1
|
Du H, Wang Q, Chen Y, Wu X, Jiang J, Zhao Y. Association between mixed exposure of phenols, parabens, phthalates and cognitive function in US elders. J Affect Disord 2025; 382:139-147. [PMID: 40258425 DOI: 10.1016/j.jad.2025.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND In an aging society, understanding the factors influencing cognitive function in older adults is of great significance. Phenols, parabens, and phthalates (PAEs) can disrupt normal neural signaling. This research aims to investigate the association between mixed exposure of phenols, parabens, PAEs and cognitive function in US elders. Given that older adults are a vulnerable group in terms of health, and cognitive decline can severely impact their quality of life and independence. Studying the effects of these commonly - encountered environmental chemicals on their cognitive function is crucial as it can provide scientific basis for formulating public health policies. METHODS A total of 856 participants were selected from National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The generalized linear (GLM), weighted quantile sum (WQS), and Bayesian kernel machine regression (BKMR) models were used to evaluate the associations between mixed PAEs and the standardized z-scores for the four cognitive tests. RESULTS The mixed effect of the nine exposures examined is positively associated with lower IRT scores (OR: 1.77, 95 % CI: 1.04-3.02) for males in the WQS regression model. MEHP exhibits the largest contribution of all combinations. In the BKMR regression model, mixed exposure and cognitive impairment show positive correlation in the IRT, the DSST, and the global test for males. CONCLUSION Exposure to phenols, parabens, and PAEs may negatively affect cognition in older adults, particularly the male population. The effect of mixed exposure is positively associated with lower IRT scores and MECP has a dominant role.
Collapse
Affiliation(s)
- Huidi Du
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qingxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yiru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiyuan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Li X, Lu Y, Yang D, Guo J, Li G, Bian Q, Liu K, Song Y, Liu Z, Sui H, Chen J. Derivation of a health-based guidance value for bisphenol A via the weight of evidence approach. Food Chem Toxicol 2025; 200:115370. [PMID: 40054724 DOI: 10.1016/j.fct.2025.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/21/2025]
Abstract
There remains a debate over the health-based guidance value of bisphenol A (BPA) worldwide. Through the weight of evidence approach, this study systematically searched and evaluated the updated BPA toxicological data following the guidelines for evaluating the relevance and reliability of toxicological data developed by the China National Center for Food Safety Risk Assessment. Benchmark dose and no observed adverse effect dose/lowest observed adverse effect level methods were used for dose-relationship analysis. A total of 334 articles were used for evidence integration and included in this hazard assessment of BPA. General toxicity, toxicity to the reproductive system, and neurological (developmental) toxicity were included as possible critical effects in the present assessment. With a point of departure of 2310 μg/kg body weight (BW) based on the decreased round spermatid count in rat seminiferous tubules and the human equivalent dose factor of 0.185 using the constructed physiologically based toxicokinetic model of oral intake of BPA in Chinese population, a human equivalent dose of 427 μg/kg BW was obtained. Applying an overall uncertainty factor of 100, the present assessment established a temporary-tolerable daily intake of 4 μg/kg BW for oral exposure of humans to BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yu Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Daoyuan Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Jiabin Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Guojun Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Keliang Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yan Song
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kourat D, Adli DEH, Brahmi M, Alkholifi FK, Bin Dayel FF, Arabi W, Fauconnier ML, Bouzouira B, Kahloula K, Slimani M, Sweilam SH. Role of Thymus ciliatus (Thyme) to Ameliorate the Acute Neurotoxicity Induced by Bisphenol A: In Vivo Supported with Virtual Study. Pharmaceuticals (Basel) 2025; 18:509. [PMID: 40283944 PMCID: PMC12030012 DOI: 10.3390/ph18040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The purpose of this research was to investigate the effects of bisphenol A (BPA) exposure on neurobehavioral testing in young Wistar rats and to evaluate the therapeutic potential of Thymus ciliatus (TEO) essential oil to attenuate the damage induced by this chemical toxin. Methods: The essential oil was extracted by hydro-distillation (yield of 2.26%), and the characterization by GC-MS indicates that the major components of Thymus ciliatus oil are thymol (63.33%), p-cymene (13.4%), and σ-terpinene (6.69%). Acute BPA intoxication was induced with a dose of 50 mg/kg orally for 60 days. The neurobehavioral evaluation, performed using a comprehensive set of tests including the forced swim test, dark/light box, Morris water maze, open field test, and sucrose preference test, clearly demonstrated that bisphenol A (BPA) exposure induced significant neurobehavioral impairments. Results: These impairments included reduced exploratory behavior indicative of heightened stress, anxiety, and depressive-like states, as well as deficits in memory and learning. Furthermore, BPA intoxication was associated with metabolic disturbances such as hyperglycemia along with histopathological evidence of brain tissue damage. However, TEO treatment attenuated these adverse effects by restoring neurobehavioral function. Molecular docking analysis revealed an affinity between the major essential oils identified in T. ciliatus, BPA, and the 5HT2C receptor and the MAO, AChE, and BChE enzymes, suggesting a potential mechanism underlying BPA's effects on behavior and memory. In addition, TEO also showed an interaction with these molecules, suggesting a therapeutic potential against BPA. These findings underscore the promising role of TEO in mitigating the poisonous effects of BPA and pave the way for additional research into the molecular mechanisms and therapeutic uses of natural bioactive compounds for the prevention and treatment of toxic diseases. Thymol, the major compound in TEO, exhibited activity related to the dopamine and serotonin pathways, so it could have potential antidepressant properties. Conclusions: Thymol might be a promising candidate for the treatment of neurodegenerative and neurological disorders such as depression, Parkinson's disease, and Alzheimer's disease while also preventing histological damage in the brain.
Collapse
Affiliation(s)
- Dallal Kourat
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Djallal Eddine H. Adli
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Mostapha Brahmi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
- Department of Biological Science, Faculty of Natural and Life Sciences, University of Relizane, Relizane 48000, Algeria
| | - Faisal K. Alkholifi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.K.A.); (F.F.B.D.)
| | - Faten F. Bin Dayel
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (F.K.A.); (F.F.B.D.)
| | - Wafaa Arabi
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium;
| | - Bakhta Bouzouira
- Department of Pathological Anatomy and Cytology, CHU of Sidi Bel Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Khaled Kahloula
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Miloud Slimani
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Department of Biology, Faculty of Sciences, University of Dr Moulay Tahar, Saida 20000, Algeria; (D.K.); (D.E.H.A.); (W.A.); (K.K.); (M.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
4
|
Guo Y, Wang Y, Li Q, Liu Q, Zhang X, Ren J, Wang C. Bisphenol A disrupts the neuronal F-actin cytoskeleton by activating the RhoA/ROCK/LIMK pathway in Neuro-2a cells. Toxicology 2024; 509:153994. [PMID: 39527977 DOI: 10.1016/j.tox.2024.153994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor that is widely present in the environment and has been reported to affect neuronal cytoskeleton and neural function. However, the exact molecular mechanisms remain unclear. In the present study, the effects of BPA on cytoskeleton rearrangement were examined, and the associated signaling pathways, which were influenced by the RhoA/ROCK/LIMK pathway in Neuro-2a cells in vitro, were identified. Specifically, Neuro-2a cells were exposed to BPA, and the effects of BPA exposure on the cytoskeleton of neuronal cells and on the activation or nonactivation of the RhoA/ROCK signaling pathway were evaluated using Cell Counting Kit-8 (CCK8), phalloidin staining, western blot, and real-time PCR. A RhoA inhibitor (Rhosin hydrochloride) and a ROCK inhibitor (Y-27632) were then used to elucidate the precise function of the pathway. The results demonstrated that 50-100 μM BPA exposure inhibited Neuro-2a cell viability and caused the formation of aberrantly polymerized F-actin and stress fibers. In addition, the RhoA/ROCK pathway was activated, and the expression levels of the pathway-related molecules-RhoA, ROCK2, LIMK1, Cofilin, Profilin, p-MLC2, and F-actin were dramatically elevated. The addition of Rhosin and Y-27632 resulted in a decrease in F-actin polymerization in the Neuro-2a cells, the disassembly of stress fibers, and a noteworthy drop in the levels of molecular proteins related to the RhoA/ROCK pathway affected by BPA. Together, these new findings indicated that BPA exposure thus activated the RhoA/ROCK signaling pathway and caused an abnormal accumulation of F-actin in the Neuro-2a cells, in turn altering the microfilament cytoskeleton. F-actin was restored when the RhoA/ROCK pathway was inhibited, suggesting that the process of BPA-induced neuronal cytoskeletal degradation is linked to the RhoA/ROCK signaling cascade.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qian Li
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Xuyuan Zhang
- Department of Respiratory and Intensive Care, Xian Gaoxin Hospital, Xian, Shaanxi 710000, China
| | - Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
5
|
Hsu S, Huang H, Liao C, Huang H, Shih Y, Chen J, Wu H, Kuo T, Fu R, Tsai C. Induction of Phosphorylated Tau Accumulation and Memory Impairment by Bisphenol A and the Protective Effects of Carnosic Acid in In Vitro and In Vivo. Mol Neurobiol 2024; 61:6148-6160. [PMID: 38280110 DOI: 10.1007/s12035-024-03952-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024]
Abstract
Bisphenol A (BPA) is a component of polycarbonate plastics that has been implicated in memory impairment. The present study investigated the effect of carnosic acid (CA) on memory deficit induced by BPA and the role of Akt in this mechanism. First, SH-SY5Y cells were treated with 20 nM BPA and 1 μM CA for 12 h. The results showed that treatment of CA with BPA improved the alternation of IRS-1/Akt/GSK-3β as well as the induction of ApoE and Ser396p-tau. Moreover, treatment of CA with BPA restored the signaling involved in long-term potentiation (LTP) effect, leading to induction of synaptic-related proteins, such as PSD-95, synapsin1a, and pro-BDNF. Wortmannin treatment alleviated the reversal by CA. Then, C57BL/6 J male mice were orally administered with CA to test the memory function in BPA treatment. The results showed that CA and RE can improve BPA-induced impairment of motor, recognition, and spatial memory by using open-field test (OFT), novel objective recognition test (NOR), and Y-maze test, respectively. Moreover, CA and RE improved the phosphorylation of tau and the reduction of PSD-95, synapsin1a, and pro-BDNF proteins induced by BPA. Therefore, the results indicated that CA decreased the phosphorylated tau and memory impairment induced by BPA through Akt pathway.
Collapse
Affiliation(s)
- Shaoi Hsu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Huichi Huang
- Department of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chunhuei Liao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hsiyun Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yachen Shih
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jingwei Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Hanting Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Tzuyu Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ruhuei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chiawen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Guo Y, Kang Y, Bai W, Liu Q, Zhang R, Wang Y, Wang C. Perinatal exposure to bisphenol A impairs cognitive function via the gamma-aminobutyric acid signaling pathway in male rat offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:1235-1244. [PMID: 37926988 DOI: 10.1002/tox.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
Bisphenol A (BPA) is a common synthetic endocrine disruptor that can be utilized in the fabrication of materials such as polycarbonates and epoxy resins. Numerous studies have linked BPA to learning and memory problems, although the precise mechanism remains unknown. Gamma-aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in the vertebrate central nervous system, and it is intimately related to learning and memory. This study aims to evaluate whether altered cognitive behavior involves the GABA signaling pathway in male offspring of rats exposed to BPA during the prenatal and early postnatal periods. Pregnant rats were orally given BPA (0, 0.04, 0.4, and 4 mg/kg body weight (BW)/day) from the first day of pregnancy to the 21st day of breastfeeding. Three-week-old male rat offspring were selected for an open-field experiment and a new object recognition experiment to evaluate the effect of BPA exposure on cognitive behavior. Furthermore, the role of GABA signaling markers in the cognition affected by BPA was investigated at the molecular level using western blotting and real-time polymerase chain reaction (RT-PCR). The research demonstrated that BPA exposure impacted the behavior and memory of male rat offspring and elevated the expression of glutamic acid decarboxylase 67 (GAD67), GABA type A receptors subunit (GABAARα1), and GABA vesicle transporter (VGAT) in the hippocampus while decreasing the expression levels of GABA transaminase (GABA-T) and GABA transporter 1 (GAT-1). These findings indicate that the alteration in the expression of GABA signaling molecules may be one of the molecular mechanisms by which perinatal exposure to BPA leads to decreased learning and memory in male rat offspring.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Kang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rongqiang Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
7
|
Fallahnezhad S, Ghorbani-Taherdehi F, Sahebkar A, Nadim A, Kafashzadeh M, Kafashzadeh M, Gorji-Valokola M. Potential neuroprotective effect of nanomicellar curcumin on learning and memory functions following subacute exposure to bisphenol A in adult male rats. Metab Brain Dis 2023; 38:2691-2720. [PMID: 37843661 DOI: 10.1007/s11011-023-01257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/22/2023] [Indexed: 10/17/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical commonly utilized in the manufacture of plastics, which may cause damage to brain tissue. Curcumin is a phytochemical with protective effects against neurological and mental diseases. The purpose of this research was to evaluate whether nanomicellar curcumin (NmCur) might protect rats against BPA-induced learning and memory deficits. After determining the proper dose of BPA, the animals were randomly divided into 8 groups (8 rats in each group) receiving dextrose 5% (as vehicle of NmCur) (Dex), sesame oil (as vehicle of BPA) (Sea), Sea plus Dex, NmCur (50 mg/kg), BPA (50 mg/kg), and 50 mg/kg BPA plus 10, 25, and 50 mg/kg NmCur groups, respectively. Behavioral tests performed using passive avoidance training (PAT), open-field (OF), and Morris water maze (MWM) tests. The expression of oxidative stress markers, proinflammatory cytokines, oxidative stress-scavenging enzymes, glutamate receptors, and MAPK and memory-related proteins was measured in rat hippocampus and cortical tissues. BPA up-regulated ROS, MDA, TNF-α, IL-6, IL-1β, SOD, GST, p-P38, and p-JNK levels; however, it down-regulated GSH, GPx, GR, CAT, p-AKT, p-ERK1/2, p-NR1, p-NR2A, p-NR2B, p-GluA1, p-CREB, and BDNF levels. BPA decreased step-through latency (STL) and peripheral and total, but not central, locomotor activity. It increased the time to find the hidden platform, the mean of escape latency time, and the traveled distance in the target quadrant, but decreased the time spent in the target quadrant. The combination of BPA (50 mg/kg) and NmCur (25 and 50 mg/kg) reversed all of BPA's adverse effects. Therefore, NmCur exhibited neuroprotective effects against subacute BPA-caused learning and memory impairment.
Collapse
Affiliation(s)
- Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Faezeh Ghorbani-Taherdehi
- Department of Anatomy and Cell Biology, School of Medicine, Esfahan University of Medical Sciences, Esfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azade Nadim
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrnaz Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehrnoosh Kafashzadeh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahmoud Gorji-Valokola
- Department of Pharmacology, Brain and Spinal Injury Repair Research Center, Tehran University of Medical Science, Tehran, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP), Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
9
|
Shi Y, Wang H, Zhu Z, Ye Q, Lin F, Cai G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160129. [PMID: 36370798 DOI: 10.1016/j.scitotenv.2022.160129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND People are commonly exposed to mixtures of parabens and phenols. Most studies investigating such exposure and cognitive performance tend to assess only single chemicals, and the tools used to assess cognitive function are not uniform. OBJECTIVE This study aimed to examine the association between multiple parabens and phenols and cognitive function in older Americans. METHODS The study included data of older Americans from two cycles of the NHANES survey. Participants were divided into normal cognitive performance and low cognitive performance groups based on the scores of four cognitive tests: the Immediate Recall test (IRT), the Delayed Recall test (DRT), the Animal Fluency test (AFT) and the Digit Symbol Substitution test (DSST). Generalized linear regression models (GLMs), restricted cubic spline (RCS), weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were used to assess relationships between chemical exposure and cognitive performance. RESULTS In this cross-sectional study, a total of 961 participants, 470 males and 491 females, were included. GLMs revealed positive association between high levels of bisphenol A (BPA) and low cognitive performance on DRT, especially in male (OR (95%CI): 2.25 (1.10-4.61)), and this association was consistent with WQS and BKMR. In female participants, the third quartile of BPA exposure showed a positive association with low cognition on IRT and global cognition. GLMs also showed that high levels of propylparaben were positively associated with cognitive performance on the IRT in male participants (OR (95%CI): 0.37 (0.18-0.76)). In BKMR, an overall positive correlation between the mixture and low cognition as measured with DRT was observed in male subjects when the mixture was at the 65th percentile or higher. CONCLUSION Exposure to a mixture of parabens and phenols was positively associated with low cognitive performance on DRT in older male subjects, while BPA was the main driver of this outcome.
Collapse
Affiliation(s)
- Yisen Shi
- Fujian Medical University, Fuzhou 35001, China; Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | | | - Zhibao Zhu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350005, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| |
Collapse
|
10
|
Gong P, Bailbé D, Tolu S, Pommier G, Liu J, Movassat J. Preconceptional exposure of adult male rats to bisphenol S impairs insulin sensitivity and glucose tolerance in their male offspring. CHEMOSPHERE 2023; 314:137691. [PMID: 36592828 DOI: 10.1016/j.chemosphere.2022.137691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 μg/kg/day (BPS-4 sires) or 40 μg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.
Collapse
Affiliation(s)
- Pengfei Gong
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France; Université Paris Cité, UFR Sciences Du Vivant, F-75013, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France. http://bfa.univ-paris-diderot.fr
| |
Collapse
|
11
|
Tang B, Li K, Cheng Y, Zhang G, An P, Sun Y, Fang Y, Liu H, Shen Y, Zhang Y, Shan Y, de Villers-Sidani É, Zhou X. Developmental Exposure to Bisphenol a Degrades Auditory Cortical Processing in Rats. Neurosci Bull 2022; 38:1292-1302. [PMID: 35670954 PMCID: PMC9672238 DOI: 10.1007/s12264-022-00891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022] Open
Abstract
Developmental exposure to bisphenol A (BPA), an endocrine-disrupting contaminant, impairs cognitive function in both animals and humans. However, whether BPA affects the development of primary sensory systems, which are the first to mature in the cortex, remains largely unclear. Using the rat as a model, we aimed to record the physiological and structural changes in the primary auditory cortex (A1) following lactational BPA exposure and their possible effects on behavioral outcomes. We found that BPA-exposed rats showed significant behavioral impairments when performing a sound temporal rate discrimination test. A significant alteration in spectral and temporal processing was also recorded in their A1, manifested as degraded frequency selectivity and diminished stimulus rate-following by neurons. These post-exposure effects were accompanied by changes in the density and maturity of dendritic spines in A1. Our findings demonstrated developmental impacts of BPA on auditory cortical processing and auditory-related discrimination, particularly in the temporal domain. Thus, the health implications for humans associated with early exposure to endocrine disruptors such as BPA merit more careful examination.
Collapse
Affiliation(s)
- Binliang Tang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Kailin Li
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yuan Cheng
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Guimin Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Pengying An
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yutian Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yue Fang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Hui Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yang Shen
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Yifan Zhang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China
| | - Ye Shan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
- New York University-East China Normal University Institute of Brain and Cognitive Science, NYU-Shanghai, Shanghai, 200062, China.
| |
Collapse
|
12
|
Castillo LY, Ríos-Carrillo J, González-Orozco JC, Camacho-Arroyo I, Morin JP, Zepeda RC, Roldán-Roldán G. Juvenile Exposure to BPA Alters the Estrous Cycle and Differentially Increases Anxiety-like Behavior and Brain Gene Expression in Adult Male and Female Rats. TOXICS 2022; 10:513. [PMID: 36136478 PMCID: PMC9505797 DOI: 10.3390/toxics10090513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Perinatal exposure to bisphenol A (BPA) in murine models has been reported to affect social behavior and increase anxiety. However, there is little information about the effects of BPA exposure during puberty, a period in which sex hormones influence the maturation and differentiation of the brain. In this work, we evaluated the effect of BPA administration during the juvenile stage (PND 21-50) on anxiety in male and female rats. Newly weaned Wistar rats were treated with BPA (0, 50, or 500 µg/kg/day) for 30 days. To compare the intra- and inter-sex behavioral profiles, rats were evaluated using four different anxiety models: the Open field test (OFT), the Elevated plus maze (EPM), the Light-dark box test (LDBT), and the Defensive burying test (DBT). Males exhibited a clear-cut anxious profile at both doses in all four tests, while no clear behavioral effect of BPA exposure was observed in female rats. The latter showed an altered estrous cycle that initiated earlier in life and had a shorter duration, with the estrous phase predominating. Moreover, the expression of ESR1, ESR2, GABRA1, GRIN1, GR, MR, and AR genes increased in the hippocampus and hypothalamus of male rats treated with 50 µg/kg, but not in females. Our results indicate that BPA consistently induces a higher anxiety profile in male than in female rats, as evidenced predominantly by an increase in passive-coping behaviors and changes in brain gene expression, highlighting the importance of sex in peripubertal behavioral toxicology studies.
Collapse
Affiliation(s)
- Laura Yesenia Castillo
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Comprehensive Biomedicine and Health Laboratory, Biomedical Research Center, Veracruzana University, Xalapa 91190, Mexico
| | - Jorge Ríos-Carrillo
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico City 04510, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico City 04510, Mexico
| | - Jean-Pascal Morin
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Rossana C. Zepeda
- Comprehensive Biomedicine and Health Laboratory, Biomedical Research Center, Veracruzana University, Xalapa 91190, Mexico
| | - Gabriel Roldán-Roldán
- Behavioral Neurobiology Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
13
|
Tang L, Li S, Yu J, Zhang Y, Yang L, Tong D, Xu J. Nonylphenol induces anxiety-like behavior in rats by regulating BDNF/TrkB/CREB signal network. Food Chem Toxicol 2022; 166:113197. [PMID: 35662570 DOI: 10.1016/j.fct.2022.113197] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 12/28/2022]
Abstract
This study aimed to verify whether chronic exposure to nonylphenol (NP) induces anxiety behavior in rats and explored NP's regulatory effect on the BDNF/TrkB/CREB signal network in vitro. Anxiety-like behavior was assessed by elevated plus-maze and light-dark box tests. The residence time in the closed arm increased with NP dose (4, 40 mg/kg) and exposure time (3 and 6 months) (P < 0.05). The hippocampal neurons in the medium dose (M-NP, 4 mg/kg) and high dose (H-NP, 40 mg/kg) groups showed disorderly arrangement, cell swelling, and nuclear pyknosis/necrosis. The protein/mRNA expressions of BDNF/TrkB/CREB in the H-NP group decreased, and the decrease was more significant at 6 months (P < 0.05). Both, NP exposure and BDNF knockdown, increase the number of apoptotic cells (P <0.001). NP downregulated the proteins/mRNA expressions of BDNF/TrkB/CREB, and the trend was consistent with the BDNF silence group. Chronic exposure to NP could induce anxiety-like behavior in rats and reduce the expression of key proteins/genes in the BDNF/TrkB/CREB signaling network.
Collapse
Affiliation(s)
- Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shengnan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Dayan Tong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
14
|
Preventive Effect of Hippocampal Sparing on Cognitive Dysfunction of Patients Undergoing Whole-Brain Radiotherapy and Imaging Assessment of Hippocampal Volume Changes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4267673. [PMID: 35425838 PMCID: PMC9005304 DOI: 10.1155/2022/4267673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]
Abstract
Objective Preventive effect of hippocampal sparing on cognitive dysfunction of patients undergoing whole-brain radiotherapy and imaging assessment of hippocampal volume changes. Methods Forty patients with brain metastases who attended Liaoning Cancer Hospital from January 2018 to December 2019 were identified as research subjects and were randomly divided into a control group and an experimental group, with 20 cases in each group. The control group was treated with whole-brain radiotherapy (WBRT), and the experimental group was treated with hippocampal sparing-WBRT (HS-WBRT). The Montreal Cognitive Assessment (MoCA) score, Eastern Cooperative Oncology Group (ECOG) score, cancer quality-of-life questionnaire (QLQ-C3O) score, hippocampal volume changes, and prognosis of the two groups were compared. Results The MoCA scores decreased in both groups at 3, 6, and 12 months after radiotherapy, with significantly higher scores in the experimental group than in the control group (P < 0.05). After radiotherapy, both groups had lower ECOG scores, with those in the experimental group being significantly lower than those in the control group (P < 0.05). After radiotherapy, the QLQ-C30 score was elevated in both groups, and that of the experimental group was significantly higher than that of the control group (P < 0.05). The experimental group outperformed the control group in terms of the prognosis (P < 0.05). The hippocampal volume of the control group was significantly smaller than that of the experimental group (P < 0.05). Conclusion The application of hippocampal sparing in patients receiving whole-brain radiotherapy is effective in preventing cognitive dysfunction, improving the quality of life and prognosis of patients, and avoiding shrinkage of hippocampal volume.
Collapse
|
15
|
Koriem KMM. Fertaric acid amends bisphenol A-induced toxicity, DNA breakdown, and histopathological changes in the liver, kidney, and testis. World J Hepatol 2022; 14:535-550. [PMID: 35582291 PMCID: PMC9055189 DOI: 10.4254/wjh.v14.i3.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) is present in many plastic products and food packaging. On the other hand, fertaric acid (FA) is a hydroxycinnamic acid. AIM To investigate the effect of FA on BPA-related liver, kidney, and testis toxicity, DNA breakdown, and histopathology in male rats. METHODS Thirty male albino rats were divided into five equal groups (6 rats/group): Control, paraffin oil, FA-, BPA-, and FA + BPA-treated groups. The control and paraffin oil groups were administered orally with 1 mL distilled water and 1 mL paraffin oil, respectively. The FA-, BPA-, and FA+ BPA-treated groups were administered orally with FA (45 mg/kg, bw) dissolved in 1 mL distilled water, BPA (4 mg/kg, bw) dissolved in 1 mL paraffin oil, and FA (45 mg/kg, bw) followed by BPA (4 mg/kg, bw), respectively. All these treatments were given once a day for 6 wk. RESULTS BPA induced a significant decrease in serum alkaline phosphatase, acid phosphatase, sodium, potassium and chloride, testosterone, dehydroepiandrosterone sulfate, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, and testis protein levels but a highly significant increase in serum aspartate aminotransferase, alanine aminotransferase, γ-glutamyl transpeptidase, lactate dehydrogenase, bilirubin, urea, creatinine, uric acid, luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin, blood urea nitrogen, and testis cholesterol levels. Also, FA inhibited the degradation of liver, kidney, and testis DNA content. Oral administration of FA to BPA-treated rats restored all the above parameters to normal levels. CONCLUSION FA ameliorates BPA-induced liver, kidney, and testis toxicity, DNA breakdown, and histopathological changes.
Collapse
|
16
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
17
|
Hu F, Liang W, Zhang L, Wang H, Li Z, Zhou Y. Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. CHEMOSPHERE 2022; 287:132044. [PMID: 34474391 DOI: 10.1016/j.chemosphere.2021.132044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor and has been gradually replaced in industrial applications by other bisphenols, such as bisphenol S (BPS). However, whether these analogues are any safer for the central nervous system remains elusive. Here, we investigated behavioral impairments in mice after BPA and BPS exposure from postnatal days 21-49 (P21~P49). Results showed that BPA (0.1 and 1 mg/kg/d) and BPS (1 mg/kg/d) impaired emotion and social interaction of mice, while low dose exposure (0.1 mg/kg/d) induced no observable changes on emotion in mice. The behavioral deficits were accompanied by hyperactivation of the basolateral amygdala (BLA), i.e., dose-dependent increase in neuronal firing rates and local field potential power. In addition, glutamate receptors were up-regulated in the BLA, showing the same activation trend after exposure to different doses of BPA and BPS. Taken together, these findings imply that BPA and BPS cause behavioral impairments in juvenile mice by disrupting local neuronal activation in the BLA. Although BPS exerted less adverse effects on mice than BPA at the low dose, it does not appear to be a safe alternative to BPA in regard to brain function after prolonged high-volume exposure.
Collapse
Affiliation(s)
- Fan Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| | - Weifeng Liang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Linke Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Zimu Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| |
Collapse
|
18
|
Moyano P, Flores A, García J, García JM, Anadon MJ, Frejo MT, Sola E, Pelayo A, Del Pino J. Bisphenol A single and repeated treatment increases HDAC2, leading to cholinergic neurotransmission dysfunction and SN56 cholinergic apoptotic cell death through AChE variants overexpression and NGF/TrkA/P75 NTR signaling disruption. Food Chem Toxicol 2021; 157:112614. [PMID: 34655688 DOI: 10.1016/j.fct.2021.112614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Bisphenol-A (BPA), a widely used plasticizer, induces cognitive dysfunctions following single and repeated exposure. Several studies, developed in hippocampus and cortex, tried to find the mechanisms that trigger and mediate these dysfunctions, but those are still not well known. Basal forebrain cholinergic neurons (BFCN) innervate hippocampus and cortex, regulating cognitive function, and their loss or the induction of cholinergic neurotransmission dysfunction leads to cognitive disabilities. However, no studies were performed in BFCN. We treated wild type or histone deacetylase (HDAC2), P75NTR or acetylcholinesterase (AChE) silenced SN56 cholinergic cells from BF with BPA (0.001 μM-100 μM) with or without recombinant nerve growth factor (NGF) and with or without acetylcholine (ACh) for one- and fourteen days in order to elucidate the mechanisms underlying these effects. BPA induced cholinergic neurotransmission disruption through reduction of ChAT activity, and produced apoptotic cell death, mediated partially through AChE-S overexpression and NGF/TrkA/P75NTR signaling dysfunction, independently of cholinergic neurotransmission disruption, following one- and fourteen days of treatment. BPA mediates these alterations, in part, through HDAC2 overexpression. These data are relevant since they may help to elucidate the neurotoxic mechanisms that trigger the cognitive disabilities induced by BPA exposure, providing a new therapeutic approach.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Wang C, Shu Y, Xu L, Liu Q, Zhang B, Zhang H. Maternal exposure to low doses of bisphenol A affects learning and memory in male rat offspring with abnormal N-methyl-d-aspartate receptors in the hippocampus. Toxicol Ind Health 2021; 37:303-313. [PMID: 33881370 DOI: 10.1177/0748233720984624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), a component of polycarbonate and epoxy resins, has been reported to induce learning and memory deficits. However, the mechanisms have not been fully elucidated. Growing evidence has suggested that N-methyl-d-aspartate receptors (NMDARs) are involved in cognitive impairments. In this study, BPA was administered to female Sprague-Dawley rats (six per dose group) at concentrations of 0 (control), 4, 40, and 400 μg/kg·body weight/day from gestation day 1 through lactation day 21. Spatial learning was evaluated using the Morris water maze on postnatal day 22. Expression levels of NMDARs were determined using real-time polymerase chain reaction and Western blot. The results showed that male offspring exposed to BPA exhibited increased latency in reaching the platform and reduced time in the target quadrant, and the number of crossing the platform was less, as compared with the control group. The mRNA and protein expression levels of NMDARs in the hippocampus were significantly downregulated when compared with the control group of male offspring. The data showed that maternal exposure to BPA at low dosage can cause cognitive deficits in male rat offspring, probably due to a decrease in NMDARs in the hippocampus.
Collapse
Affiliation(s)
- Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yao Shu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Li Xu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Bei Zhang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hong Zhang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
20
|
Wu D, Liu H, Liu Y, Wei W, Sun Q, Wen D, Jia L. Protective effect of alpha-lipoic acid on bisphenol A-induced learning and memory impairment in developing mice: nNOS and keap1/Nrf2 pathway. Food Chem Toxicol 2021; 154:112307. [PMID: 34058234 DOI: 10.1016/j.fct.2021.112307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022]
Abstract
The adverse effects of bisphenol A (BPA) on learning and memory may be related with oxidative stress, but the mechanisms are unclear. This study aimed to investigate the mechanism of damaged learning and memory caused by BPA through inducing oxidative stress, as well as to explore whether alpha-lipoic acid (ALA) show a protective action. Female mice were exposed to 0.1 μg/mL BPA, 0.2 μg/mL BPA, 0.6 mg/mL ALA, and 0.2 BPA + ALA through drinking water for 8 weeks. The results showed that ALA protected against the impairment of spatial, recognition, and avoidance memory caused by BPA. ALA replenished the reduce of hippocampus coefficient, serum estradiol (E2) level, and hippocampal neurotransmitters levels induced by BPA. ALA alleviated BPA-induced oxidative stress and hippocampal histological changes. BPA exposure reduced the levels of synaptic structural proteins and PKC/ERK/CREB pathway proteins, and ALA improved these reductions. ALA altered the protein levels of nNOS and keap1/Nrf2 pathway affected by BPA. Our results suggested that impairments of learning and memory caused by BPA was related to the damage of hippocampal synapses mediated by oxidative stress, and ALA protected learning and memory by reducing the oxidative stress induced by BPA through regulating the nNOS and keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Hezuo Liu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China.
| | - Deliang Wen
- Institute of Health Science, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, 110122, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, 110122, China.
| |
Collapse
|
21
|
Singha SP, Memon S, Kazi SAF, Nizamani GS. Gamma aminobutyric acid signaling disturbances and altered astrocytic morphology associated with Bisphenol A induced cognitive impairments in rat offspring. Birth Defects Res 2021; 113:911-924. [PMID: 33655713 DOI: 10.1002/bdr2.1886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Bisphenol A (BPA) is a well-recognized endocrine disruptor and is globally used in the manufacture of many plastic items. Multiple studies suggest links between prenatal BPA exposure and alterations in neurodevelopment and behaviors in children, even at lower levels. This study was conducted to reveal the role of astrocyte morphology and Gamma aminobutyric acid (GABA) signaling in BPA induced cognitive defects in the offspring of Wistar albino rats when exposed during the prenatal and postnatal periods. METHODS Dams of Wistar albino rats were exposed to a dose of 5 mg/kg body weight of BPA throughout the pregnancy and lactation period until the third postnatal day (PND). After delivery of pups, cognitive tests were carried out on the 21st, 24th, and 28th PNDs. Blood samples were collected for measurement of serum GABA levels. On the same day as the blood collections, pups were sacrificed and their right frontal cortices were dissected out. Immunohistochemical analysis for glial fibrillar acidic protein + astrocytes was conducted. RESULTS Pre and postnatal BPA exposure led to anxiety like behavior in pups. This exposure also resulted in reduced serum GABA concentrations. Immunohistochemical analysis revealed reduced astrocyte numbers as well as decreased numbers of dendritic spines in the BPA exposed pups. CONCLUSION BPA exposure during critical periods of development leads to cognitive impairments that correlate with the defects in the GABA signaling pathways and deteriorated morphology of the astrocytes in the offspring of the Wistar rats.
Collapse
Affiliation(s)
| | - Samreen Memon
- Department of Anatomy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | - Ghulam Shah Nizamani
- Department of Basic Medical Sciences, In Charge, Clinical Laboratory and Blood Bank, Isra University Hyderabad, Sindh, Pakistan
| |
Collapse
|
22
|
El Morsy EM, Ahmed M. Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol 2020; 39:1066-1078. [PMID: 32153214 DOI: 10.1177/0960327120909882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is used to produce polycarbonate plastic and epoxy resins which are used in many consumer products. Most people encounter BPA in their daily routines. However, it has been heavily reported that BPA has a neurotoxic effect. The present study aimed to investigate the effect of lycopene on cognitive deficits induced by a high dose of BPA focusing on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, oxidative stress, apoptosis, and memory retrieval in adult male rats. Therefore, 72 rats were divided into four groups: control group, BPA group (50 mg/kg body weight (bw)) 3 days a week for 42 days, lycopene group (10 mg/kg bw) daily for 42 days, and lycopene + BPA group. Concurrent treatment of lycopene with BPA improved the learning and cognition memory in Morris water maze and novel object recognition tests along with an increase in acetylcholine esterase activity as well as inhibition of oxidative stress by restoring reduced glutathione and suppressing malondialdehyde hippocampal level to their normal levels. Mechanistically, lycopene upregulated the protein expression of tyrosine receptor kinase B, which resulted in an upsurge in its downstream cascades MAPK/ERK1/2/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus of BPA-intoxicated rats. Furthermore, concurrent treatment of lycopene with BPA prevented apoptosis by marked decrease in Bcl-2 associated X protein (Bax) gene expression and caspase 3 activity while restoring B-cell leukemia/lymphoma-2 (Bcl-2) gene expression. In conclusion, the present study provided evidence that lycopene exerted a neuroprotective effect against BPA intoxication in hippocampi of rats via its antioxidant properties, activation of MAPK/ERK pathway, and inhibiting a neuronal apoptosis which reflected on improving the learning and cognition memory.
Collapse
Affiliation(s)
- E M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Mae Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
23
|
Frankfurt M, Luine V, Bowman RE. A potential role for dendritic spines in bisphenol-A induced memory impairments during adolescence and adulthood. VITAMINS AND HORMONES 2020; 114:307-329. [PMID: 32723549 DOI: 10.1016/bs.vh.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Collapse
Affiliation(s)
- Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | | | | |
Collapse
|
24
|
Zhang Y, Shi Y, Li Z, Sun L, Zhang M, Yu L, Wu S. BPA disrupts 17‑estradiol‑mediated hepatic protection against ischemia/reperfusion injury in rat liver by upregulating the Ang II/AT1R signaling pathway. Mol Med Rep 2020; 22:416-422. [PMID: 32319667 PMCID: PMC7248534 DOI: 10.3892/mmr.2020.11072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Bisphenol A (BPA), a xenoestrogen commonly used in plastics, may act as an endocrine disruptor, which indicates that BPA might be a public health risk. The present study aimed to investigate the effect of BPA on 17β-estradiol (E2)-mediated protection against liver ischemia/reperfusion (I/R) injury, and to identify the underlying mechanisms using a rat model. A total of 56 male Sprague Dawley rats were randomly divided into the following seven groups: i) Sham; ii) I/R; iii) Sham + BPA; iv) I/R + BPA; v) I/R + E2; vi) I/R + E2 + BPA; and vii) I/R + E2 + BPA + losartan [LOS; an angiotensin II (Ang II) type I receptor (ATIR) antagonist]. A rat model of hepatic I/R injury was established by inducing hepatic ischemia for 60 min followed by reperfusion for 24 h. When ischemia was induced, rats were treated with vehicle, E2, BPA or LOS. After 24 h of reperfusion, blood samples and hepatic tissues were collected for histopathological and biochemical examinations. The results suggested that 4 mg/kg BPA did not significantly alter the liver function, or Ang II and AT1R expression levels in the Sham and I/R groups. However, 4 mg/kg BPA inhibited E2-mediated hepatic protection by enhancing hepatic necrosis, and increasing the release of alanine transaminase, alkaline phosphatase and total bilirubin (P<0.05). Moreover, BPA increased serum and hepatic Ang II levels, as well as AT1R protein expression levels in the E2-treated rat model of liver I/R injury (P<0.05). LOS treatment reversed the negative effects of BPA on hepatic necrosis and liver serum marker levels, although it did not reverse BPA-mediated upregulation of serum and hepatic Ang II levels, or hepatic AT1R expression. Therefore, the present study suggested that BPA disrupted E2-mediated hepatic protection following I/R injury, but did not significantly affect healthy or I/R-injured livers; therefore, the mechanism underlying the effects of BPA may be associated with upregulation of the Ang II/AT1R signaling pathway.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zeyu Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
25
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
26
|
Kim JJ, Kumar S, Kumar V, Lee YM, Kim YS, Kumar V. Bisphenols as a Legacy Pollutant, and Their Effects on Organ Vulnerability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E112. [PMID: 31877889 PMCID: PMC6982222 DOI: 10.3390/ijerph17010112] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Bisphenols are widely used in the synthesis of polycarbonate plastics, epoxy resins, and thermal paper, which are used in manufacturing items of daily use. Packaged foods and drinks are the main sources of exposure to bisphenols. These chemicals affect humans and animals by disrupting the estrogen, androgen, progesterone, thyroid, and aryl hydrocarbon receptor functions. Bisphenols exert numerous harmful effects because of their interaction with receptors, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial dysfunction, and cell signal alterations. Both cohort and case-control studies have determined an association between bisphenol exposure and increased risk of cardiovascular diseases, neurological disorders, reproductive abnormalities, obesity, and diabetes. Prenatal exposure to bisphenols results in developmental disorders in animals. These chemicals also affect the immune cells and play a significant role in initiating the inflammatory response. Exposure to bisphenols exhibit age, gender, and dose-dependent effects. Even at low concentrations, bisphenols exert toxicity, and hence deserve a critical assessment of their uses. Since bisphenols have a global influence on human health, the need to discover the underlying pathways involved in all disease conditions is essential. Furthermore, it is important to promote the use of alternatives for bisphenols, thereby restricting their uses.
Collapse
Affiliation(s)
- Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Surendra Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Vinay Kumar
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam;
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| |
Collapse
|
27
|
Bisphenol A triggers axonal injury and myelin degeneration with concomitant neurobehavioral toxicity in C57BL/6J male mice. Toxicology 2019; 428:152299. [PMID: 31574244 DOI: 10.1016/j.tox.2019.152299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA) is a ubiquitously distributed endocrine disrupting chemical (EDC). BPA exposure in humans has been a matter of concern due to its increased application in the products of day to day use. BPA has been reported to cause toxicity in almost all the vital organ systems even at a very low dose levels. It crosses the blood brain barrier and causes neurotoxicity. We studied the effect of BPA on the cerebral cortex of C57BL/6J mice and examined whether BPA exposure alters the expression of axonal and myelin structural proteins. Male mice were dosed orally to 40 μg and 400 μg BPA/kg body weight for 60 days. BPA exposure resulted in memory loss, muscle coordination deficits and allodynia. BPA exposure also caused degeneration of immature and mature oligodendrocytes as evaluated by decreased mRNA levels of 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), nestin, myelin basic protein (MBP) and myelin-associated glycoprotein-1 (MAG-1) genes revealing myelin related pathology. It was observed that subchronic BPA exposure caused neuroinflammation through deregulation of inflammatory cytokines mRNA and protein expression which further resulted into neurotoxicity through axonal as well as myelin degeneration in the brain. BPA also caused increased oxidative stress in the brain. Our study indicates long-term subchronic low dose exposure to BPA has the potential to cause axonal degeneration and demyelination in the oligodendrocytes and neurons which may have implications in neurological and neuropsychological disorders including multiple sclerosis (MS), neuromyelitis optica and others.
Collapse
|