1
|
Goettel M, Werner C, Honarvar N, Gröters S, Fegert I, Haines C, Chatham LR, Vardy A, Lake BG. Mode of action analysis for fluxapyroxad-induced rat liver tumour formation: evidence for activation of the constitutive androstane receptor and assessment of human relevance. Toxicology 2024; 505:153828. [PMID: 38740169 DOI: 10.1016/j.tox.2024.153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 μM fluxapyroxad or 500 μM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid β-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 μM fluxapyroxad or 500 μM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 μM fluxapyroxad or 500 μM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats, Wistar
- Rats
- Fungicides, Industrial/toxicity
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Constitutive Androstane Receptor
- Humans
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Dose-Response Relationship, Drug
- Organ Size/drug effects
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- DNA Replication/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany.
| | - Christoph Werner
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sibylle Gröters
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ivana Fegert
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Corinne Haines
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
2
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [PMID: 35046065 DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 02/13/2025] Open
Abstract
Increased disposition of thyroid hormones is a way that xenobiotics may alter thyroid homeostasis and, in rats, produce thyroid follicular adenoma/carcinoma. This capacity is historically attributed to induction of thyroxine (T4) glucuronidation by UDP-glycosyltransferase (UGT) enzymes, and cytochrome P450 induction is often a surrogate. However, gaps exist in correlating the effectiveness of certain chemical inducers at increasing T4 glucuronidation with decreases in systemic T4 and resulting increases in thyroid-stimulating hormone. With the identification of other key inducible drug processing genes and proteins involved in hepatic disposition of thyroid hormones, including uptake (e.g., organic anion transporter polypeptides) and efflux (e.g., multidrug resistance proteins) transporters, data exist that support transporters as additional target sites of induction. These data are reviewed herein and indicate an increase in hepatic uptake of thyroid hormones, as well as increased biliary excretion of iodothyronine conjugates, represent critical activities that differentiate inducer effectiveness in disrupting thyroid hormones in rats. Increased membrane transport of thyroid hormones, likely in conjunction with induced glucuronidation of thyroid hormone (triiodothyronine more relevant than T4), provide a better indication of thyroid disrupting potential than consideration of UGT induction alone. Because coordinate regulation of these targets is inconsistent among inducers belonging to various classes and among species, and there are disparities between in vitro assays and in vivo responses, further work is required to identify specific and relevant inducible thyroid hormone uptake transporters. Data from Mrp2-null animals have contributed key information, yet the contributions of efflux transport (canalicular and basolateral) to the mechanism of individual, effective inducers also require further study. SIGNIFICANCE STATEMENT: Key advances in understanding the target sites for altered disposition of thyroid hormones have occurred in the last 2 decades to better inform potential sites of action of inducing chemicals. Ultimately, the knowledge of inducible thyroid hormone transport into and out of liver, beyond induction of glucuronidation, should be considered and applied to screening and risk assessment paradigms when assessing an inducer's potential to alter thyroid homeostasis in nonclinical species and humans.
Collapse
|
3
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
4
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
5
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
6
|
Goettel M, Fegert I, Honarvar N, Vardy A, Haines C, Chatham LR, Lake BG. Comparative studies on the effects of sodium phenobarbital and two other constitutive androstane receptor (CAR) activators on induction of cytochrome P450 enzymes and replicative DNA synthesis in cultured hepatocytes from wild type and CAR knockout rats. Toxicology 2020; 433-434:152394. [PMID: 32027962 DOI: 10.1016/j.tox.2020.152394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Nongenotoxic chemicals can produce liver tumours in rats and mice by a mitogenic mode of action involving activation of the constitutive androstane receptor (CAR). The aim of this study was to evaluate the usefulness of cultured hepatocytes from normal (wild type; WT) and CAR knockout (KO) rats to screen compounds as potential activators of rat CAR and to validate this test system. Cultured hepatocytes from male Sprague-Dawley WT and CAR KO rats were treated with either 100 and 1000 μM sodium phenobarbital (NaPB), 3-100 μM fluquinconazole (FQZ), or 3-300 μM 3-(difluoromethyl)-1-methyl-N-(3´,4´,6-trifluoro[1,1´-biphenyl]-2-yl)-1H-pyrazole-4-carboxamide (TI1) for 96 h. Induction of cytochrome P450 (CYP) enzymes was monitored by measurement of 7-pentoxyresorufin O-depentylase (PROD), 7-benzyloxyresorufin O-debenzylase (BROD) and 7-benzyloxyquinoline O-debenzylase (BQ) activities. Hepatocytes undergoing replicative DNA synthesis (RDS) were labelled by adding 10 μM 5-bromo-2´-deoxyuridine to the culture medium for determination of the hepatocyte labelling index. The treatment of WT, but not of CAR KO, rat hepatocytes with NaPB, FQZ and TI1 increased hepatocyte RDS and induced CYP2B-dependent PROD activity. In contrast, all three compounds increased CYP2B/3A-dependent BROD and CYP3A-dependent BQ activities in both WT and CAR KO rat hepatocytes. Hepatocyte RDS was increased in both WT and CAR KO rat hepatocytes by treatment with 25 ng/ml epidermal growth factor as a positive control. Overall, these results demonstrate that the effects of three CAR activators on RDS and CYP2B enzyme induction are abolished in cultured CAR KO rat hepatocytes. As demonstrated by this validation study, the CAR KO hepatocyte model is a useful in vitro mechanistic tool for the rapid screening of chemicals as potential activators of rat CAR.
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany.
| | - Ivana Fegert
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | | | - Audrey Vardy
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Corinne Haines
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
7
|
Hu J, Tian J, Zhang F, Wang H, Yin J. Pxr- and Nrf2- mediated induction of ABC transporters by heavy metal ions in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113329. [PMID: 31600704 DOI: 10.1016/j.envpol.2019.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/27/2019] [Accepted: 09/29/2019] [Indexed: 05/13/2023]
Abstract
Transcription factors including pregnane X receptor (Pxr) and nuclear factor-erythroid 2-related factor-2 (Nrf2) are important modulators of Adenosine triphosphate-binding cassette (ABC) transporters in mammalian cells. However, whether such modulation is conserved in zebrafish embryos remains largely unknown. In this manuscript, pxr- and nrf2-deficient models were constructed with CRISPR/Cas9 system, to evaluate the individual function of Pxr and Nrf2 in the regulation of ABC transporters and detoxification of heavy metal ions like Cd2+ and Ag+. As a result, both Cd2+ and Ag+ conferred extensive interactions with ABC transporters in wild type (WT) embryos: their accumulation and toxicity were affected by the activity of ABC transporters, and they significantly induced the mRNA expressions of ABC transporters. These induction effects were reduced by the mutation of pxr and nrf2, but elevations in the basal expression of ABC transporters compensated for the loss of their inducibility. This could be an explanation for remaining transporter function in both mutant models as well as the unaltered toxicity of metal ions in pxr-deficient embryos. However, mutation of nrf2 disrupted the production of glutathione (GSH), resulting in the enhanced toxicity of Cd2+/Ag+ in zebrafish embryos. In addition, elevated expressions of other transcription factors like aryl hydrocarbon receptor (ahr) 1b, peroxisome proliferator-activated receptor (ppar)-β, and nrf2 were found in pxr-deficient models without any treatment, while enhanced induction of ahr1b, ppar-β and pxr could only be seen in nrf2-deficient embryos after the treatment of metal ions, indicating different compensation phenomena for the absence of transcription factors. After all, pxr-deficient and nrf2-deficient zebrafish embryos are useful tools in the functional investigation of Pxr and Nrf2 in the early life stages of aquatic organisms. However, the compensatory mechanisms should be taken into consideration when interpreting the results and need in-depth investigations.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Feng Zhang
- Suzhou GCL Photovoltaic Technology Co., Ltd, Suzhou, Jiangsu 215163, PR China
| | - Han Wang
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Shandong Guo Ke Medical Technology Development Co., Ltd, PR China.
| |
Collapse
|
8
|
Wiemann C, Goettel M, Vardy A, Elcombe BM, Elcombe CR, Chatham LR, Wang H, Li L, Buesen R, Honarvar N, Treumann S, Marxfeld H, Groeters S, Lake BG. Metazachlor: Mode of action analysis for rat liver tumour formation and human relevance. Toxicology 2019; 426:152282. [DOI: 10.1016/j.tox.2019.152282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
|
9
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|