abstract
Bisphenol A, an environmental xenoestrogen, has been shown sex-specific adverse effects on cognitive function of rodents. However, the specific mechanisms underlying these outcomes remain elusive, limiting our understanding the differences in behavioral impairments due to BPA exposure between genders in humans. The present study chose the juvenile stage (with a stable estrogen level) as the exposure window to explore BPA effects on cognitive behaviors of male and female Sprague-Dawley (SD) rats and related mechanisms. Three dosages of BPA (0.04, 0.4 and 4 mg/kg/day) were chose to make BPA-exposed models. Especially, the mid-dose for rats was close to the current reference daily limit for human exposure given by the U.S. Environmental Protection Agency. Our results showed that male but not female juvenile rats had a marked decline in spatial memory after 0.4 mg/kg/day BPA exposure, which accompanied with downregulation of glutamate receptor (NR2) expression in their hippocampus and primary visual cortex (V1). In the high-dose BPA exposed groups (4 mg/kg/day), there was not only a deficit of spatial memory, but also an anxiety-like behavior of male rats. Additionally, those rats had a significant decline in spine density of pyramidal neurons and a decreased expression of glutamate receptor subtypes (NR2 and GluR1) in the hippocampus. Importantly, such impairments in the hippocampus of male rats were associated with a decrease of glutamate receptor (NR2) expression in the V1, which could perturb the visual information inputs. To some extent, altered ERβ expression within their hypothalamus could contribute to the anxiety-like behavior after high-dose BPA exposure. However, the low-dose BPA exposed juvenile rats didn't present any structural and behavioral changes in our present study. Those results suggests that BPA exerts dose dependent and gender-specific effects on the cognition of juvenile animals. Our findings shed light on mechanisms underlying BPA effects on the juvenile animals.
Collapse
Affiliation(s)
- Zhi Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Tingting Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Linke Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
41
|
Jones ME, Paniccia JE, Lebonville CL, Reissner KJ, Lysle DT. Chemogenetic Manipulation of Dorsal Hippocampal Astrocytes Protects Against the Development of Stress-enhanced Fear Learning. Neuroscience 2018; 388:45-56. [PMID: 30030056 DOI: 10.1016/j.neuroscience.2018.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022]
Abstract
Maladaptive behavioral outcomes following stress have been associated with immune dysregulation. For example, we have previously reported that stress-induced dorsal hippocampal interleukin-1β signaling is critical to the development of stress-enhanced fear learning (SEFL). In parallel, astroglial signaling has been linked to the development of post-traumatic stress disorder (PTSD)-like phenotypes and our most recent studies have revealed astrocytes as the predominant cellular source of stress-induced IL-1β. Here, we used chemogenetic technology and morphological analyses to further explore dorsal hippocampal astrocyte function in the context of SEFL. Using a glial-expressing DREADD construct (AAV8-GFAP-hM4Di(Gi)-mCherry), we show that dorsal hippocampal astroglial Gi activation is sufficient to attenuate SEFL. Furthermore, our data provide the first initial evidence to support the function of the glial-DREADD construct employed. Specifically, we find that CNO (clozapine-n-oxide) significantly attenuated colocalization of the Gi-coupled DREADD receptor and cyclic adenosine monophosphate (cAMP), indicating functional inhibition of cAMP production. Subsequent experiments examined dorsal hippocampal astrocyte volume, surface area, and synaptic contacts (colocalization with postsynaptic density 95 (PSD95)) following exposure to severe stress (capable of inducing SEFL). While severe stress did not alter dorsal hippocampal astrocyte volume or surface area, the severe stressor exposure reduced dorsal hippocampal PSD95 immunoreactivity and the colocalization analysis showed reduced PSD95 colocalized with astrocytes. Collectively, these data provide evidence to support the functional efficacy of the glial-expressing DREADD employed, and suggest that an astrocyte-specific manipulation, activation of astroglial Gi signaling, is sufficient to protect against the development of SEFL, a PTSD-like behavior.
Collapse
Affiliation(s)
- Meghan E Jones
- Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacqueline E Paniccia
- Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Christina L Lebonville
- Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Donald T Lysle
- Department of Psychology and Neuroscience, Behavioral and Integrative Neuroscience Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
42
|
Liang Y, Li J, Jin T, Gu T, Zhu Q, Hu Y, Yang Y, Li J, Wu D, Jiang K, Xu X. Bisphenol-A inhibits improvement of testosterone in anxiety- and depression-like behaviors in gonadectomied male mice. Horm Behav 2018; 102:129-138. [PMID: 29778459 DOI: 10.1016/j.yhbeh.2018.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/20/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Bisphenol-A (BPA) is a well-known environmental endocrine disruptor. Developmental exposure to BPA affected a variety of behaviors in multiple model organisms. Our recent study found that exposure to BPA during adulthood aggravated anxiety- and depression-like states in male mice but not in females. In this study, 11-w-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5 mg/kg), TP and BPA (0.04, 0.4, or 4 mg/kg), or vehicle for 45 days. BPA (0.4 or 4 mg/kg) did not affect the elevated plus maze task of GDX mice but shortened the time on open arms and decreased the frequency of head dips of sham and TP-GDX mice. In forced swim task, BPA prolonged the total time of immobility of both sham and TP-GDX mice but not GDX mice. In addition, BPA reduced the levels of T in the serum and the brain of sham and TP-GDX mice. Western blot analysis further showed that BPA reduced the levels of androgen receptor (AR) and GABA(A)α2 receptor of the hippocampus and the amygdala in sham and inhibited the rescue of TP in these proteins levels of GDX mice. Meanwhile, BPA decreased the level of phospho-ERK1/2 in these two brain regions of sham and TP-GDX mice. These results suggest that long-term exposure to BPA inhibited TP-improved anxiety- and depression-like behaviors in GDX male mice. The down-regulated levels of GABA(A)α2 receptor and AR and an inhibited activity of ERK1/2 pathway in the hippocampus and the amygdala may be involved in these process.
Collapse
Affiliation(s)
- Yvfeng Liang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Jiahong Li
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Tao Jin
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Ting Gu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Qingjie Zhu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Yizhong Hu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Yang Yang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Jisui Li
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Donghong Wu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Kesheng Jiang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China
| | - Xiaohong Xu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, PR China; Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China.
| |
Collapse
|
43
|
Sarma H, Lee WY. Bacteria enhanced lignocellulosic activated carbon for biofiltration of bisphenols in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17227-17239. [PMID: 29808400 DOI: 10.1007/s11356-018-2232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
There are eight bisphenol analogues being identified and characterized; among them, bisphenol A (BPA) is on the priority list on the basis of its higher level of uses, occurrence, and toxicity. The endocrine system interfered by BPA has been inventoried as it has the same function as the natural hormone 17β-estradiol and binds mainly to the estrogen receptor (ER) to exhibit estrogenic activities. The BPA concentration in surface waters (14-1390 ng/L) in many parts of the world, such as Japan, Korea, China, and India, was also a significant concern. Research efforts are focusing on restricting BPA consumption as well as removing BPA in our environment especially in drinking water. Current opinion is that lignocellulosic activated carbon stimulated with BPA-degrading bacteria could have the potential to provide solution for recent challenges faced by water utilities arising from BPA contamination in water. This technology has some new trends in the low-cost biofiltration process for removing BPA. This review is to provide in-depth discussion on the fate of BPA in our ecosystem and underlines methods to enhance the efficacy of activated carbon in the presence of BPA-degrading bacteria in the biofiltration process.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, N.N. Saikia College, Titabar, Assam, 785630, India.
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA.
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| |
Collapse
|