1
|
Niziński P, Krajewska A, Oniszczuk T, Polak B, Oniszczuk A. Hepatoprotective Effect of Kaempferol-A Review. Molecules 2025; 30:1913. [PMID: 40363718 PMCID: PMC12073652 DOI: 10.3390/molecules30091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
Liver diseases, including chronic inflammation and related metabolic dysfunction-associated steatotic liver disease (MASLD), fibrosis and cirrhosis remain a growing global health burden. Currently, available pharmacotherapy for liver dysfunction has limited efficacy. Kaempferol, a naturally occurring flavonoid, has demonstrated significant hepatoprotective effects in preclinical models. This substance activates the SIRT1/AMPK signalling pathway, improves mitochondrial function, inhibits proinflammatory cytokine production via TLR4/NF-κB suppression and attenuates hepatic stellate cell activation by modulating the TGF-β/Smad pathway. In addition, kaempferol regulates the composition of the gut microbiota, thus improving bile acid metabolism and alleviating steatosis and fibrosis. This review presents an integrated analysis of recent in vitro and in vivo studies on the mode of action and utility of kaempferol in liver disease and hepatoprotection.
Collapse
Affiliation(s)
- Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Anna Krajewska
- Department of Comprehensive Paediatric and Adult Dentistry, Medical University of Lublin, Chodżki 6, 20-093 Lublin, Poland;
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Beata Polak
- Department of Physical Chemistry, Medical University of Lublin, Chodżki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Li S, Mingoia S, Montégut L, Lambertucci F, Chen H, Dong Y, De Palma FDE, Scuderi SA, Rong Y, Carbonnier V, Martins I, Maiuri MC, Kroemer G. Atlas of expression of acyl CoA binding protein/diazepam binding inhibitor (ACBP/DBI) in human and mouse. Cell Death Dis 2025; 16:134. [PMID: 40011442 PMCID: PMC11865319 DOI: 10.1038/s41419-025-07447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Acyl CoA binding protein encoded by diazepam binding inhibitor (ACBP/DBI) is a tissue hormone that stimulates lipo-anabolic responses and inhibits autophagy, thus contributing to aging and age-related diseases. Protein expression profiling of ACBP/DBI was performed on mouse tissues to identify organs in which this major tissue hormone is expressed. Transcriptomic and proteomic data bases corroborated a high level of human-mouse interspecies conservation of ACBP/DBI expression in different organs. Single-cell RNA-seq data confirmed that ACBP/DBI was strongly expressed by parenchymatous cells from specific human and mouse organs (e.g., kidney, large intestine, liver, lung) as well as by myeloid or glial cells from other organs (e.g., adipose tissue, brain, eye) following a pattern that was conserved among the two species. We identified a panel of 44 mRNAs that are strongly co-expressed with ACBP/DBI mRNA in normal and malignant human and normal mouse tissues. Of note, 22 (50%) of these co-expressed mRNAs encode proteins localized at mitochondria, and mRNAs with metabolism-related functions are strongly overrepresented (66%). Systematic data mining was performed to identify transcription factors that regulate ACBP/DBI expression in human and mouse. Several transcription factors, including growth response 1 (EGR1), E2F Transcription Factor 1 (E2F1, which interacts with retinoblastoma, RB) and transformation-related protein 53 (TRP53, best known as p53), which are endowed with oncosuppressive effects, consistently repress ACBP/DBI expression as well as its co-expressed mRNAs across multiple datasets, suggesting a mechanistic basis for a coregulation network. Furthermore, we identified multiple transcription factors that transactivate ACBP/DBI gene expression together with its coregulation network. Altogether, this study indicates the existence of conserved mechanisms determining the expression of ACBP/DBI in specific cell types of the mammalian organism.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Silvia Mingoia
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yanbing Dong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Yan Rong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
3
|
Singh S, Nirala SK, Bhadauria M. Comparative role of acetaminophen, carbon tetrachloride and thioacetamide in development of fibrosis in rats. Toxicol Res (Camb) 2024; 13:tfad114. [PMID: 38179004 PMCID: PMC10762665 DOI: 10.1093/toxres/tfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Several hepatotoxicants such as acetaminophen, carbon tetrachloride, and thioacetamide are repeatedly used to develop hepatic fibrosis to mimic the histological and hemodynamic characteristics of human illness. It may be a good idea to establish a better model among these hepatotoxicants to develop hepatic fibrosis. Aim The present study evaluated comparative toxic effects of three model hepatotoxicants for experimental progression of fibrosis or cirrhosis. Materials and methods Acetaminophen (200 mg/kg), carbon tetrachloride (200 µl/kg) and thioacetamide (200 mg/kg) were administered orally, thrice in a week for 8 weeks in different groups. After 8 weeks of exposure, animals were euthanized, blood and tissues were collected for various hematological, serological, tissue biochemical analysis and histological observations for comparative assessment of toxic consequences. Results Significant deviation was noted in liver function tests, lipid peroxidation, glutathione, activities of superoxide dismutase, catalase, and GSH cycle enzymes; aniline hydroxylase, amidopyrine-N-demethylase, DNA fragmentation and level of hydroxyproline when compared with control group. Histology also depicted damage in liver histoarchitecture with exposure to acetaminophen, carbon tetrachloride and thioacetamide. Tukey's HSD post hoc test confirmed that thioacetamide produced severe toxic effects in comparison to carbon tetrachloride and acetaminophen. Conclusion In conclusion, toxic effects were noted in ascending order as acetaminophen.
Collapse
Affiliation(s)
- Shubham Singh
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas University, Koni-Bilaspur, Chhattisgarh 495009, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas University, Koni-Bilaspur, Chhattisgarh 495009, India
| |
Collapse
|
4
|
Wei M, Gu X, Li H, Zheng Z, Qiu Z, Sheng Y, Lu B, Wang Z, Ji L. EGR1 is crucial for the chlorogenic acid-provided promotion on liver regeneration and repair after APAP-induced liver injury. Cell Biol Toxicol 2023; 39:2685-2707. [PMID: 36809385 DOI: 10.1007/s10565-023-09795-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023]
Abstract
Improper use of acetaminophen (APAP) will induce acute liver failure. This study is designed to investigate whether early growth response-1 (EGR1) participated in the promotion on liver repair and regeneration after APAP-induced hepatotoxicity provided by natural compound chlorogenic acid (CGA). APAP induced the nuclear accumulation of EGR1 in hepatocytes regulated by extracellular-regulated protein kinase (ERK)1/2. In Egr1 knockout (KO) mice, the liver damage caused by APAP (300 mg/kg) was more severe than in wild-type (WT) mice. Results of chromatin immunoprecipitation and sequencing (ChIP-Seq) manifested that EGR1 could bind to the promoter region in Becn1, Ccnd1, and Sqstm1 (p62) or the catalytic/modify subunit of glutamate-cysteine ligase (Gclc/Gclm). Autophagy formation and APAP-cysteine adduct (APAP-CYS) clearance were decreased in Egr1 KO mice administered with APAP. The EGR1 deletion reduced hepatic cyclin D1 expression at 6, 12, or 18 h post APAP administration. Meanwhile, the EGR1 deletion also decreased hepatic p62, Gclc and Gclm expression, GCL enzymatic activity, and glutathione (GSH) content and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activation and thus aggravated oxidative liver injury induced by APAP. CGA increased EGR1 nuclear accumulation; enhanced hepatic Ccnd1, p62, Gclc, and Gclm expression; and accelerated the liver regeneration and repair in APAP-intoxicated mice. In conclusion, EGR1 deficiency aggravated liver injury and obviously delayed liver regeneration post APAP-induced hepatotoxicity through inhibiting autophagy, enhancing liver oxidative injury, and retarding cell cycle progression, but CGA promoted the liver regeneration and repair in APAP-intoxicated mice via inducing EGR1 transcriptional activation.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhiyong Zheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhimiao Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Syed MA, Bhat B, Wali A, Saleem A, Ahmad Dar L, Gugjoo MB, Bhat S, Saleem Bhat S. Epithelial to mesenchymal transition in mammary gland tissue fibrosis and insights into drug therapeutics. PeerJ 2023; 11:e15207. [PMID: 37187521 PMCID: PMC10178283 DOI: 10.7717/peerj.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 05/17/2023] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) is a multi-step morphogenetic process in which epithelial cells lose their epithelial properties and gain mesenchymal characteristics. The process of EMT has been shown to mediate mammary gland fibrosis. Understanding how mesenchymal cells emerge from an epithelial default state will aid in unravelling the mechanisms that control fibrosis and, ultimately, in identifying therapeutic targets to alleviate fibrosis. Methods The effects of EGF and high glucose (HG) on EMT in mammary epithelial cells, MCF10A and GMECs, as well as their pathogenic role, were studied. In-silico analysis was used to find interacting partners and protein-chemical/drug molecule interactions. Results On treatment with EGF and/or HG, qPCR analysis showed a significant increase in the gene expression of EMT markers and downstream signalling genes. The expression of these genes was reduced on treatment with EGF+HG combination in both cell lines. The protein expression of COL1A1 increased as compared to the control in cells treated with EGF or HG alone, but when the cells were treated with EGF and HG together, the protein expression of COL1A1 decreased. ROS levels and cell death increased in cells treated with EGF and HG alone, whereas cells treated with EGF and HG together showed a decrease in ROS production and apoptosis. In-silico analysis of protein-protein interactions suggest the possible role of MAPK1, actin alpha 2 (ACTA2), COL1A1, and NFκB1 in regulating TGFβ1, ubiquitin C (UBC), specificity protein 1 (SP1) and E1A binding protein P300 (EP300). Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment suggests advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signalling pathway, relaxin signalling pathway and extra cellular matrix (ECM) receptor interactions underlying fibrosis mechanism. Conclusion This study demonstrates that EGF and HG induce EMT in mammary epithelial cells and may also have a role in fibrosis.
Collapse
Affiliation(s)
- Mudasir Ahmad Syed
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Basharat Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Abiza Wali
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Afnan Saleem
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Lateef Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Surgery, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India, Srinagar, Jammu and Kashmir, India
| | - Shakil Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| | - Sahar Saleem Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India, Srinagar, India
| |
Collapse
|
6
|
Li C, Ru YJ, Lin QY, Gao GC, Yang YD, Zhang XQ, Gao JL, Liu SH, Zheng CW, Wang L, Zheng YX, Wu JM. Schisantherin D from Schisandra chinensis (Turcz.) Baill. exhibits anti-liver fibrosis capacity via modulating ETBR involved signaling, an in vitro and in vivo study. Fitoterapia 2022; 162:105290. [PMID: 36064152 DOI: 10.1016/j.fitote.2022.105290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/04/2022]
Abstract
Excess levels of chemical hepatotoxicants (alcohol, aflatoxin B1), oxidative drugs (acetaminophen) and some cytokines (ET-1, TGF-β1) can induce chronic or acute liver injury. After these, the severe hepatic disease, especially the liver fibrosis (LF) occurs without taking measures, which brings threat to human health. The dibenzocyclooctadiene lignans of S. chinensis (SCDLs) were found to act as the hepatoprotective components via blocking endothelin B receptor (ETBR). While study on its anti-LF mechanisms especially for its refined compound of schisantherin D (SC-D) is still a lack. So this study aims to investigate the anti-fibrosis effect of SC-D with in vitro and in vivo assays. Bioinformatics analysis revealed the close relations of ETBR to Smad2, Smad3, Nrf2, etc. in LF-related signaling pathways (such as TGF-β/Smad and Nrf2/ARE). Histopathological staining on livers showed the recovery trend in SC-D treated LF mice. SC-D also modulated expressions of ETBR and fibrosis or anti-oxidative related proteins (such as TIMP1, p-Smad2/3, Nrf2, Smad7, etc.) in LF mice livers. Serum levels of TNF-α, COLI, ALT, AST and LDH in SC-D treated mice were also downregulated compared with LF mice, and upregulated expression of GSH. In vitro studies, SC-D also modulated expressions of LF-related proteins to the normal tendency in LX-2 cell, while weakened its anti- LX-2 proliferation effect by transfections of si-Smad7 or si-Nrf2. Accordingly the anti-LF approach of SC-D showed relations with modulating ETBR linked fibrosis and anti-oxidative related signaling. Also, Smad7 and Nrf2 might be the key factors for SC-D mediated anti-LF effect.
Collapse
Affiliation(s)
- Chi Li
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yang-Jie Ru
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Quan-Yue Lin
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Guang-Chun Gao
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yu-Die Yang
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Xiao-Qin Zhang
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Jin-Lai Gao
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Shi-Hui Liu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Chu-Wei Zheng
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314001, China
| | - Lin Wang
- Department of Pharmacy, College of Medicine, China Three Gorges University, Yichang 610500, China
| | - Ya-Xin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, China
| | - Ji-Ming Wu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
7
|
Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials 2022; 290:121817. [DOI: 10.1016/j.biomaterials.2022.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
|
8
|
Wei M, Zhang Y, Zhang H, Huang Z, Miao H, Zhang T, Lu B, Ji L. HMGB1 induced endothelial to mesenchymal transition in liver fibrosis: The key regulation of early growth response factor 1. Biochim Biophys Acta Gen Subj 2022; 1866:130202. [PMID: 35820641 DOI: 10.1016/j.bbagen.2022.130202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Liver fibrosis has been the focus and difficulty of medical research in the world and its concrete pathogenesis remains unclear. This study aims to observe the high-mobility group box 1 (HMGB1)-induced hepatic endothelial to mesenchymal transition (EndoMT) during the development of hepatic fibrosis, and further to explore the crucial involvement of Egr1 in this process. METHODS Carbon tetrachloride (CCl4), diosbulbin B (DB), N-acetyl-p-aminophenol (APAP) and bile duct ligation (BDL) were used to induce liver fibrosis in mice. Serum HMGB1 content, the occurrence of EndoMT and the production of extracellular matrix (ECM) in vitro and in vivo were detected by Western-blot. RESULTS The elevated serum HMGB1 content, the occurrence of EndoMT, the production of ECM and the activation of Egr1 were observed in mice with liver fibrosis induced by CCl4, DB, APAP or BDL. HMGB1 induced EndoMT and ECM production in human hepatic sinusoidal endothelial cells (HHSECs), and then HHSECs lost the ability to inhibit the activation of hepatic stellate cells (HSCs). The hepatic deposition of collagen, the increased serum HMGB1 content and hepatic EndoMT were further aggravated in Egr1 knockout mice. Natural compound silymarin attenuated liver fibrosis in mice induced by CCl4 via increasing Egr1 nuclear accumulation, decreasing serum HMGB1 content and inhibiting hepatic EndoMT. CONCLUSION Egr1 regulated the expression of HMGB1 that induced hepatic EndoMT, which plays an important role in the development of liver fibrosis. GENERAL SIGNIFICANCE This study provides a novel therapeutic strategy for the treatment of liver fibrosis in clinic.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Miao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Lin HH, Hsu JY, Tseng CY, Huang XY, Tseng HC, Chen JH. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod Extract Attenuated Acetaminophen-Induced Hepatotoxicity. Molecules 2022; 27:molecules27134030. [PMID: 35807275 PMCID: PMC9268144 DOI: 10.3390/molecules27134030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The aim is to investigate the effect of lotus (Nelumbo nucifera Gaertn.) seedpod extract (LSE) on acetaminophen (APAP)-induced hepatotoxicity. LSE is rich in polyphenols and has potent antioxidant capacity. APAP is a commonly used analgesic, while APAP overdose is the main reason for drug toxicity in the liver. Until now, there has been no in vitro test of LSE in drug-induced hepatotoxicity responses. LSEs were used to evaluate the effect on APAP-induced cytotoxicity, ROS level, apoptotic rate, and molecule mechanisms. The co-treatment of APAP and LSEs elevated the survival rate and decreased intracellular ROS levels on HepG2 cells. LSEs treatment could significantly reduce APAP-induced HepG2 apoptosis assessed by DAPI and Annexin V/PI. The further molecule mechanisms indicated that LSEs decreased Fas/FasL binding and reduced Bax and tBid to restore mitochondrial structure and subsequently suppress downstream apoptosis cascade activation. These declines in COX-2, NF-κB, and iNOS levels were observed in co-treatment APAP and LSEs, which indicated that LSEs could ameliorate APAP-induced inflammation. LSE protected APAP-induced apoptosis by preventing extrinsic, intrinsic, and JNK-mediated pathways. In addition, the restoration of mitochondria and inflammatory suppression in LSEs treatments indicated that LSEs could decrease oxidative stress induced by toxic APAP. Therefore, LSE could be a novel therapeutic option for an antidote against overdose of APAP.
Collapse
Affiliation(s)
- Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Jen-Ying Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Chiao-Yun Tseng
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Xiao-Yin Huang
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| | - Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City 40201, Taiwan; (J.-Y.H.); (C.-Y.T.); (X.-Y.H.)
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
- Correspondence: (H.-C.T.); (J.-H.C.); Tel.: +886-4-24730022 (ext. 12195) (J.-H.C.); Fax: +886-4-23248175 (J.-H.C.)
| |
Collapse
|
10
|
Recovery from Liver Failure and Fibrosis in a Rat Portacaval Anastomosis Model after Neurointermediate Pituitary Lobectomy. J Immunol Res 2021; 2021:5529784. [PMID: 34926704 PMCID: PMC8677405 DOI: 10.1155/2021/5529784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Liver diseases, including cirrhosis, viral hepatitis, and hepatocellular carcinoma, account for approximately two million annual deaths worldwide. They place a huge burden on the global healthcare systems, compelling researchers to find effective treatment for liver fibrosis-cirrhosis. Portacaval anastomosis (PCA) is a model of liver damage and fibrosis. Arginine vasopressin (AVP) has been implicated as a proinflammatory-profibrotic hormone. In rats, neurointermediate pituitary lobectomy (NIL) induces a permanent drop (80%) in AVP serum levels. We hypothesized that AVP deficiency (NIL-induced) may decrease liver damage and fibrosis in a rat PCA model. Male Wistar rats were divided into intact control (IC), NIL, PCA, and PCA+NIL groups. Liver function tests, liver gene relative expressions (IL-1, IL-10, TGF-β, COLL-I, MMP-9, and MMP-13), and histopathological assessments were performed. In comparison with those in the IC and PCA groups, bilirubin, protein serum, and liver glycogen levels were restored in the PCA+NIL group. NIL in the PCA animals also decreased the gene expression levels of IL-1 and COLL-I, while increasing those of IL-10, TGF-β, and MMP-13. Histopathology of this group also showed significantly decreased signs of liver damage with lower extent of collagen deposition and fibrosis. Low AVP serum levels were not enough to fully activate the AVP receptors resulting in the decreased activation of cell signaling pathways associated with proinflammatory-profibrotic responses, while activating cell molecular signaling pathways associated with an anti-inflammatory-fibrotic state. Thus, partial reversion of liver damage and fibrosis was observed. The study supports the crucial role of AVP in the inflammatory-fibrotic processes and maintenance of immune competence. The success of the AVP deficiency strategy suggests that blocking AVP receptors may be therapeutically useful to treat inflammatory-fibrotic liver diseases.
Collapse
|
11
|
Yu Y, Wu Y, Yan HZ, Xia ZR, Wen W, Liu DY, Wan LH. Rosmarinic acid ameliorates acetaminophen-induced acute liver injury in mice via RACK1/TNF-α mediated antioxidant effect. PHARMACEUTICAL BIOLOGY 2021; 59:1286-1293. [PMID: 34517734 PMCID: PMC8451635 DOI: 10.1080/13880209.2021.1974059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
CONTEXT Rosmarinic acid (RA) dose-dependently ameliorates acetaminophen (APAP) induced hepatotoxicity in rats. However, whether RA hepatoprotective effect is by regulating RACK1 and its downstream signals is still unclear. OBJECTIVE This study explores the RA protective effect on APAP-induced ALI and its mechanism. MATERIALS AND METHODS Sixty Kunming mice 6-8 weeks old were randomly separated into six groups (n = 10) and pre-treated with normal saline, ammonium glycyrrhetate (AG) or RA (10, 20 or 40 mg/kg i.p./day) for two consecutive weeks. Then, APAP (300 mg/kg, i.g.) was administrated to induce ALI, except for the control. Serum alanine/aspartate aminotransferases (ALT and AST), malondialdehyde (MDA), superoxide dismutase (SOD) and histopathology were used to authenticate RA effect. The liver RACK1 and TNF-α were measured by western blot. RESULTS Compared with the APAP group, different dosages RA significantly decreased ALT (52.09 ± 7.98, 55.13 ± 10.19, 65.08 ± 27.61 U/L, p < 0.05), AST (114.78 ± 19.87, 115.29 ± 31.91, 101.78 ± 21.85 U/L, p < 0.05), MDA (2.37 ± 0.87, 2.13 ± 0.87, 1.86 ± 0.39 nmol/mg, p < 0.01) and increased SOD (306.178 ± 90.80, 459.21 ± 58.54, 444.01 ± 78.09 U/mg, p < 0.05). With increasing doses of RA, RACK1 and TNF-α expression decreased. Moreover, the RACK1 and TNF-α levels were positively correlated with MDA (r = 0.8453 and r = 0.9391, p < 0.01). DISCUSSION AND CONCLUSIONS Our findings support RA as a hepatoprotective agent to improve APAP-induced ALI and the antioxidant effect mediated through RACK1/TNF-α pathway.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Yao Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| | - Hao-zheng Yan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Zi-ru Xia
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Wen Wen
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- West China School of Medicine, Sichuan University, Chengdu, PR China
| | - Dan-yang Liu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| | - Li-hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, PR China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, PR China
| |
Collapse
|
12
|
Hwang DB, Kim SY, Won DH, Kim C, Shin YS, Park JH, Chun YJ, Lim KM, Yun JW. Egr1 Gene Expression as a Potential Biomarker for In Vitro Prediction of Ocular Toxicity. Pharmaceutics 2021; 13:pharmaceutics13101584. [PMID: 34683877 PMCID: PMC8537669 DOI: 10.3390/pharmaceutics13101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are used for preclinical toxicity studies, and the need for in vitro alternative methods has been strongly raised. Our study aims to elucidate the potential mechanism of change in EGR1 expression under situations of toxic injury and to develop an Egr1 promoter-luciferase gene reporter assay for an in vitro alternative method for toxicity prediction in drug discovery. We first found an increase in early growth response-1 (EGR1) mRNA/protein expressions in the liver and kidney of cisplatin-treated injured rats. Additionally, the EGR1 protein level was also elevated under situations of ocular injury after sodium lauryl sulfate (SLS) eye drops. These in vivo observations on injury-related EGR1 induction were confirmed by in vitro studies, where human corneal epithelial cells were treated with representative irritants (SLS and benzalkonium chloride) and 17 chemicals having different UN GHS irritant categories. Additionally, our results suggest the involvement of ERK, JNK, p38 MAPK pathways in EGR1 elevation in response to gamma-butyrolactone-induced injury. As EGR1 is considered to be a pivotal factor in proliferation and regeneration, siRNA-mediated knockdown of Egr1 promoted cytotoxic potential through a delay of injury-related recovery. More importantly, the elevation of promoter activities was observed by various irritants in cells transfected with Egr1 promoter-reporter vector. In conclusion, Egr1 can be a potential biomarker in a promoter-reporter system to improve the accuracy of in vitro predictions for ocular irritation.
Collapse
Affiliation(s)
- Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
- Correspondence: (K.-M.L.); (J.-W.Y.); Tel.: +82-2-3277-3055 (K.-M.L.); +82-2-2164-4830 (J.-W.Y.)
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea; (D.-B.H.); (S.-Y.K.); (D.-H.W.); (C.K.); (Y.-S.S.)
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea
- Correspondence: (K.-M.L.); (J.-W.Y.); Tel.: +82-2-3277-3055 (K.-M.L.); +82-2-2164-4830 (J.-W.Y.)
| |
Collapse
|
13
|
Bao YL, Wang L, Pan HT, Zhang TR, Chen YH, Xu SJ, Mao XL, Li SW. Animal and Organoid Models of Liver Fibrosis. Front Physiol 2021; 12:666138. [PMID: 34122138 PMCID: PMC8187919 DOI: 10.3389/fphys.2021.666138] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis refers to the process underlying the development of chronic liver diseases, wherein liver cells are repeatedly destroyed and regenerated, which leads to an excessive deposition and abnormal distribution of the extracellular matrix such as collagen, glycoprotein and proteoglycan in the liver. Liver fibrosis thus constitutes the pathological repair response of the liver to chronic injury. Hepatic fibrosis is a key step in the progression of chronic liver disease to cirrhosis and an important factor affecting the prognosis of chronic liver disease. Further development of liver fibrosis may lead to structural disorders of the liver, nodular regeneration of hepatocytes and the formation of cirrhosis. Hepatic fibrosis is histologically reversible if treated aggressively during this period, but when fibrosis progresses to the stage of cirrhosis, reversal is very difficult, resulting in a poor prognosis. There are many causes of liver fibrosis, including liver injury caused by drugs, viral hepatitis, alcoholic liver, fatty liver and autoimmune disease. The mechanism underlying hepatic fibrosis differs among etiologies. The establishment of an appropriate animal model of liver fibrosis is not only an important basis for the in-depth study of the pathogenesis of liver fibrosis but also an important means for clinical experts to select drugs for the prevention and treatment of liver fibrosis. The present study focused on the modeling methods and fibrosis characteristics of different animal models of liver fibrosis, such as a chemical-induced liver fibrosis model, autoimmune liver fibrosis model, cholestatic liver fibrosis model, alcoholic liver fibrosis model and non-alcoholic liver fibrosis model. In addition, we also summarize the research and application prospects concerning new organoids in liver fibrosis models proposed in recent years. A suitable animal model of liver fibrosis and organoid fibrosis model that closely resemble the physiological state of the human body will provide bases for the in-depth study of the pathogenesis of liver fibrosis and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yu-long Bao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hai-ting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Tai-ran Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shan-jing Xu
- School of Medicine, Shaoxing University, Shaoxing, Chian
| | - Xin-li Mao
- School of Medicine, Shaoxing University, Shaoxing, Chian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
14
|
Xiao S, Yang Y, Liu YT, Zhu J. Liraglutide Regulates the Kidney and Liver in Diabetic Nephropathy Rats through the miR-34a/SIRT1 Pathway. J Diabetes Res 2021; 2021:8873956. [PMID: 33880382 PMCID: PMC8046563 DOI: 10.1155/2021/8873956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To explore the regulatory effects of liraglutide on the kidney and liver through the miR-34a/SIRT1 pathway with related factors in diabetic nephropathy (DN) rats. METHODS DN rats were randomly divided into two groups (n = 10) and were injected with liraglutide or normal saline twice a day. The 24-hour urine microalbumin content and biochemical index levels were measured. qRT-PCR was performed to detect the expression of miR-34a in the kidney and liver tissues. The levels of SIRT1, HIF-1a, Egr-1, and TGF-β1 in kidney and liver tissues were determined using qRT-PCR, western blot, and immunohistochemistry. Electron microscopy and HE staining were used to observe the ultrastructure and pathological changes. RESULTS Liraglutide treatment in DN rats decreased blood glucose, 24-hour urine microalbumin, TC, TG, LDL-C, UA, Cr, UREA, ALT, and AST levels and increased the level of HDL-C (P < 0.05). Compared with the control group, the miR-34a levels were significantly decreased in kidney and liver tissues followed by liraglutide treatment (P < 0.05). The levels of SIRT1 in the liraglutide group are significantly higher than those in the control group with the kidney and liver tissues (P < 0.05). Conversely, the contents of HIF-1a, Egr-1, and TGF-β1 were significantly lower in the liraglutide group than in the control group (P < 0.05). Electron microscopy showed that the kidney of the liraglutide-treated group exhibited minor broadening of the mesangial areas, fewer deposits, and a well-organized foot process. HE staining revealed that the kidney of the liraglutide-treated rats had a more regular morphology of the glomerulus and Bowman sac cavity and lighter tubular edema. Additionally, the liraglutide-treated DN rats had a clear hepatic structure, a lower degree of steatosis, and mild inflammatory cell infiltration. CONCLUSION Liraglutide, through its effect on the miR-34a/SIRT1 pathway, may have a protective role in the kidney and liver of DN rats.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Endocrinology, People's Hospital of Shenzhen Baoan District, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ye Yang
- Department of No. 1 Cadres, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue-Tong Liu
- Department of Ultrasonic ECG, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Zhu
- Department of Endocrinology, People's Hospital of Shenzhen Baoan District, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
He C, Shu B, Zhou Y, Zhang R, Yang X. The miR-139-5p/peripheral myelin protein 22 axis modulates TGF-β-induced hepatic stellate cell activation and CCl 4-induced hepatic fibrosis in mice. Life Sci 2021; 276:119294. [PMID: 33675896 DOI: 10.1016/j.lfs.2021.119294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Hepatic stellate cells (HSCs) are the major source of extracellular matrix (ECM)-producing myofibroblasts. When activated by multiple injuries, HSCs become proliferative, contractile, inflammatory and chemotactic and are characterized by enhanced ECM production, which plays a central role in hepatic fibrosis initiation and progression. In the present study, through bioinformatics analysis, we identified the abnormal upregulation of Peripheral Myelin Protein 22 (PMP22) in fibrotic murine liver. In CCl4-induced hepatic fibrosis model in mice and TGF-β-activated hHSCs, PMP22 was observed remarkably upregulated. In TGF-β-stimulated hHSCs, PMP22 silencing hindered, whereas PMP22 overexpression aggravated TGF-β-induced hHSC activation. In CCl4-induced hepatic fibrosis model in mice, PMP22 silencing improved CCl4-caused liver damage and fibrotic changes. Through online tools prediction and experimental validation, miR-139-5p was found to bind to the 3'UTR of PMP22 and negatively regulate the expression of PMP22. In contrast to PMP22 silencing, miR-139-5p inhibition enhanced TGF-β-induced hHSC activation; the effects of miR-139-5p inhibition on TGF-β-induced hHSC activation were partially reversed by PMP22 silencing. In conclusion, we identify the abnormal upregulation of PMP22 in TGF-β-activated HSCs and CCl4-induced hepatic fibrosis model in mice, as well as the pro-fibrotic role of PMP22 through aggravating TGF-β-induced HSCs activation. miR-139-5p targets the 3'UTR of PMP22 and inhibits PMP22 expression; miR-139-5p hinders TGF-β-induced HSCs activation through targeting PMP22.
Collapse
Affiliation(s)
- Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingxia Zhou
- Department of Surgical Operation, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruizhi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
16
|
Chusilp S, Lee C, Li B, Lee D, Yamoto M, Ganji N, Vejchapipat P, Pierro A. Human amniotic fluid stem cells attenuate cholangiocyte apoptosis in a bile duct injury model of liver ductal organoids. J Pediatr Surg 2021; 56:11-16. [PMID: 33129508 DOI: 10.1016/j.jpedsurg.2020.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE Biliary atresia (BA) is a fibro-obliterative cholangiopathy that involves both extrahepatic and intrahepatic bile ducts in infants. Cholangiocyte apoptosis has an influence on the fibrogenesis process of bile ducts and the progression of liver fibrosis in BA. Human amniotic fluid stem cells (hAFSCs) are multipotent cells that have ability to inhibit cell apoptosis. We aimed to investigate whether hAFSCs have the potential to attenuate cholangiocyte apoptosis and injury induced fibrogenic response in our ex vivo bile duct injury model of liver ductal organoids. METHODS The anti-apoptotic effect of hAFSCs was tested in the acetaminophen-induced injury model of neonatal mouse liver ductal organoids (AUP #42681) by using direct and indirect co-culture systems. Cell apoptosis and proliferation were evaluated by immunofluorescent staining. Expression of fibrogenic cytokines was analyzed by RT-qPCR. Data were compared using one-way ANOVA with post hoc test. RESULTS In our injury model, liver ductal organoids that were treated with hAFSCs in both direct and indirect co-culture systems had a significantly smaller number of apoptotic cholangiocytes and decreased expression of fibrogenic cytokines, transforming growth factor beta-1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). Moreover, hAFSCs increased cholangiocyte proliferation in injured organoids. CONCLUSION hAFSCs have the ability to protect the organoids from injury by decreasing cholangiocyte apoptosis and promoting cholangiocyte proliferation. This protective ability of hAFSCs leads to inhibition of the fibrogenic response in the injured organoids. hAFSCs have high therapeutic potential to attenuate liver fibrogenesis in cholangiopathic diseases such as BA.
Collapse
Affiliation(s)
- Sinobol Chusilp
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Carol Lee
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Masaya Yamoto
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Paisarn Vejchapipat
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
17
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
18
|
Zou M, Nong C, Yu Z, Cai H, Jiang Z, Xue R, Huang X, Sun L, Zhang L, Wang X. The role of invariant natural killer T cells and associated immunoregulatory factors in triptolide-induced cholestatic liver injury. Food Chem Toxicol 2020; 146:111777. [DOI: 10.1016/j.fct.2020.111777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
|
19
|
Chusilp S, Lee C, Li B, Lee D, Yamoto M, Ganji N, Vejchapipat P, Pierro A. A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia. Pediatr Surg Int 2020; 36:1471-1479. [PMID: 33084932 DOI: 10.1007/s00383-020-04765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The fibrogenic process in cholangiopathic diseases such as biliary atresia (BA) involves bile duct injury and apoptosis of cholangiocytes, which leads to the progression of liver fibrosis into liver cirrhosis and can result in end-staged liver disease. Recent advances in the development of organoids or mini-organ structures have allowed us to create an ex vivo injury model of the bile duct that mimics bile duct injury in BA. The aim of this experimental study was to develop a novel model of injured intrahepatic cholangiocytes as this can be relevant to BA. Our new model is important for studying the pathophysiological response of bile ducts to injury and the role of cholangiocytes in initiating the fibrogenic cascade. In addition, it has the potential to be used as a tool for developing new treatment strategies for BA. METHODS Liver ductal organoids were generated from the liver of healthy neonatal mouse pups. Intrahepatic bile duct fragments were isolated and cultured in Matrigel dome. Injury was induced in the organoids by administration of acetaminophen in culture medium. The organoids were then evaluated for fibrogenic cytokines expression, cell apoptosis marker and cell proliferation marker. RESULTS Organoids generated from intrahepatic bile duct fragments organized themselves into single-layer epithelial spheroids with lumen on the inside mimicking in vivo bile ducts. After 24-h exposure to acetaminophen, cholangiocytes in the organoids responded to the injury by increasing expression of fibrogenic cytokines, transforming growth factor beta-1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). This fibrogenic response of injured organoids was associated with increased cholangiocyte apoptosis and decreased cholangiocyte proliferation. CONCLUSION To our knowledge this is the first description of cholangiocyte injury in the organoids derived from intrahepatic bile ducts. Our injury model demonstrated that cholangiocyte apoptosis and its fibrogenic response may play a role in initiation of the fibrogenic process in cholangiopathic diseases such as BA. These findings are important for the development of novel therapy to reduce cholangiocyte apoptosis and to halt the early fibrogenic cascade in liver fibrogenesis. This novel injury model can prove very valuable for future research in biliary atresia.
Collapse
Affiliation(s)
- Sinobol Chusilp
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.,Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Masaya Yamoto
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paisarn Vejchapipat
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
20
|
McMillin M, Grant S, Frampton G, Petrescu AD, Williams E, Jefferson B, DeMorrow S. The TGFβ1 Receptor Antagonist GW788388 Reduces JNK Activation and Protects Against Acetaminophen Hepatotoxicity in Mice. Toxicol Sci 2020; 170:549-561. [PMID: 31132129 DOI: 10.1093/toxsci/kfz122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure is a serious consequence of acetaminophen (APAP)-induced hepatotoxic liver injury with high rates of morbidity and mortality. Transforming growth factor beta 1 (TGFβ1) is elevated during liver injury and influences hepatocyte senescence during APAP-induced hepatotoxicity. This study investigated TGFβ1 signaling in the context of inflammation, necrotic cell death, and oxidative stress during APAP-induced liver injury. Male C57Bl/6 mice were injected with 600 mg/kg APAP to generate liver injury in the presence or absence of the TGFβ receptor 1 inhibitor, GW788388, 1 h prior to APAP administration. Acetaminophen-induced liver injury was characterized using histological and biochemical measures. Transforming growth factor beta 1 expression and signal transduction were assessed using immunohistochemistry, Western blotting and ELISA assays. Hepatic necrosis, liver injury, cell proliferation, hepatic inflammation, and oxidative stress were assessed in all mice. Acetaminophen administration significantly induced necrosis and elevated serum transaminases compared with control mice. Transforming growth factor beta 1 staining was observed in and around areas of necrosis with phosphorylation of SMAD3 observed in hepatocytes neighboring necrotic areas in APAP-treated mice. Pretreatment with GW788388 prior to APAP administration in mice reduced hepatocyte cell death and stimulated regeneration. Phosphorylation of SMAD3 was reduced in APAP mice pretreated with GW788388 and this correlated with reduced hepatic cytokine production and oxidative stress. These results support that TGFβ1 signaling plays a significant role in APAP-induced liver injury by influencing necrotic cell death, inflammation, oxidative stress, and hepatocyte regeneration. In conclusion, targeting TGFβ1 or downstream signaling may be a possible therapeutic target for the management of APAP-induced liver injury.
Collapse
Affiliation(s)
- Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712.,Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504
| | - Stephanie Grant
- Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, 78712
| | - Gabriel Frampton
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712.,Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504
| | - Anca D Petrescu
- Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, 78712
| | - Elaina Williams
- Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, 78712
| | - Brandi Jefferson
- Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712.,Central Texas Veterans Health Care System, Austin, Texas, 78712.,Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, 76504.,Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
21
|
Chen H, Wang Y, Jiao FZ, Yang F, Li X, Wang LW. Sinomenine Attenuates Acetaminophen-Induced Acute Liver Injury by Decreasing Oxidative Stress and Inflammatory Response via Regulating TGF-β/Smad Pathway in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2393-2403. [PMID: 32606606 PMCID: PMC7306499 DOI: 10.2147/dddt.s248823] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
Abstract
Introduction Liver disease is common and often life-threatening. Sinomenine (SIN) is an active ingredient extracted from Sinomenium acutum. This study investigated the protective effect and mechanism of sinomenine (SIN) on acetaminophen (APAP)-induced liver injury from in vitro and in vivo. Methods In vivo experiments, mice were randomly divided into six groups (n=10): control group, model group, SIN (25 mg/kg) group, SIN (50 mg/kg) group, SIN (100 mg/kg) group and SIN (100 mg/kg) + SRI-011381 group. Alanine transaminases (ALT), aspartate transaminases (AST) and alkaline phosphatase (ALP) were detected. The pathological lesion was measured by HE staining. Apoptosis was measured by TUNEL staining. In vitro experiments, BRL-3A cells were treated with APAP (7.5 mM) and then subjected to various doses of SIN (10, 50 and 100 μg/mL) at 37°C for 24 h. Inflammatory factors and oxidative stress index were measured by ELISA. The expression of proteins was detected by Western blot. Results The results showed that compared with the control group, the levels of ALT, AST and ALP in the serum of APAP-induced mice were significantly increased, followed by liver histological damage and hepatocyte apoptosis. Besides, APAP reduced the activity of SOD and GSH-Px, while increasing the content of MDA and LDH. Notably, APAP also promoted the expression of NLRP3, ASC, caspase-1 and IL-1β. Interestingly, SIN treatment dose-dependently reduced APAP-induced liver injury and oxidative stress, inhibited the activation of NLRP3 inflammasomes, and reduced the levels of inflammatory cytokines. In vitro studies have shown that SIN treatment significantly reduced the viability of BRL-3A cells and oxidative stress and inflammation. In addition, the Western blotting analysis showed that SIN inhibited the activation of TGF-β/Smad pathway in a dose-dependent manner in vitro and in vivo. These effects were significantly reversed by TGF-β/Smad activator SRI-011381 or TGF-β overexpression. Discussion The study indicates that SIN attenuates APAP-induced acute liver injury by decreasing oxidative stress and inflammatory response via TGF-β/Smad pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Infectious Diseases, Hubei Center for Disease Control and Prevention, Wuhan 430079, Hubei Province, People's Republic of China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China
| |
Collapse
|
22
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
23
|
Dkhil MA, Abdel Moneim AE, Hafez TA, Mubaraki MA, Mohamed WF, Thagfan FA, Al-Quraishy S. Myristica fragrans Kernels Prevent Paracetamol-Induced Hepatotoxicity by Inducing Anti-Apoptotic Genes and Nrf2/HO-1 Pathway. Int J Mol Sci 2019; 20:993. [PMID: 30823534 PMCID: PMC6412641 DOI: 10.3390/ijms20040993] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Paracetamol is responsible for acute liver failure in humans and experimental animals when taken at high doses and transformed into a reactive metabolite by the liver cytochrome P450. On the other hand, nutmeg is rich with many phytochemical ingredients that are known for their ability to inhibit cytochrome P450. Hence, the present experiment was aimed at studying the hepatoprotective effect of Myristica fragrans (nutmeg), kernel extract (MFKE) in respect to paracetamol (acetaminophen; N-acetyl-p-amino-phenol (APAP))-induced hepatotoxicity in rats, focusing on its antioxidant, anti-inflammatory, and anti-apoptotic activities. Liver toxicity was induced in rats by a single oral administration of APAP (2 g/kg). To evaluate the hepatoprotective effect of MFKE against this APAP-induced hepatotoxicity, rats were pre-treated with either oral administration of MFKE at 300 mg/kg daily for seven days or silymarin at 50 mg/kg as a standard hepatoprotective agent. APAP intoxication caused a drastic elevation in liver function markers (transaminases, alkaline phosphatase, and total bilirubin), oxidative stress indicators (lipid peroxidation and nitric oxide), inflammatory biomarkers (tumour necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and nuclear factor ĸB) and the pro-apoptotic BCL2 Associated X (Bax) and caspases-3 genes. Furthermore, analyses of rat liver tissue revealed that APAP significantly depleted glutathione and inhibited the activities of antioxidant enzymes in addition to downregulating two key anti-apoptotic genes: Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) and B-cell lymphoma 2 (Bcl-2). Pre-treatment with MFKE, however, attenuated APAP-induced liver toxicity by reversing all of these toxicity biomarkers. This hepatoprotective effect of MFKE was further confirmed by improvement in histopathological findings. Interestingly, the hepatoprotective effect of MFKE was comparable to that offered by the reference hepatoprotector, silymarin. In conclusion, our results revealed that MFKE had antioxidant, anti-inflammatory, and anti-apoptotic properties, and it is suggested that this hepatoprotective effect could be linked to its ability to promote the nuclear factor erythroid 2⁻related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt.
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt.
| | - Taghreed A Hafez
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia.
| | - Murad A Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia.
| | - Walid F Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11341, Egypt.
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
24
|
Verma A, Bennett J, Örme AM, Polycarpou E, Rooney B. Cocaine addicted to cytoskeletal change and a fibrosis high. Cytoskeleton (Hoboken) 2019; 76:177-185. [PMID: 30623590 DOI: 10.1002/cm.21510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cocaine is one of the most widely abused illicit drugs due to its euphoric and addictive properties. Cocaine-mediated cognitive impairments are the result of dynamic cytoskeletal rearrangements involved in mediating structural and behavioural plasticity. Cytoskeletal changes initiated following cocaine abuse are regulated by the Rho family of GTPases with significant downstream activity in key actin binding proteins. Moreover, signalling via the endoplasmic reticulum chaperone protein, sigma-1 receptor has highlighted the possibility of cocaine regulated pathology in other organ systems. However, the question of whether upstream stimulation of such a high affinity binding receptor is directly involved in cocaine-mediated cytoskeletal changes at present remains unknown. In this review, we describe the functional role of key cytoskeletal regulators in response to cocaine-induced signalling cues. In addition, we ascertain the extent of whether global cytoskeletal modulators involved in cocaine-induced neurological stimulation can be used as a platform for future studies into elucidating its fibrotic potential within the hepatic microenvironment. A focus on aspects still poorly understood relating to the nonneuronal pathological impact of cocaine is discussed in the sphere of hepatic dysregulation. Lastly, we suggest that cocaine may mediate its pathological capacity via the sigma1 receptor in regulating hepatoxicity, hepatic stellate cells activity, cytoskeletal dynamics, and the transcriptional regulation of key hepato-fibrogenic modulators.
Collapse
Affiliation(s)
- Avnish Verma
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ayşe Merve Örme
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Elena Polycarpou
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| | - Brian Rooney
- Kingston University, Department of Applied and Human Sciences, School of Life Sciences, Pharmacy and Chemistry, Surrey, United Kingdom
| |
Collapse
|
25
|
Qinna NA, Ghanim BY. Chemical induction of hepatic apoptosis in rodents. J Appl Toxicol 2018; 39:178-190. [PMID: 30350376 DOI: 10.1002/jat.3740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The urge of identifying new pharmacological interventions to prevent or attenuate liver injury is of critical importance and needs an expanded experimental toolbox. Hepatocyte injury and cellular death is a prominent feature behind the pathology of liver diseases. Several research activities focused on identifying chemicals and hepatotoxicants that induce cell death by apoptosis, in addition to presenting its corresponding signaling pathway. Although such efforts provided further understanding of the mechanisms of cell death, it has also raised confusion concerning identifying the involvement of several modes of cell death including apoptosis, necrosis and fibrosis. The current review highlights the ability of several chemicals and potential hepatotoxicants to induce liver damage in rodents by means of apoptosis while the probable involvement of other modes of cell death is also exposed. Thus, several chemical substances including hepatotoxins, mycotoxins, hyperglycemia inducers, metallic nanoparticles and immunosuppressant drugs are reviewed to explore the hepatic cytotoxic spectrum they could exert on hepatocytes of rodents. In addition, the current review address the mechanism by which hepatotoxicity is initiated in hepatocytes in different rodents aiding the researcher in choosing the right animal model for a better research outcome.
Collapse
Affiliation(s)
- Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
26
|
Wang ZF, Wang MY, Yu DH, Zhao Y, Xu HM, Zhong S, Sun WY, He YF, Niu JQ, Gao PJ, Li HJ. Therapeutic effect of chitosan on CCl4‑induced hepatic fibrosis in rats. Mol Med Rep 2018; 18:3211-3218. [PMID: 30085342 PMCID: PMC6102732 DOI: 10.3892/mmr.2018.9343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Chitosan is a linear polysaccharide that is made by treating the chitin shells of shrimp and crustaceans with an alkaline substance, for example sodium hydroxide. Due to its unique physical and chemical properties, chitosan has a wide range of applications in the medical field. Currently, there are no effective treatments for liver fibrosis; therefore, the aim of the present study was to investigate the therapeutic effect of chitosan in a CCl4‑induced hepatic fibrosis (HF) rat model. The serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) were measured by ELISA. Collagen (COL) 3 and α‑smooth muscle actin (SMA) expression levels in the rat liver were detected by reverse transcription‑semiquantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that treatment with chitosan significantly improved HF, by decreasing the serum levels of AST, ALT, and ALP; improving liver histology; and decreasing the expression levels of COL3 and α‑SMA. Chitosan may offer an alternative approach for the clinical treatment of HF.
Collapse
Affiliation(s)
- Zhong-Feng Wang
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mao-Yu Wang
- Department of CCU, The First People's Hospital of Aksu Prefecture in Xinjiang, Aksu, Xinjiang 843000, P.R. China
| | - De-Hai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin 130061, P.R. China
| | - Hong-Mei Xu
- Department of Obstetrics, The First Hospital, Jilin University, Changchun, Jilin 130061, P.R. China
| | - Sheng Zhong
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wen-Yi Sun
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu-Fang He
- Institute of Phytochemistry, Jilin Academy of Chinese Medicine Sciences, Changchun, Jilin 130012, P.R. China
| | - Jun-Qi Niu
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pu-Jun Gao
- Department of Geriatrics, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Amelioration of Single Clove Black Garlic Aqueous Extract on Dyslipidemia and Hepatitis in Chronic Carbon Tetrachloride Intoxicated Swiss Albino Mice. Int J Hepatol 2018; 2018:9383950. [PMID: 29854468 PMCID: PMC5954851 DOI: 10.1155/2018/9383950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
Single clove garlic is the product of atypical bulbing process of garlic under specific conditions. Therefore, the number of researches on single clove garlic bioactivity is limited. Recently, the hepatoprotective effect of single clove garlic has been demonstrated. In this study, we investigated amelioration of single clove black garlic aqueous extract, a processed product from single clove garlic, on dyslipidemia and hepatitis induced by chronic administration of CCl4. Mice were randomly divided into four groups: control, extract control, CCl4 intoxication, and coadministrated CCl4 and extract group. Mice were orally given a dose of 1 ml/kg body weight of CCl4 for 28 days twice a week to establish chronic liver injury model. To evaluate the hepatoprotective effect of single clove black garlic, mice were cotreated with CCl4 and single clove black garlic extract (200 mg/kg body weight) via gastric gauge for 30 days. Cotreatment with CCl4 and extract could improve the changes of body weight, liver weight, and relative liver weight as compared to CCl4 intoxicated mice. Single clove black garlic ameliorated dyslipidemia and the elevation of ALT and AST levels induced by chronic CCl4 intoxication. Histological studies revealed that single clove black garlic could prevent mononuclear cells infiltration and hepatocyte necrosis.
Collapse
|
28
|
Yan H, Huang Z, Bai Q, Sheng Y, Hao Z, Wang Z, Ji L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology 2018; 396-397:1-12. [PMID: 29355602 DOI: 10.1016/j.tox.2018.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
As a well-known analgesic drug, acetaminophen (APAP) is commonly used to relieve pain for patients with chronic painful diseases. Our previous study has shown that long-term ingestion of APAP caused liver fibrosis in mice. This study further investigated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating APAP-induced liver fibrosis in mice and the anti-fibrotic effect of natural compound andrographolide (Andro). Our results showed that hepatic collagen deposition and hepatic stellate cells (HSCs) activation induced by APAP were more serious in Nrf2 knock-out mice than in normal wild-type mice. Andro reduced HSCs activation in vitro, and also decreased hepatic collagen deposition and HSCs activation induced by APAP in mice. Andro alleviated liver oxidative stress injury induced by APAP in mice and reduced cellular formation of reactive oxygen species (ROS) in HSCs. Andro enhanced Nrf2 nuclear translocation and increased the expression of Nrf2 downstream antioxidant genes both in vitro and in vivo. Furthermore, the Andro-provided protection against APAP-induced liver fibrosis was diminished in Nrf2 knock-out mice. In summary, Nrf2 is critically involved in preventing liver fibrosis induced by long-term administration of APAP in mice, and Andro alleviates APAP-induced liver fibrosis by attenuating liver oxidative stress injury via inducing Nrf2 activation. This study points out the potential application of Andro in the treatment of liver fibrosis in clinic.
Collapse
Affiliation(s)
- Hongyu Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyun Bai
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhanxia Hao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
29
|
Abstract
The liver is an essential organ for nutrient and drug metabolism - possessing the remarkable ability to sense environmental and metabolic stimuli and provide an optimally adaptive response. Early growth response 1 (Egr1), an immediate early transcriptional factor which acts as a coordinator of the complex response to stress, is induced during liver injury and controls the expression of a wide range of genes involved in metabolism, cell proliferation, and role of Egr1 in liver injury and repair, deficiency of Egr1 delays liver regeneration process. The known upstream regulators of Egr1 include, but are not limited to, growth factors (e.g. transforming growth factor β1, platelet-derived growth factor, epidermal growth factor, hepatocyte growth factor), nuclear receptors (e.g. hepatocyte nuclear factor 4α, small heterodimer partner, peroxisome proliferator-activated receptor-γ), and other transcription factors (e.g. Sp1, E2F transcription factor 1). Research efforts using various animal models such as fatty liver, liver injury, and liver fibrosis contribute greatly to the elucidation of Egr1 function in the liver. Hepatocellular carcinoma (HCC) represents the second leading cause of cancer mortality worldwide due to the heterogeneity and the late stage at which cancer is generally diagnosed. Recent studies highlight the involvement of Egr1 in HCC development. The purpose of this review is to summarize current studies pertaining to the role of Egr1 in liver metabolism and liver diseases including liver cancer.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
30
|
Zhu M, Hao S, Liu T, Yang L, Zheng P, Zhang L, Ji G. Lingguizhugan decoction improves non-alcoholic fatty liver disease by altering insulin resistance and lipid metabolism related genes: a whole trancriptome study by RNA-Seq. Oncotarget 2017; 8:82621-82631. [PMID: 29137289 PMCID: PMC5669915 DOI: 10.18632/oncotarget.19734] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022] Open
Abstract
Lingguizhugan decoction, a classic traditional Chinese medicine formula, has been used to treat non-alcoholic fatty liver disease (NAFLD), however, the underlying mechanisms remains unclear. In the present study, we compared the phenotype of the normal rats (fed with chow diet), high-fat-diet (HFD) induced NAFLD rats and Lingguizhugan decoction (LGZG, comprises four Chinese herbs: Poria, Ramulus Cinnamomi, Rhizoma Atractylodis Macrocephalae, and Radix Glycyrrhizae.) intervened rats, and detected whole genome gene expression by RNA-Seq. Our results demonstrated that LGZG decoction attenuated phenotypic characteristics of NAFLD rats. RNA-Seq data analysis revealed that gene expression profiles exerted differential patterns between different groups. 2690 (1445 up-regulated, 1245 down-regulated) genes in NAFLD versus (vs) normal group, 69 (16 up-regulated, 53 down-regulated) genes in LGZG vs NAFLD group, and 42 overlapped (12 up- regulated, 30 down-regulated) genes between NAFLDvs normal group and LGZG vs NAFLD group were identified as differentially expressed. GO, pathway enrichment and PPI networks analysis of the overlapped genes revealed that LGZG decoction might attenuate NAFLD possibly by affecting insulin resistance and lipid metabolism related pathways (e.g., PI3K-Akt, AMPK). Differentially expressed genes involved in these pathways such as Pik3r1, Foxo1, Foxo3, Scd1, Col3a1 and Fn1 might be candidate targets for treating NAFLD.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Public Health College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shijun Hao
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Liu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peiyong Zheng
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|