1
|
Cesaro S. Adenovirus infection in allogeneic hematopoietic cell transplantation. Transpl Infect Dis 2023; 25 Suppl 1:e14173. [PMID: 37846850 DOI: 10.1111/tid.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Adenovirus (AdV) infection occurs in 0-20% of patients in the first 3-4 months after allogeneic hematopoietic cell transplantation (HCT), being higher in pediatric than in adult patients. About 50% of AdV infections involve the blood, which in turn, correlates with an increased risk developing AdV diseases, end-organ damage, and 6-month overall mortality. The main risk factors for AdV infection are T-cell depletion of the graft by ex vivo selection procedures or in vivo use of alemtuzumab or antithymocyte serum, development of graft versus host disease (GVHD) grade III-IV, donor type (haploidentical or human leucocyte antigen mismatched related donor > cord blood> unrelated matched donor) and severe lymphopenia (<0.2 × 109 /L). The prevention of AdV disease relies on early diagnosis of increasing viral replication in blood or stool and the pre-emptive start of cidofovir as viral load exceeds the threshold of ≥102-3 copies/mL in blood and/or 106 copies/g stool in the stool. Cidofovir (CDV), a cytosine monophosphate nucleotide analog, is currently the only antiviral recommended for AdV infection despite limited efficacy and moderate risk of nephrotoxicity. Brincidofovir, a lipid derivative of CDV with more favorable pharmacokinetics properties and superior efficacy, is not available and currently is being investigated for other viral infections. The enhancement of virus-specific T-cell immunity in the first few months post-HCT by the administration of donor-derived or third-party-donor-derived virus-specific T-cells represents an innovative and promising modality of intervention and data of efficacy and safety of the ongoing prospective randomized studies are eagerly awaited.
Collapse
Affiliation(s)
- Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| |
Collapse
|
2
|
Yan D, Yan B. Metabolism Pathways of Major Therapeutics for Treating Monkeypox Mono- and Co-infection with Human Immunodeficient Virus or SARS-CoV-2. Curr Drug Metab 2023; 24:240-249. [PMID: 37287302 PMCID: PMC11089469 DOI: 10.2174/1389200224666230607124102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 06/09/2023]
Abstract
Monkeypox is a zoonotic viral disease and remains endemic in tropical regions of Central and West Africa. Since May of 2022, cases of monkeypox have soared and spread worldwide. Confirmed cases have shown no travel history to the endemic regions as seen in the past. The World Health Organization declared monkeypox a global public health emergency in July 2022, and the United States government followed suit one month later. The current outbreak, in contrast to traditional epidemics, has high coinfection rates, particularly with HIV (human immunodeficiency virus), and to a lesser extent with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the pathogen of COVID-19. No drugs have been approved specifically for monkeypox. However, there are therapeutic agents authorized to treat monkeypox under the Investigational New Drug protocol, including brincidofovir, cidofovir, and tecovirimat. In contrast to limited options for monkeypox treatment, there are available drugs specifically for HIV or SARS-CoV-2 infection. Interestingly, these HIV and COVID-19 medicines share metabolism pathways with those authorized to treat monkeypox, particularly of hydrolysis, phosphorylation, and active membrane transport. This review discusses how these pathways shared by these medicines should be considered to gain therapeutic synergy and maximize safety for treating monkeypox coinfections.
Collapse
Affiliation(s)
- Daisy Yan
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street Boston, MA, 02118, United States
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45229, United States
| |
Collapse
|
3
|
Adenovirus Infection in Pediatric Hematopoietic Cell Transplantation: A Challenge Still Open for Survival. J Clin Med 2022; 11:jcm11164827. [PMID: 36013066 PMCID: PMC9410345 DOI: 10.3390/jcm11164827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Human Adenovirus (HAdV) infection occurs in 14−16% of patients in the early months after pediatric hematopoietic cell transplantation (HCT) and this correlates with a higher risk of developing HAdV disease and overall 6-month mortality. The main risk factors for HAdV infection are T-cell depletion of the graft by ex vivo CD34+ selection or in vivo use of alemtuzumab or anti-thymocyte serum, the development of grade III-IV graft versus host disease (GVHD), the type of donor (unrelated donor, cord blood, haploidentical, or HLA mismatched parent), and severe lymphopenia (<0.2 × 109/L). The prevention of HAdV disease is based on early intervention with antivirals in the asymptomatic patient when the permitted viral load threshold in the blood (≥102−3 copies/mL) and/or in the stool (109 copies/g stool) is exceeded. Cidofovir, a monophosphate nucleotide analog of cytosine, is the primary drug for preemptive therapy, used at 5 mg/kg/week for 2 weeks followed by 3−5 mg/kg every 2 weeks. The alternative schedule is 1 mg/kg every other day (three times/week). Enhancing virus-specific T-cell immunity in the first months post-HCT by donor-derived or third-party-derived virus-specific T cells represents an innovative and promising way of intervention, applicable both in prevention and therapeutic settings.
Collapse
|
4
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
5
|
Lash LH. Unexpected Enhancement of Cytotoxicity of Cisplatin in a Rat Kidney Proximal Tubular Cell Line Overexpressing Mitochondrial Glutathione Transport Activity. Int J Mol Sci 2022; 23:1993. [PMID: 35216119 PMCID: PMC8880737 DOI: 10.3390/ijms23041993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
In previous studies, we identified the two principal transporters that mediate the uptake of glutathione (GSH) from cytoplasm into the mitochondrial matrix of rat kidney proximal tubular cells. We hypothesized that genetic modulation of transporter expression could markedly alter susceptibility of renal proximal tubular cells to a broad array of oxidants and mitochondrial toxicants. Indeed, we previously showed that overexpression of either of these transporters resulted in diminished susceptibility to several chemicals. In the present work, we investigated the influence of overexpression of the mitochondrial 2-oxoglutarate carrier (OGC) in NRK-52E cells on the cytotoxicity of the antineoplastic drug cisplatin. In contrast to previous results showing that overexpression of the mitochondrial OGC provided substantial protection of NRK-52E cells from injury due to several toxicants, we found a remarkable enhancement of cellular injury from exposure to cisplatin as compared to wild-type NRK-52E cells. Despite the oxidative stress that cisplatin is known to cause in the renal proximal tubule, the increased concentrations of mitochondrial GSH associated with OGC overexpression likely resulted in increased delivery of cisplatin to molecular targets and increased cellular injury rather than the typical protection observed in the previous work.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Nieskens TTG, Persson M, Kelly EJ, Sjögren AK. A Multicompartment Human Kidney Proximal Tubule-on-a-Chip Replicates Cell Polarization-Dependent Cisplatin Toxicity. Drug Metab Dispos 2020; 48:1303-1311. [PMID: 33020068 DOI: 10.1124/dmd.120.000098] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Drug-induced kidney injury is a major clinical problem and causes drug attrition in the pharmaceutical industry. To better predict drug-induced kidney injury, kidney in vitro cultures with enhanced physiologic relevance are developed. To mimic the proximal tubule, the main site of adverse drug reactions in the kidney, human-derived renal proximal tubule epithelial cells (HRPTECs) were injected in one of the channels of dual-channel Nortis chips and perfused for 7 days. Tubes of HRPTECs demonstrated expression of tight junction protein 1 (zona occludens-1), lotus lectin, and primary cilia with localization at the apical membrane, indicating an intact proximal tubule brush border. Gene expression of cisplatin efflux transporters multidrug and toxin extrusion transporter (MATE) 1 (SLC47A1) and MATE2-k (SLC47A2) and megalin endocytosis receptor increased 19.9 ± 5.0-, 23.2 ± 8.4-, and 106 ± 33-fold, respectively, in chip cultures compared with 2-dimensional cultures. Moreover, organic cation transporter 2 (OCT2) (SLC22A2) was localized exclusively on the basolateral membrane. When infused from the basolateral compartment, cisplatin (25 µM, 72 hours) induced toxicity, which was evident as reduced cell number and reduced barrier integrity compared with vehicle-treated chip cultures. Coexposure with the OCT2 inhibitor cimetidine (1 mM) abolished cisplatin toxicity. In contrast, infusion of cisplatin from the apical compartment did not induce toxicity, which was in line with polarized localization of cisplatin uptake transport proteins, including OCT2. In conclusion, we developed a dual channel human kidney proximal tubule-on-a-chip with a polarized epithelium, restricting cisplatin sensitivity to the basolateral membrane and suggesting improved physiologic relevance over single-compartment models. Its implementation in drug discovery holds promise to improve future in vitro drug-induced kidney injury studies. SIGNIFICANCE STATEMENT: Human-derived kidney proximal tubule cells retained characteristics of epithelial polarization in vitro when cultured in the kidney-on-a-chip, and the dual-channel construction allowed for drug exposure using the physiologically relevant compartment. Therefore, cell polarization-dependent cisplatin toxicity could be replicated for the first time in a kidney proximal tubule-on-a-chip. The use of this physiologically relevant model in drug discovery has potential to aid identification of safe novel drugs and contribute to reducing attrition rates due to drug-induced kidney injury.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden (T.T.G.N., M.P., A.-K.S.) and Department of Pharmaceutics and Kidney Research Institute, University of Washington, Seattle, Washington (E.J.K.)
| | - Mikael Persson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden (T.T.G.N., M.P., A.-K.S.) and Department of Pharmaceutics and Kidney Research Institute, University of Washington, Seattle, Washington (E.J.K.)
| | - Edward J Kelly
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden (T.T.G.N., M.P., A.-K.S.) and Department of Pharmaceutics and Kidney Research Institute, University of Washington, Seattle, Washington (E.J.K.)
| | - Anna-Karin Sjögren
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden (T.T.G.N., M.P., A.-K.S.) and Department of Pharmaceutics and Kidney Research Institute, University of Washington, Seattle, Washington (E.J.K.)
| |
Collapse
|
7
|
Abstract
Drug attrition related to kidney toxicity remains a challenge in drug discovery and development. In vitro models established over the past 2 decades to supplement in vivo studies have improved the throughput capacity of toxicity evaluation, but usually suffer from low predictive value. To achieve a paradigm shift in the prediction of drug-induced kidney toxicity, two aspects are fundamental: increased physiological relevance of the kidney model, and use of appropriate toxicity end points. Recent studies have suggested that increasing the physiological relevance of kidney models can improve their sensitivity to drug-induced damage. Here, we discuss how advanced culture models, including modified cell lines, induced pluripotent stem cells, kidney organoid cultures, and microfluidic devices enhance in vivo similarity. To this end, culture models aim to increase the proximal tubule epithelial phenotype, reconstitute multiple tissue compartments and extracellular matrix, allow exposure to fluid shear stress, and enable interaction between multiple cell types. Applying computation-aided end points and novel biomarkers to advanced culture models will further improve sensitivity and clinical relevance of in vitro drug-induced toxicity prediction. Implemented at the right stage of drug discovery and development and coupled to high-content evaluation techniques, these models have the potential to reduce attrition and aid the selection of candidate drugs with an appropriate safety profile.
Collapse
Affiliation(s)
- Tom T G Nieskens
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Karin Sjögren
- CVRMSafety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
8
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Gao H, Zhang S, Hu T, Qu X, Zhai J, Zhang Y, Tao L, Yin J, Song Y. Omeprazole protects against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and transporter-mediated cisplatin accumulation in rats and HK-2 cells. Chem Biol Interact 2018; 297:130-140. [PMID: 30452898 DOI: 10.1016/j.cbi.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The present study assessed the therapeutic potential of omeprazole (OME), the most commonly prescribed proton pump inhibitor (PPI) used to treat gastroesophageal hyperacidity, against cisplatin (CP)-induced toxicity in human renal tubular HK-2 cells and rat kidneys. Herein, we observed that exposure of HK-2 cells to OME reversed the injury caused by CP, including enhancing cell viability and alleviating intracellular reactive oxygen species (ROS) generation and membrane damage. Concomitantly, acute exposure of male SD rats to CP induced histopathological changes, which were prevented by co-administration with OME. Inflammation and oxidative stress were inhibited by OME during CP-induced renal injury by increasing the activity of superoxide dismutase, and reducing the levels of malondialdehyde, both in vivo and in vitro. The expression levels of major inflammatory response markers were significantly decreased in HK-2 cells and rat kidneys in response to OME. OME reduced CP cellular uptake through organic cation transporters 2 (OCT2) and the prompt efflux of CP by P-glycoprotein (P-gp), thereby reducing the accumulation of CP in kidney tissue and increasing its serum levels. These data demonstrate that CP-induced kidney damage is positively correlated with its cellular accumulation. Concurrently, OME showed renoprotective effect against CP-induced toxicity in HK-2 cells and rat kidneys, by suppressing oxidative stress and mediating NF-κB-dependent inflammation, apoptosis, and transporter function. As OME is commonly used in combination with CP during chemotherapy treatment, this study highlights the clinical significance of OME in alleviating CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Huan Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China; Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Sixi Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Tingting Hu
- Department of Technical Center, Jilin Entry Exit Inspection and Quarantine Bureau, Changchun, 130062, PR China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|