1
|
Shimmin BA, Haines LG, Shaw IC. In silico studies on the molecular interactions of steroid hormones and steroid hormone mimicking drugs in the androgen receptor binding cleft - Implications for prostate cancer treatment. Steroids 2024; 208:109456. [PMID: 38889811 DOI: 10.1016/j.steroids.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Occupancy of prostate cancer (PCa) cell androgen receptors (AR) signals proliferation, therefore testosterone biosynthesis inhibitors and AR antagonists are important PCa treatments. Conversely, androgen mimics (e.g., prednisone) used in management of PCa might cause proliferation. The balance between PCa proliferation and inhibition predicts treatment success. We used in silico molecular modelling to explore interactions between ARs, androgens (testosterone, dihydrotestosterone (DHT)) and drugs used to treat (bicalutamide) and manage (dexamethasone, prednisone, hydrocortisone) PCa. We found that hydrogen (H-) bonds between testosterone, DHT and Arg752, Asn705 and Thr877 followed by ligand binding cleft hydrophobic interactions signal proliferation, whereas bicalutamide antagonism is via Phe764 interactions. Hydrocortisone, dexamethasone and prednisone H-bond Asn705 and Thr877, but not Arg752 in the absence of a water molecule. Studies with a bicalutamide agonist AR mutation showed different amino acid interactions, indicating testosterone and DHT would not promote proliferation as effectively as via the native receptor. However, hydrocortisone and bicalutamide form Arg752 and Asn705 H-bonds indicating agonism. Our results suggest that as PCa progresses the resulting mutations will change the proliferative response to androgens and their drug mimics, which have implications for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Bridget A Shimmin
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.
| | - Lydell G Haines
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Ian C Shaw
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| |
Collapse
|
2
|
Bennie RZ, Shaw IC. The use of in silico molecular modelling to screen potential estrogen mimics as part of medicines and agrochemicals development and product license applications. Toxicol In Vitro 2024; 94:105721. [PMID: 37875181 DOI: 10.1016/j.tiv.2023.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Estrogen mimics are a diverse group of synthetic and naturally occurring compounds that can interact with estrogen receptors (ERs) in animals, including humans. These interactions rely on key structural features of 17b-estradiol (E2) and if these molecular features are in a similar spatial arrangement on other compounds, they are likely to elicit an agonist (i.e., they are E2 mimics) or antagonist response. The structural diversity of some compounds vis-à-vis analogies with E2 makes it difficult to reliably predict E2 mimicry on simple structural grounds alone. We propose a new approach methodology: in silico molecular modelling augmented by an in vitro transactivation reporter gene assay to predict E2 mimicry and thus further reduce regulatory reliance on animal studies. Transactivation reporter gene assay dose response curves and in silico molecular modelling were used to obtain EC50-values and docking parameters (DockScores), respectively of thirty E2 mimics to assess the reliability of in silico receptor interaction parameters to predict E2 mimicry. A linear relationship (R2 = 0.75) was found between DockScores and EC50s, suggesting molecular modelling is a good tool for predicting E2 mimicry in a regulatory setting.
Collapse
Affiliation(s)
- Rachel Z Bennie
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Ian C Shaw
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
3
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
4
|
Sinyani A, Idowu K, Shunmugam L, Kumalo HM, Khan R. A molecular dynamics perspective into estrogen receptor inhibition by selective flavonoids as alternative therapeutic options. J Biomol Struct Dyn 2022; 41:4093-4105. [PMID: 35477414 DOI: 10.1080/07391102.2022.2062786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zearalenone is an estrogenic mycotoxin which is a common food contaminant and has been implicated in increasing the incidence of carcinogenesis and other reproductive health ailments through the estrogen receptor alpha (ERα) pathway. Competitive ERα blockers such as 4-Hydroxytamoxifen (OHT), are synthetic FDA approved drugs which, albeit being an effective anticancer agent, induces life altering side effects. For this reason, there is an increased interest in the use of naturally occurring medicinal plant products such as flavonoids. This study aimed to identity flavonoid ERα inhibitors and provide insights into the mechanism of inhibition using computational techniques. The Molecular Mechanics/Generalized Born Surface Area calculations revealed that quercetrin, hesperidin, epigallocatechin 3-gallate and kaempferol 7-O-glucoside out of 14 flavonoids had higher binding affinity for ERα than OHT. The structural analysis revealed that the binding of the compounds to the receptor lead to dynamic alterations, which induced conformational shift in the structure and orientation of the receptor resulting in stabilised, compact and low energy systems. The results of this study provide imperative information that supports the use of flavonoids in the inhibition of ERα to prevent or ameliorate the consequential adverse effects associated with zearalenone exposure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Angela Sinyani
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kehinde Idowu
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Letitia Shunmugam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hezekiel Mathambo Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
A Traditional Chinese Medicine for the Treatment of Endometrial Hyperplasia via Regulating the HPO Axis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5200608. [PMID: 35154346 PMCID: PMC8828340 DOI: 10.1155/2022/5200608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Dysfunctional uterine bleeding, accompanied by endometrial hyperplasia (EH), is a common gynecological disease that seriously affects female physical and mental health. Some drugs have been prompted to cure the disease, but most medications have certain side effects and limitations. In the present study, we demonstrated an unexploited Chinese traditional medicine, a combination of Saururus chinensis, Celosia cristata, and Spatholobus suberectus (SCS), which could be used for the treatment of EH and associated complications in rats. We identified the active components from the three Chinese herbs via thin-layer chromatography and high-performance liquid chromatography methods. In addition, serum biochemical indexes and histologic section results found that acute high-dose SCS exerted no adverse impacts on the rats. We then showed that SCS shortened coagulation time (p=0.018) and degree of swelling (p=0.021) on rats at 30 min compared to blank control. Further studies proved that recovered endometrial thickness was associated with the modulation of four hormones (follicle-stimulating hormone, luteinizing hormone, estrogen, and progesterone). Specifically, follicle-stimulating hormone and progesterone contents increased gradually with time, and estrogen was decreased, whereas luteinizing hormone content was returned to normal after a short-term elevation (p < 0.05). Besides, SCS increased uterine endometrium's mRNA expression levels of matrix metalloproteinase-1 (p < 0.001) and tissue inhibitor of matrix metalloproteinase-1 (p < 0.001), promoting the repair of proliferating endometrium in the rats. Collectively, our study indicates that SCS harbors a profoundly curative effect on the treatment of EH and relative complications and uncovers the mechanism at molecular and gene expression levels.
Collapse
|
6
|
Holder EX, Houghton SC, Sanchez SS, Eliassen AH, Qian J, Bertone-Johnson ER, Liu Z, Tworoger SS, Smith MT, Hankinson SE. Estrogenic activity and risk of invasive breast cancer among postmenopausal women in the Nurses' Health Study. Cancer Epidemiol Biomarkers Prev 2022; 31:831-838. [DOI: 10.1158/1055-9965.epi-21-1157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
|
7
|
Lu JJ, Zhou FM, Hu XJ, Fang JJ, Liu CX, Zhu BQ, Ding ZS. Molecular docking simulation and in vitro studies on estrogenic activities of flavonoids from leaves of Carya cathayensis Sarg. Steroids 2020; 163:108726. [PMID: 32889051 DOI: 10.1016/j.steroids.2020.108726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The main purpose of this study was to evaluate the estrogenic properties of total flavonoids (TFs) and five flavonoid monomers (cardamonin (Car), pinostrobin chalcone (PC), wogonin (Wo), chrysin (Chr) and Pinocembrin (PI)) from leaves of Carya cathayensis Sarg (LCC). TFs from LCC were isolated and determined using HPLC. The 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were performed to assess the effects of flavonoids on cell proliferation and cell cycle, respectively. The molecular docking technique was applied to investigate binding conformations of the monomers from LCC to the estrogen receptor ERα and ERβ. Gene and protein expression patterns were assessed using quantitative real-time PCR (qRT-PCR) and western blot, respectively. The results showed that TFs, Car, PC, Wo and Chr promoted proliferation of MCF-7 cells and cell transition from the G1 to S phase, and inhabitation of MCF-7 cell proliferation was observed after the treatment of PI. Molecular docking studies confirmed ERs as molecular targets for the monomers. TFs, Car, PC, Wo and Chr from LCC promoted gene expression of ERα, ERβ, progesterone receptor (PR) and pS2. Our collective results demonstrated that TFs and monomers from LCC may exert ER agonist activity through competitively bind to ER, inducing ER upregulation and active ER to estrogen response element (ERE)- independent gene regulation. As an abundant natural product, LCC may provide a novel medicinal source for treatment of diseases caused by estrogen deficiency.
Collapse
Affiliation(s)
- Jing-Jing Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Fang-Mei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xu-Jiao Hu
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Jing-Jing Fang
- Yinzhou People's Hospital, Ningbo, Zhejiang Province, China
| | - Cai-Xia Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
8
|
Ye H, Shaw IC. Dietary isoflavone-induced, estrogen receptor-β-mediated proliferation of Caco-2 cells is modulated by gallic acid. Food Chem Toxicol 2020; 145:111743. [PMID: 32926937 DOI: 10.1016/j.fct.2020.111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023]
Abstract
Dietary isoflavones and their biotransformation products (from food fermentation) are estrogen mimics which activate estrogen receptors (ER)α and ERβ. In silico molecular modelling is used to determine theoretical binding energies of genistein, daidzein and hydroxylated biotransformation products, and to investigate structure-binding energy relationships with ERβ. Results suggest that ligand hydroxyl arrangement determines binding energy and influences binding affinity. Caco-2 cells (ERβ expressing) are used to study the proliferative effect of genistein, daidzein and their hydroxylated biotransformation products. Isoflavones/biotransformation products showed weaker enhancement of Caco-2 proliferation than 17β-estradiol. The EC50s of isoflavones/biotransformation products agreed with in silico-predicted binding affinity order. Hydroxylated biotransformation products studied showed greater Caco-2 proliferative effects than the parent isoflavones except 8-hydroxygenistein, probably due to unfavourable ERβ interactions caused by 8-hydroxygenistein's extra hydroxyl. Caco-2 pre-treatment with UDP-glucose dehydrogenase inhibitor gallic acid promoted genistein/8-hydroxygenistein-mediated proliferation. This is probably due to a reduced isoflavone glucuronidation to form low estrogenicity glucuronides. Findings are discussed in the context of dietary isoflavones/gallic acid and effects on proliferation of ERβ-expressing gut cancer cells.
Collapse
Affiliation(s)
- Hui Ye
- Human Toxicology Research Group, School of Physical & Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Ian C Shaw
- Human Toxicology Research Group, School of Physical & Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
9
|
Böckers M, Paul NW, Efferth T. Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor α. Toxicol Appl Pharmacol 2020; 399:115030. [DOI: 10.1016/j.taap.2020.115030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
10
|
Böckers M, Paul NW, Efferth T. Indeno[1,2,3-cd]pyrene and picene mediate actions via estrogen receptor α signaling pathway in in vitro cell systems, altering gene expression. Toxicol Appl Pharmacol 2020; 396:114995. [DOI: 10.1016/j.taap.2020.114995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/26/2022]
|
11
|
Organophosphate ester tri-o-cresyl phosphate interacts with estrogen receptor α in MCF-7 breast cancer cells promoting cancer growth. Toxicol Appl Pharmacol 2020; 395:114977. [PMID: 32234386 DOI: 10.1016/j.taap.2020.114977] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Plastic in the ocean degrades to microplastic, thereby enhancing the leaching of incorporated plasticizers due to the increased particle surface. The uptake of microplastic-derived plasticizers by marine animals and the subsequent entry in the food chain raises concerns for adverse health effects in human beings. Frequently used plasticizers as the organophosphate ester tri-o-cresyl phosphate (TOCP) are known to affect the male reproductive system. However, the overall endocrine potential of TOCP and the underlying molecular mechanisms remain elusive as yet. In this study, we investigated the molecular effects of TOCP on estrogen receptor α (ERα)-transfected HEK-ESR1 cells and the human breast cancer cell line MCF-7. Applying virtual screening and molecular docking, we identified TOCP as potent ligand of ERα in silico. Microscale thermophoresis confirmed the binding in vitro with similar intensity as the natural ligand 17-β-estradiol. To identify the molecular mechanisms of TOCP-mediated effects, we used next-generation sequencing to analyze the gene expression pattern of TOCP-treated MCF-7 cells. RNA-sequencing revealed 22 differently expressed genes associated with ESR1 as upstream regulator: CYP1A1, SLC7A11, RUNX2, DDIT4, STC2, KLHL24, CCNG2, CEACAM5, SLC7A2, MAP1B, SLC7A5, IGF1R, CD55, FOSL2, VEGFA, and HSPA13 were upregulated and PRKCD, CCNE1, CEBPA, SFPQ, TNFAIP2, KRT19 were downregulated. The affected genes promote tumor growth by increasing angiogenesis and nutritional supply, favor invasion and metastasis, and interfere with the cell cycle. Based on the gene expression pattern, we conclude TOCP to mediate endocrine effects on MCF-7 cells by interacting with ERα.
Collapse
|
12
|
Ye H, Shaw IC. Food flavonoid ligand structure/estrogen receptor-α affinity relationships - toxicity or food functionality? Food Chem Toxicol 2019; 129:328-336. [PMID: 30986440 DOI: 10.1016/j.fct.2019.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
In silico molecular modelling is used to study interactions between flavonoid phytoestrogens and estrogen receptor (ER)α. Twenty flavonoids from foods were studied; e.g., genistein from soy, naringenin from grapefruit, phloretin from pears, chrysin from oyster mushrooms. These potential ligands' molecular attributes and their spatial arrangements that favour binding to the ligand binding cleft (LBC) of ERα are identified, and Docking Scores calculated. The Docking Score order is the same as the estrogenicity order for 8 of the flavonoids studied in detail. The number and position of flavonoid ring hydroxyls influence the Docking Scores which might relate to ERα's bio-activity. Hydrophobic interactions between ligands and ERα are also important; the number of rotatable CC bonds in ligands likely affects the magnitude of hydrophobic interactions and ligand fit. Our findings suggest that flavonoids with diverse structural features could have different binding energies and binding affinities with ERα, which might confer different functionalities and toxicities.
Collapse
Affiliation(s)
- Hui Ye
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Ian C Shaw
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|