1
|
Fan Y, Ling Y, Zhou X, Li K, Zhou C. Licochalcone A Ameliorates Cognitive Dysfunction in an Alzheimer's Disease Model by Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. J Geriatr Psychiatry Neurol 2025; 38:201-213. [PMID: 39437838 DOI: 10.1177/08919887241295730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BackgroundEndoplasmic reticulum (ER) stress-induced neurodegeneration has been considered an underlying cause of Alzheimer disease (AD). Here, we investigated the beneficial effects of licochalcone A (Lico A), a valuable flavonoid of the root of the Glycyrrhiza species, against cognitive impairment in AD by regulating ER stress.MethodsThe triple transgenic mouse AD models were used and were administrated 5 or 15 mg/kg Lico A. Cognitive deficits, Aβ deposition, ER stress, and neuronal apoptosis were determined using Morris Water Maze test, probe trial, immunofluorescence staining, western blotting, and TUNEL staining. To investigate the mechanisms of how Lico A exerts anti-AD effects, primary hippocampal neurons were isolated from the AD model mice and treated with Lico A, salubrinal, an eIF2α phosphatase inhibitor, ML385, a Nrf2 inhibitor, or LY294002, an inhibitor of PI3K. Pharmacokinetics and toxicity of Lico A (15 mg/kg) in AD mice were evaluated.ResultsWe found that Lico A improved cognitive impairment, decreased Aβ plaques, inhibited ER stress, and reduced neuronal apoptosis in the hippocampus and cortex of AD mice. Treatment with Lico A in primary hippocampal neurons exerted the same effects as it did in vivo. Additionally, cotreatment with ML385 or LY294002 significantly impeded the effects of Lico A against ER stress. Moreover, 15 mg/kg Lico A had a good bioavailability and low toxicity in AD mice.ConclusionOur results demonstrated that Lico A ameliorates ER stress-induced neuronal apoptosis by inhibiting PERK/eIF2α/ATF4/CHOP signaling, suggesting the therapeutic potential of Lico A in AD treatment.
Collapse
Affiliation(s)
- Yun Fan
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yun Ling
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Xibin Zhou
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kai Li
- Zhang Zhongjing Key Laboratory of Prescriptions and Immunomodulation, Zhang Zhongjing Traditional Chinese Medicine College, Nanyang Institute of Technology, Nanyang, China
| | - Chunxiang Zhou
- School of Traditional Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Vafaee F, Derakhshani M, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Alpha-lipoic acid, as an effective agent against toxic elements: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3345-3372. [PMID: 39556148 DOI: 10.1007/s00210-024-03576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
This review aims to evaluate the efficacy of alpha-lipoic acid (ALA) in combating toxic elements, such as aluminum, arsenic, lead, mercury, and cadmium. The primary research question addressed is whether ALA can effectively mitigate the toxic effects of these metals through its antioxidant and chelating properties. Articles published between 1995 and 2024 were collected from Scopus, PubMed, Google Scholar, and Web of Science. Using Boolean (AND and OR), English-language publications were selected based on medical subject headings, titles, or abstracts that contained keywords related to ALA, metals, toxicity, antioxidants, and chelation. ALA supplementation significantly enhances cellular defense mechanisms and antioxidant enzyme activity. It effectively mitigates the adverse effects of aluminum exposure, counters arsenic toxicity in various cells and organs, and reduces cadmium toxicity, resulting in lower mortality rates among treated groups. Although ALA acts as a lead chelator, its efficacy is less than standard chelators. In the case of mercury, ALA shows beneficial effects in long-term therapy, although its capacity to reduce mercury concentration is limited. Overall, ALA emerges as a promising alternative for alleviating metal toxicity by enhancing antioxidant defenses, chelating toxic metals, and reversing their harmful effects. Further research in this area is encouraged to explore the full potential of ALA in mitigating the toxic effects of metals on biological systems.
Collapse
Affiliation(s)
- Farzad Vafaee
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Derakhshani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Sengul E, Yildirim S, Cinar İ, Tekin S, Dag Y, Bolat M, Gok M, Warda M. Mitigation of Acute Hepatotoxicity Induced by Cadmium Through Morin: Modulation of Oxidative and Pro-apoptotic Endoplasmic Reticulum Stress and Inflammatory Responses in Rats. Biol Trace Elem Res 2024; 202:5106-5117. [PMID: 38238535 PMCID: PMC11442647 DOI: 10.1007/s12011-024-04064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 10/01/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal with significant environmental health hazards. It enters the body through various routes with tissue accumulation. The relatively longer half-life with slow body clearance significantly results in hepatotoxicity during its liver detoxification. Therefore, researchers are exploring the potential use of herbal-derived phytocomponents to mitigate their toxicity. Here, we investigated, for the first time, the possible ameliorative effect of the phytochemical Morin (3,5,7,29,49-pentahydroxyflavone) against acute Cd-induced hepatotoxicity while resolving its underlying cellular mechanisms in a rat animal model. The study involved 50 adult male Sprague-Dawley rats weighing 200-250 g. The animals were divided into five equal groups: control, Cd, Morin100 + Cd, Morin200 + Cd, and Morin200. The 2nd, 3rd, and 4th groups were intraperitoneally treated with Cd (6.5 mg/kg), while the 3rd, 4th, and 5th groups were orally treated with Morin (100 and 200 mg/kg) for 5 consecutive days. On the 6th day, hepatic function (serum ALT, AST, ALP, LDH enzyme activities, and total bilirubin level) testing, transcriptome analysis, and immunohistochemistry were performed to elucidate the ameliorative effect of Morin on hepatotoxicity. In addition to restoring liver function and tissue injury, Morin alleviated Cd-induced hepatic oxidative/endoplasmic reticulum stress in a dose-dependent manner, as revealed by upregulating the expression of antioxidants (SOD, GSH, Gpx, CAT, and Nrf2) and decreasing the expression of ER stress markers. The expression of the proinflammatory mediators (TNF-α, IL-1-β, and IL-6) was also downregulated while improving the anti-inflammatory (IL-10 and IL-4) expression levels. Morin further slowed the apoptotic cascades by deregulating the expression of pro-apoptotic Bax and Caspase 12 markers concomitant with an increase in anti-apoptotic Blc2 mRNA expression. Furthermore, Morin restored Cd-induced tissue damage and markedly suppressed the cytoplasmic expression of JNK and p-PERK immunostained proteins. This study demonstrated the dose-dependent antioxidant hepatoprotective effect of Morin against acute hepatic Cd intoxication. This effect is likely linked with the modulation of upstream p-GRP78/PERK/ATF6 pro-apoptotic oxidative/ER stress and the downstream JNK/BAX/caspase 12 apoptotic signaling pathways.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
5
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
6
|
Lee SH, Sun MH, Jiang WJ, Li XH, Heo G, Zhou D, Chen Z, Cui XS. Alpha-lipoic acid attenuates heat stress-induced apoptosis via upregulating the heat shock response in porcine parthenotes. Sci Rep 2023; 13:8427. [PMID: 37225872 PMCID: PMC10209172 DOI: 10.1038/s41598-023-35587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023] Open
Abstract
Heat stress (HS) is a long-standing hurdle that animals face in the living environment. Alpha-lipoic acid (ALA) is a strong antioxidant synthesized by plants and animals. The present study evaluated the mechanism of ALA action in HS-induced early porcine parthenotes development. Parthenogenetically activated porcine oocytes were divided into three groups: control, high temperature (HT) (42 °C for 10 h), and HT + ALA (with 10 µM ALA). The results show that HT treatment significantly reduced the blastocyst formation rate compared to the control. The addition of ALA partially restored the development and improved the quality of blastocysts. Moreover, supplementation with ALA not only induced lower levels of reactive oxygen species and higher glutathione levels but also markedly reduced the expression of glucose regulatory protein 78. The protein levels of heat shock factor 1 and heat shock protein 40 were higher in the HT + ALA group, which suggests activation of the heat shock response. The addition of ALA reduced the expression of caspase 3 and increased the expression of B-cell lymphoma-extra-large protein. Collectively, this study revealed that ALA supplementation ameliorated HS-induced apoptosis by suppressing oxidative and endoplasmic reticulum stresses via activating the heat shock response, which improved the quality of HS-exposed porcine parthenotes.
Collapse
Affiliation(s)
- Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea.
| |
Collapse
|
7
|
Wang L, Wang T, Wen S, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. Puerarin Prevents Cadmium-Induced Neuronal Injury by Alleviating Autophagic Dysfunction in Rat Cerebral Cortical Neurons. Int J Mol Sci 2023; 24:ijms24098328. [PMID: 37176033 PMCID: PMC10179714 DOI: 10.3390/ijms24098328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Autophagic dysfunction is one of the main mechanisms of cadmium (Cd)-induced neurotoxicity. Puerarin (Pue) is a natural antioxidant extracted from the medicinal and edible homologous plant Pueraria lobata. Studies have shown that Pue has neuroprotective effects in a variety of brain injuries, including Cd-induced neuronal injury. However, the role of Pue in the regulation of autophagy to alleviate Cd-induced injury in rat cerebral cortical neurons remains unclear. This study aimed to elucidate the protective mechanism of Pue in alleviating Cd-induced injury in rat cerebral cortical neurons by targeting autophagy. Our results showed that Pue alleviated Cd-induced injury in rat cerebral cortical neurons in vitro and in vivo. Pue activates autophagy and alleviates Cd-induced autophagic blockade in rat cerebral cortical neurons. Further studies have shown that Pue alleviates the Cd-induced inhibition of autophagosome-lysosome fusion, as well as the inhibition of lysosomal degradation. The specific mechanism is related to Pue alleviating the inhibition of Cd on the expression levels of the key proteins Rab7, VPS41, and SNAP29, which regulate autophagosome-lysosome fusion, as well as the lysosome-related proteins LAMP2, CTSB, and CTSD. In summary, these results indicate that Pue alleviates Cd-induced autophagic dysfunction in rat cerebral cortical neurons by alleviating autophagosome-lysosome fusion dysfunction and lysosomal degradation dysfunction, thereby alleviating Cd-induced neuronal injury.
Collapse
Affiliation(s)
- Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
8
|
Li M, Fang Q, Xiu L, Yu L, Peng S, Wu X, Chen X, Niu X, Wang G, Kong Y. The molecular mechanisms of alpha-lipoic acid on ameliorating aflatoxin B 1-induced liver toxicity and physiological dysfunction in northern snakehead (Channa argus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106466. [PMID: 36871483 DOI: 10.1016/j.aquatox.2023.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to evaluate the protective mechanism of alpha-lipoic acid (α-LA) on the food-borne aflatoxin B1 (AFB1) exposure-induced liver toxicity and physiological dysfunction in the northern snakehead (Channa argus). 480 fish (9.24±0.01 g) were randomly assigned to four treatment groups and fed with four experimental diets for 56 d including the control group (CON), AFB1 group (200 ppb AFB1), 600 α-LA group (600 ppm α-LA+200 ppb AFB1), and 900 α-LA group (900 ppm α-LA+200 ppb AFB1). The results revealed that 600 and 900 ppm α-LA attenuated AFB1-induced growth inhibition and immunosuppression in northern snakehead. 600 ppm α-LA significantly decreased the serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase levels, and AFB1 bioaccumulation, and attenuated the changes of hepatic histopathological and ultrastructure induced by AFB1. Moreover, 600 and 900 ppm α-LA significantly up-regulated phase I metabolism genes (cytochrome P450-1a, 1b, and 3a) mRNA expression, inhibited the levels of malondialdehyde, 8‑hydroxy-2 deoxyguanosine and reactive oxygen species in the liver. Notably, 600 ppm α-LA significantly up-regulated the expression levels of nuclear factor E2 related factor 2 and its related downstream antioxidant molecules (heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1, etc.), increased the phase II detoxification enzyme-related molecules (glutathione-S-transferase and glutathione), antioxidant parameters (catalase and superoxide dismutase, etc.), and the expressions of Nrf2 and Ho-1 protein in the presence of AFB1 exposure. Furthermore, 600 and 900 ppm α-LA significantly reduced the characteristic indices of AFB1-induced endoplasmic reticulum stress (glucose-regulated protein 78 and inositol requiring enzyme 1, etc.), apoptosis (caspase-3 and cytochrome c, etc.) and inflammation (nuclear factor kappa B and tumor necrosis factor α, etc.), while increased the B-cell lymphoma-2 and inhibitor of κBα in the liver after being exposed to AFB1. To summarize, the above results indicate that dietary α-LA could modulate the Nrf2 signaling pathway to ameliorate AFB1-induced growth inhibition, liver toxicity, and physiological dysfunction in northern snakehead. Although the concentration of α-LA increased to 900 ppm from 600 ppm, the protective effects of the 900 ppm α-LA do not show an advantage over the 600 ppm α-LA, and even show inferiority in some respects. So that the recommended concentration of α-LA is 600 ppm. The present study provides the theoretical foundation for developing α-LA as the prevention and treatment of AFB1-induced liver toxicity in aquatic animals.
Collapse
Affiliation(s)
- Min Li
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Qiongya Fang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Lei Xiu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Linhai Yu
- Testing Center of Quality and Safety in Aquatic Product, Changchun 130118, PR. China
| | - Sibo Peng
- Jilin Academy of Fishery Sciences, Changchun 130033, PR. China
| | - Xueqin Wu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiumei Chen
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Xiaotian Niu
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China
| | - Guiqin Wang
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| | - Yidi Kong
- College of Animal Science and Technology, Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, PR. China.
| |
Collapse
|
9
|
Wen S, Wang L, Zhang C, Song R, Zou H, Gu J, Liu X, Bian J, Liu Z, Yuan Y. PINK1/Parkin-mediated mitophagy modulates cadmium-induced apoptosis in rat cerebral cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114052. [PMID: 36084502 DOI: 10.1016/j.ecoenv.2022.114052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Cadmium is a persistent environmental pollutant whose neurotoxicity is of serious concern. Mitochondrial dysfunction and its mediated mitophagy and apoptosis are considered key events in Cd-induced neurological pathologies, but the exact molecular mechanism has not been fully elucidated. The aim of this study was to investigate the relationship between Cd-induced mitophagy and apoptosis and their role in Cd-induced neuronal death. Using the mitophagy inhibitor cyclosporine A (CsA), we found that the extent of mitophagy mediated by the PTEN-induced putative kinase protein 1 (PINK1)/E3 ubiquitin ligase (Parkin) pathway decreased, whereas the level of apoptosis and cell death increased in rat cerebral cortical neurons in vitro. Consistent with this, the knockdown of PINK1 also exacerbated Cd-induced apoptosis and neuronal death. Furthermore, the results of the in vivo experiments showed that Cd simultaneously activated both mitophagy and apoptosis and that the suppression of mitophagy by CsA aggravated Cd-induced apoptosis. In summary, our results indicate that PINK1/Parkin-mediated mitophagy exerts an important neuroprotective effect by inhibiting Cd-mediated apoptosis in rat cerebral cortical neurons both in vitro and in vivo. This work may allow the development of new therapeutic strategies for Cd-induced central nervous system disorders.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaofan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Wang Y, Cui J, Zheng G, Zhao M, Hao Z, Lian H, Li Y, Wu W, Zhang X, Wang J. Ochratoxin A induces cytotoxicity through ROS-mediated endoplasmic reticulum stress pathway in human gastric epithelium cells. Toxicology 2022; 479:153309. [PMID: 36058351 DOI: 10.1016/j.tox.2022.153309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species that greatly threatens human health. We previously showed that OTA induced cycle arrest, apoptosis and autophagy in human gastric epithelium cells (GES-1). However, the mechanism underlying these effects is still unclear. Here, we showed that OTA exposure increased the expression of endoplasmic reticulum (ER) stress indicators (GRP78, PERK, ATF6, eIF2α, and CHOP), suggesting the activation of the unfolded protein response pathway. 4-phenylbutyric acid (4-PBA), an ER stress-specific inhibitor, attenuated OTA-induced loss of cell viability and apoptosis in GES-1 cells. It also attenuated the G2 phase arrest and autophagy induced by OTA, as evidenced by upregulated G2 phase-related proteins (Cdc2, Cdc25C, and cyclinB1) and downregulated autophagy markers (LC3B and Beclin-1). Moreover, OTA was found to increase ROS generation, and the inhibition of ROS formation by N-acetylcysteine (NAC), an ROS inhibitor, attenuated OTA-induced ER stress and subsequent apoptosis, cell cycle arrest, and autophagy. Collectively, these results suggest that the ROS-mediated ER stress pathway contributes to the OTA toxin-induced cytotoxicity in GES-1 cells. This study offers new insights into the molecular mechanisms underlying OTA toxicity in gastric cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Guona Zheng
- Department of Pathology, Heibei General Hospital, Shijiazhuang, China
| | - Man Zhao
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zengfang Hao
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hongguang Lian
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China; Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Juan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
11
|
Wen S, Wang L, Wang T, Xu M, Zhang W, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z. Puerarin alleviates cadmium-induced mitochondrial mass decrease by inhibiting PINK1-Parkin and Nix-mediated mitophagy in rat cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113127. [PMID: 34979308 DOI: 10.1016/j.ecoenv.2021.113127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) has well-known central nervous system toxicity, and mitochondria are direct targets of Cd-induced neuronal toxicity. However, how Cd induces mitochondrial mass decrease in terms of its neurotoxic effects remains unknown. Puerarin, an isoflavone extracted from kudzu root, can cross the blood-brain barrier and exert protective effects in nervous system disease. The purpose of the study was to determine the mechanism of Cd-induced mitochondrial mass decrease and the protective role of puerarin in rat cortical neurons. The results indicated that Cd induced mitochondrial mass decrease by activating mitophagy mediated by the PTEN-induced putative kinase protein 1 (PINK1)-E3 ubiquitin ligase (Parkin) and Nip3-like protein X (Nix) pathways in rat cortical neurons. Puerarin improved the Cd-induced decrease in mitochondrial membrane potential (MMP) in vitro, and blocked PINK1-Parkin and Nix-mediated mitophagy, inhibiting Cd-induced mitochondrial mass decrease in rat cortical neurons in vitro and in vivo. In summary, our data clearly indicated that puerarin protects rat cortical neurons against Cd-induced neurotoxicity by ameliorating mitochondrial damage, inhibiting mitophagy-mediated mitochondrial mass decrease. Puerarin appears to have great potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
12
|
Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C. Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 2022; 229:111730. [DOI: 10.1016/j.jinorgbio.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
13
|
Hu W, Zhu QL, Zheng JL, Wen ZY. Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106023. [PMID: 34798301 DOI: 10.1016/j.aquatox.2021.106023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The present study identified that exposure to 5, 10, and 20 µg/L Cd for 48 days reduced growth, increased Cd accumulation and levels of reactive oxygen species (ROS) and lipid peroxidation, and induced ER stress and cellular apoptosis in the liver in a dose-dependent manner. However, the survival rate was not affected by Cd. The increased production of ROS might result from reduced catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD) activities, which might trigger ER stress pathways and subsequently induce apoptotic responses, ultimately leading to growth inhibition. Transcriptomic analyses indicated that the differentially expressed genes (DEGs) involved in metabolic pathways were significantly enriched and dysregulated by Cd, suggesting that metabolic disturbances may contribute to Cd toxicity. However, there were increases in glutathione peroxidase (GPX) activity, protein levels of metallothioneins (MTs) and heat shock protein 70 (HSP70), and mRNA levels of sod1, cat, gpx, mt2, and hsp70. Furthermore, DEGs related to ribosome, protein processing in the ER, and protein export pathways were significantly enriched and up-regulated by Cd. These increases may be compensatory responses following oxidative stress, ER stress, and apoptosis to resist negative effects. Taken together, we demonstrated that environmentally relevant levels of Cd induced adaptive responses with compensatory mechanisms in fish, which may help to maintain fish survival at the cost of growth.
Collapse
Affiliation(s)
- Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, China
| |
Collapse
|
14
|
Zou H, Wang L, Zhao J, Yuan Y, Wang T, Bian J, Liu Z. MiR-155 promotes cadmium-induced autophagy in rat hepatocytes by suppressing Rheb expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112895. [PMID: 34673407 DOI: 10.1016/j.ecoenv.2021.112895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium is an environmental pollutant that threatens the health of both humans and animals. Current studies have shown that while hepatotoxic damage induced by cadmium is closely related to autophagy, its intrinsic mechanism has not been elucidated. MicroRNA plays a regulatory role on different stages of autophagy. In this study, we investigated the mechanisms by which microRNA-155 (miR-155) regulate cadmium-induced hepatotoxicity in rat hepatocytes (BRL 3A cells) and in vivo. We found that cadmium exposure could cause liver injury in rats, resulting in a decreased liver index, increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activity, hepatocyte steatosis, and ultrastructure damage. Cadmium exposure also induced autophagy in hepatocytes, resulting in increased expression of ATG5, Belin1, LC3II, and an increased number of autophagosomes. In addition, cadmium exposure upregulated miR-155 expression, downregulated Rheb mRNA expression, and downregulated the level of protein expression in the Rheb/mTOR signaling pathway in rat hepatocytes. The overexpression of miR-155 followed by cadmium exposure upregulated the level of autophagy in BRL3A cells, whereas miR-155 inhibition had the opposite effect. In addition, miR-155 negatively regulated Rheb. A dual-luciferase reporter assay verified the negative regulatory effect of miR-155 on Rheb targeting. Knockdown of Rheb downregulated cadmium-induced autophagy. Therefore, the Rheb/mTOR signaling can negatively regulate autophagy. The present study demonstrates that miR-155 promotes cadmium-induced autophagy in rat hepatocytes by suppressing Rheb expression.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jianya Zhao
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; College of Public Health, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
15
|
Wang S, Liu X, Shi W, Qi Q, Zhang G, Li Y, Cong B, Zuo M. Mechanism of Chronic Stress-Induced Glutamatergic Neuronal Damage in the Basolateral Amygdaloid Nucleus. Anal Cell Pathol (Amst) 2021; 2021:8388527. [PMID: 34858775 PMCID: PMC8632434 DOI: 10.1155/2021/8388527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Stress is a ubiquitous part of our life, while appropriate stress levels can help improve the body's adaptability to the environment. However, sustained and excessive levels of stress can lead to the occurrence of multiple devastating diseases. As an emotional center, the amygdala plays a key role in the regulation of stress-induced psycho-behavioral disorders. The structural changes in the amygdala have been shown to affect its functional characteristics. The amygdala-related neurotransmitter imbalance is closely related to psychobehavioral abnormalities. However, the mechanism of structural and functional changes of glutamatergic neurons in the amygdala induced by stress has not been fully elucidated. Here, we identified that chronic stress could lead to the degeneration and death of glutamatergic neurons in the lateral amygdaloid nucleus, resulting in neuroendocrine and psychobehavioral disorders. Therefore, our studies further suggest that the Protein Kinase R-like ER Kinase (PERK) pathway may be therapeutically targeted as one of the key mechanisms of stress-induced glutamatergic neuronal degeneration and death in the amygdala.
Collapse
Affiliation(s)
- Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xia Liu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Qian Qi
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Min Zuo
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Wan XM, Chen J, Wang M, Zheng C, Zhou XL. Puerarin attenuates cadmium-induced hepatic lipid metabolism disorder by inhibiting oxidative stress and inflammation in mice. J Inorg Biochem 2021; 222:111521. [PMID: 34171769 DOI: 10.1016/j.jinorgbio.2021.111521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant with known toxic effects on the liver. Puerarin (PU), a natural flavonoid, has been shown to exert protective effect in numerous pathological processes. However, whether PU affords protection in Cd-induced liver damage is still equivocal. Therefore, 40 mice were treated with Cd and/or PU by gavage for 9 weeks, then the serum and liver samples were collected to verify this issue. In this study, Cd exposure triggered hepatic lipid metabolism disorders and resultant liver damage as evidenced by Oil Red O staining and total cholesterol (TC) and triglyceride (TG) levels in serum and liver, aspartate transaminase (AST) and alanine transaminase (ALT) levels in serum, and histopathology, which were significantly improved by PU. Moreover, PU also normalized the expression of Cd-disturbed lipid metabolism-related proteins to improve lipid accumulation, contributing to the alleviation of liver injury. Moreover, Cd-decreased antioxidative indices superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) as well as glutathione (GSH) in hepatic tissues were significantly attenuated by PU administration, while Cd-elevated hepatic malondialdehyde (MDA) and reactive oxygen species (ROS) levels were markedly down-regulated by PU treatment, demonstrating the antioxidant effect of PU against Cd exposure. In addition, PU supplementation increased the anti-inflammatory potential, and normalized the levels of proinflammatory cytokines during Cd exposure. In conclusion, these observations demonstrate that PU treatment decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced lipid metabolism disorder and consequent liver damage.
Collapse
Affiliation(s)
- Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Jing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|
17
|
He Z, Song J, Li X, Li X, Zhu H, Wu C, Xiao W, Du X, Ni J, Li N, Liu Q. Bis(ethylmaltolato)oxidovanadium (IV) alleviates neuronal apoptosis through regulating peroxisome proliferator-activated receptor γ in a triple transgenic animal model of Alzheimer's disease. J Biol Inorg Chem 2021; 26:551-568. [PMID: 34240269 DOI: 10.1007/s00775-021-01874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/16/2021] [Indexed: 12/27/2022]
Abstract
Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators. Thus, we are curious whether bis(ethylmaltolato)oxidovanadium (IV) (BEOV) can ameliorate ER stress and subsequent neuronal apoptosis by regulating PPARγ in AD models. To this end, we determined the effect of BEOV on behavioral performance, ER stress and neuronal apoptosis in the triple transgenic mouse AD model (3×Tg-AD). Our results showed that BEOV improved cognitive abilities and reduced the ER stress- and apoptosis-associated proteins in the brains of 3×Tg-AD mice. In vitro administration of BEOV in primary hippocampal neurons and N2asw cells achieved similar results in repressing ER stress. In addition, cotreatment with GW9662 (an antagonist of PPARγ) effectively blocked these neuroprotective effects of BEOV, which provided strong evidence that PPARγ-dependent signaling plays a key role in protecting against ER stress and neuronal apoptosis in AD. In conclusion, our data demonstrated that BEOV alleviated neuronal apoptosis triggered by ER stress by regulating PPARγ in a 3×Tg-AD model.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jianxi Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xuexia Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Huazhang Zhu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Chong Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Wen Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China.,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, Guangdong, China. .,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518033, China.
| |
Collapse
|
18
|
Wen S, Wang L, Zou H, Gu J, Song R, Bian J, Yuan Y, Liu Z. Puerarin Attenuates Cadmium-Induced Neuronal Injury via Stimulating Cadmium Excretion, Inhibiting Oxidative Stress and Apoptosis. Biomolecules 2021; 11:biom11070978. [PMID: 34356602 PMCID: PMC8301907 DOI: 10.3390/biom11070978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Cadmium (Cd) is a potential pathogenic factor in the nervous system associated with various neurodegenerative disorders. Puerarin (Pur) is an isoflavone purified from the Chinese medical herb, kudzu root, and exhibits antioxidant and antiapoptotic properties in the brain. In this study, the detailed mechanisms underlying the neuroprotective potential of Pur against Cd-induced neuronal injury was evaluated for the first time in vivo in a rat model and in vitro using primary rat cerebral cortical neurons. The results of the in vivo experiments showed that Pur ameliorated Cd-induced neuronal injury, reduced Cd levels in the cerebral cortices, and stimulated Cd excretion in Cd-treated rats. We also observed that the administration of Pur rescued Cd-induced oxidative stress, and attenuated Cd-induced apoptosis by concomitantly suppressing both the Fas/FasL and mitochondrial pathways in the cerebral cortical neurons of rats both in vivo and in vitro. Our results demonstrate that Pur exerted its neuroprotective effects by stimulating Cd excretion, ameliorating Cd-induced oxidative stress and apoptosis in rat cerebral cortical neurons.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Y.); (Z.L.)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.W.); (L.W.); (H.Z.); (J.G.); (R.S.); (J.B.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.Y.); (Z.L.)
| |
Collapse
|
19
|
Wen S, Wang L, Zhang W, Xu M, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z. Induction of mitochondrial apoptosis pathway mediated through caspase-8 and c-Jun N-terminal kinase by cadmium-activated Fas in rat cortical neurons. Metallomics 2021; 13:6311136. [PMID: 34185081 DOI: 10.1093/mtomcs/mfab042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/26/2021] [Indexed: 11/12/2022]
Abstract
Cadmium (Cd) is a toxic metal and an environmental pollutant and can cause neurotoxicity by inducing apoptosis. Fas (CD95/Apo-1) is a cell-surface receptor that triggers apoptosis upon ligand binding, mediated through the mitochondrial apoptotic pathway. However, the role and regulatory mechanism of Fas in Cd-induced neuronal apoptosis remain understudied. Here, we demonstrate that activation of caspase-8 and the c-Jun N-terminal kinase (JNK) pathway are mechanisms underlying Cd-induced Fas-mediated activation of the mitochondrial apoptotic pathway in rat cerebral cortical neurons. In vitro, Cd induced apoptosis in primary cortical neurons by activating caspase-8, JNK, and the mitochondrial apoptotic pathway. Fas knockdown enhanced cell viability in the presence of Cd and inhibited apoptosis by blocking Cd-activated Fas, caspase-8, and JNK. Fas knockdown also inhibited the decrease of mitochondrial membrane potential, cleavage of caspase-9/3 and poly (ADP-ribose) polymerase 1, and impaired nuclear translocation of apoptosis-inducing factor and endonuclease G. In vivo, Fas knockdown alleviated Cd-induced neuronal injury and inhibited apoptosis, activation of caspase-8, JNK, and mitochondrial apoptotic pathways in rat cerebral cortical neurons. In summary, our results demonstrate that Cd-activated Fas relays apoptotic signals from the cell surface to the mitochondria via caspase-8 and JNK activation in rat cerebral cortical neurons, leading to aggravation of the neuronal injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals (Basel) 2021; 11:ani11051454. [PMID: 34069383 PMCID: PMC8158713 DOI: 10.3390/ani11051454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary A review of human and animal studies involving alpha-lipoic acid supplementation was conducted to determine the utility of alpha-lipoic acid in dog food. The present literature shows that alpha-lipoic acid has utility as a nutritive additive at concentrations of 2.7–4.94 mg/kg body weight/day and improves antioxidant capacity in dogs. Abstract Alpha-lipoic acid (a-LA) is used as a nutritive additive in dog food. Therefore, we performed a systematic review of studies published to date in PubMed, Google Scholar, Cochrane Library and MedlinePlus involving alpha-lipoic acid supplementation, which included human clinical trials as well as animal studies, to evaluate its utility as a supplement in foods for healthy, adult dogs. While an upper limit of alpha-lipoic acid intake in humans has not been conclusively determined, the levels for oral intake of a-LA have been better defined in animals, and distinct differences based on species have been described. The maximum tolerated oral dose of a-LA in dogs has been reported as 126 mg/kg body weight and the LD50 as 400 to 500 mg/kg body weight. The antioxidant, anti-inflammatory and neuro-protective benefits of alpha-lipoic acid in dogs were observed at concentrations much lower than the maximum tolerated dose or proposed LD50. At concentrations of 2.7–4.94 mg/kg body weight/day, alpha-lipoic acid is well tolerated and posed no health risks to dogs while providing improved antioxidant capacity. This review thereby supports the utility of alpha-lipoic acid as an effective nutritive additive in dog food.
Collapse
|
21
|
Yuan Y, Zhao SW, Wen SQ, Zhu QP, Wang L, Zou H, Gu JH, Liu XZ, Bian JC, Liu ZP. Alpha-Lipoic Acid Attenuates Cadmium- and Lead-Induced Neurotoxicity by Inhibiting Both Endoplasmic-Reticulum Stress and Activation of Fas/FasL and Mitochondrial Apoptotic Pathways in Rat Cerebral Cortex. Neurotox Res 2021; 39:1103-1115. [PMID: 33689146 DOI: 10.1007/s12640-021-00348-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Although many studies have reported toxic effects of cadmium (Cd) and lead (Pb) in the central nervous system, few studies have investigated the combined toxicity of Cd and Pb. The mechanisms by which these combined heavy metals induce toxicity, as well as effective means to exert neuroprotection from these agents, remain poorly understood. To investigate the protective effects of alpha-lipoic acid (α-LA) on Cd- and/or Pb-induced cortical damage in rats, 48 Sprague-Dawley rats were exposed to drinking water containing 50 mg/L of Cd and/or 300 mg/L of Pb for 12 weeks, in the presence or absence of α-LA co-treatment (50 mg/kg) via gavage. We observed that exposure to Cd and/or Pb decreased the brain weight/body weight ratio and increased Cd and/or Pb contents as well as ultrastructural damage to the cerebral cortex. Cd and/or Pb also induced endoplasmic-reticulum (ER) stress and activated Fas (CD95/APO-1)/Fas ligand (FasL) and mitochondrial apoptotic pathways. Furthermore, co-treatment of Cd and Pb further exacerbated part of these phenotypes than treatment of Cd or Pb alone. However, simultaneous supplementation with α-LA attenuated Cd and/or Pb-induced neurotoxicity by increasing the brain weight/body weight ratio, reducing Cd and/or Pb contents, ameliorating both nuclear/mitochondrial damage and ER stress, and attenuating activation of Fas/FasL and mitochondrial apoptotic pathways. Collectively, our results indicate that the accumulation of Cd and/or Pb causes cortical damage and that α-LA exerts protection against Cd- and/or Pb-induced neurotoxicity. These findings highlight that α-LA may be exploited for the treatment and prevention of Cd- and/or Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shi Wen Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shuang Quan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Qiao Ping Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jian Hong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Xue Zhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jian Chun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Zong Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
22
|
Diane A, Mahmoud N, Bensmail I, Khattab N, Abunada HA, Dehbi M. Alpha lipoic acid attenuates ER stress and improves glucose uptake through DNAJB3 cochaperone. Sci Rep 2020; 10:20482. [PMID: 33235302 PMCID: PMC7687893 DOI: 10.1038/s41598-020-77621-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Persistent ER stress, mitochondrial dysfunction and failure of the heat shock response (HSR) are fundamental hallmarks of insulin resistance (IR); one of the early core metabolic aberrations that leads to type 2 diabetes (T2D). The antioxidant α-lipoic acid (ALA) has been shown to attenuate metabolic stress and improve insulin sensitivity in part through activation of the heat shock response (HSR). However, these studies have been focused on a subset of heat shock proteins (HSPs). In the current investigation, we assessed whether ALA has an effect on modulating the expression of DNAJB3/HSP40 cochaperone; a potential therapeutic target with a novel role in mitigating metabolic stress and promoting insulin signaling. Treatment of C2C12 cells with 0.3 mM of ALA triggers a significant increase in the expression of DNAJB3 mRNA and protein. A similar increase in DNAJB3 mRNA was also observed in HepG2 cells. We next investigated the significance of such activation on endoplasmic reticulum (ER) stress and glucose uptake. ALA pre-treatment significantly reduced the expression of ER stress markers namely, GRP78, XBP1, sXBP1 and ATF4 in response to tunicamycin. In functional assays, ALA treatment abrogated significantly the tunicamycin-mediated transcriptional activation of ATF6 while it enhanced the insulin-stimulated glucose uptake and Glut4 translocation. Silencing the expression of DNAJB3 but not HSP72 abolished the protective effect of ALA on tunicamycin-induced ER stress, suggesting thus that DNAJB3 is a key mediator of ALA-alleviated tunicamycin-induced ER stress. Furthermore, the effect of ALA on insulin-stimulated glucose uptake is significantly reduced in C2C12 and HepG2 cells transfected with DNAJB3 siRNA. In summary, our results are supportive of an essential role of DNAJB3 as a molecular target through which ALA alleviates ER stress and improves glucose uptake.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Naela Mahmoud
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Namat Khattab
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Hanan A Abunada
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Mohammed Dehbi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
23
|
mTORC1 activation contributes to autophagy inhibition via its recruitment to lysosomes and consequent lysosomal dysfunction in cadmium-exposed rat proximal tubular cells. J Inorg Biochem 2020; 212:111231. [DOI: 10.1016/j.jinorgbio.2020.111231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
|
24
|
Ye N, Lv Z, Dai H, Huang Z, Shi F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology 2020; 159:20-27. [PMID: 33113440 DOI: 10.1016/j.theriogenology.2020.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the present study was to investigate the effects of dietary alpha-lipoic acid (ALA) supplementation on the reproductive performance of aged breeder roosters. Sixteen 50-wk-old ROSS 308 breeder roosters were randomly allocated to two groups: roosters received a basal diet (CON), or a basal diet supplemented with 300 mg/kg of ALA (ALA). The results indicated that dietary ALA supplementation significantly increased sperm concentration, motility, viability, and membrane functional integrity. ALA also dramatically increased seminiferous tubule epithelial height (SEH) and testis scores. The ALA group had a higher serum concentration of testosterone than the CON group. ALA supplementation remarkably increased total antioxidant capacity (T-AOC), the enzyme activities of glutathione peroxidase (GPx), and catalase (CAT) in the testes; following a decrease in malondialdehyde (MDA) levels. In addition, we noted significant upregulation of Nrf2 mRNA and protein expression of and mRNA expression of its Downstream Genes (GPx1, NQO1, and GCLC), as well as significant downregulation of Keap1 mRNA expression in testicular tissue of aged roosters with ALA supplementation. The protein expression of Caspase 3 was downregulated and the protein expression of proliferating cell nuclear antigen (PCNA) was upregulated by ALA supplementation. The mRNA expression of spermatogenesis-related genes (ER1, AKT1, and Cav1) were markedly augmented in the ALA group compared with the CON group. In conclusion, dietary ALA supplementation enhanced the testicular antioxidant capacity through the Nrf2-signaling pathway, exerted anti-apoptotic effects, and improved the reproductive performance of aged roosters.
Collapse
Affiliation(s)
- Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Tang KK, Liu XY, Wang ZY, Qu KC, Fan RF. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics 2020; 11:2043-2051. [PMID: 31650140 DOI: 10.1039/c9mt00227h] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is a persistent environmental contaminant and induces neurotoxicity in animals. Trehalose (Tre) exhibits powerful neuroprotective effects in certain brain injury models. Herein, we revealed the specific molecular mechanism underlying the protective effects of Tre against Cd-induced brain damage in rats. Firstly, the results showed that Tre significantly ameliorated brain pathological injury induced by Cd. Secondly, Cd-induced down-regulation of total anti-oxidation capacity (T-AOC) and up-regulation of methane dicarboxylic aldehyde (MDA) in brain tissues were significantly reversed by Tre treatment. Importantly, the augmentation of nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) caused by Cd was significantly inhibited by Tre treatment. Thirdly, the levels of autophagy marker proteins were measured and the results showed that Tre significantly reversed the up-regulation of light chain 3II (LC-3II) and sequestosome 1 (SQSTM-1/p62) caused by Cd exposure. Finally, the apoptosis rate and the levels of apoptosis marker proteins including B cell leukemia/lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) were also measured and the results showed that Cd-induced apoptosis was markedly inhibited by Tre treatment. Collectively, our data suggested that Tre exerted its neuroprotective effects by ameliorating oxidative stress, autophagy inhibition, and apoptosis induced by Cd in rat brains. In addition, the Nrf2 signaling pathway, which is continuously activated by Cd, may contribute to brain injury.
Collapse
Affiliation(s)
- Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | | | | | | | | |
Collapse
|
26
|
Xiong Y, Yin Q, Li J, He S. Oxidative Stress and Endoplasmic Reticulum Stress Are Involved in the Protective Effect of Alpha Lipoic Acid Against Heat Damage in Chicken Testes. Animals (Basel) 2020; 10:ani10030384. [PMID: 32120945 PMCID: PMC7142828 DOI: 10.3390/ani10030384] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In male animals, heat stress causes injury to the testes, resulting in an increase in the number of deformed sperm, a reduction in testosterone production, and consequently, reduced reproductive performance. As an important antioxidant, alpha lipoic acid (ALA) has been reported to have a protective effect against testicular injury caused by various pathological factors. However, few studies have focused on the role of ALA in heat-induced testicular lesions. In this study, the effects of ALA on histopathological parameters, the activity of key antioxidant enzymes involved in oxidative stress, biomarkers of endoplasmic reticulum stress signaling in the testicular tissue, and testosterone levels in serum were evaluated in heat-stressed chickens. The results showed that ALA significantly alleviated heat stress-induced adverse effects by affecting the activities of antioxidant enzymes, the expression of endoplasmic reticulum stress-related apoptotic modulators, and the protein levels of steroidogenic genes in the testes of chickens exposed to heat stress. These results suggest that in chickens, ALA may be beneficial for ameliorating decreased reproductive performance caused by heat stress and this study provides the basis for the design of novel therapies for heat-induced testicular damage. Abstract Heat stress (HS) causes testicular injury, resulting in decreased fertility. Alpha-lipoic acid (ALA) is a well-known antioxidant. The aim of this study was to investigate the protective effects of ALA on HS-induced testicular damage in chickens. Histological changes; biomarkers of oxidative stress, including glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA); markers of endoplasmic reticulum (ER) stress, including glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP); apoptosis-related modulators, including Bax, Bcl-2, and caspase 3, in testicular tissue and serum testosterone levels were evaluated in chickens under heat stress. Heat stress induces spermatogenic cell abnormalities in chicken testes. Compared to the HS group, the histomorphological abnormalities in testicular tissue were visibly ameliorated, with significant increases in the enzyme activities of GPx, SOD, and CAT, increased serum testosterone concentration, and decreased MDA levels in the ALA + HS group. Consistent with these results, compared with the HS group, the protein levels of GRP78, CHOP, caspase 3, and Bax were significantly decreased, whereas Bcl-2, StAR, and 3β-HSD protein levels were increased in the ALA + HS group. Collectively, these findings suggest that ALA significantly ameliorates the heat-induced histomorphological abnormalities in the testes and decreased testosterone production by potentiating the activities of anti-oxidative enzymes (GPx, SOD, and CAT), inhibiting ER stress-related apoptotic pathways (Bax, Bcl-2, and caspase 3), and increasing steroidogenic gene (StAR and 3β-HSD) expression in chickens.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (Y.X.); (Q.Y.); (J.L.)
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Qirun Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (Y.X.); (Q.Y.); (J.L.)
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (Y.X.); (Q.Y.); (J.L.)
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; (Y.X.); (Q.Y.); (J.L.)
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
- Correspondence: ; Tel.: +86-550-6732-040; Fax: +86-550-6732-040
| |
Collapse
|
27
|
Activating transcription factor 4 is required for high glucose inhibits proliferation and differentiation of MC3T3-E1 cells. J Recept Signal Transduct Res 2019; 39:407-414. [PMID: 31847659 DOI: 10.1080/10799893.2019.1690510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Activating transcription factor 4 (ATF4) promotes bone formation in human bone marrow mesenchymal stem cells. However, the underlying mechanisms of ATF4 in high glucose-induced injury of osteoblast still remain unclear. Small interfering RNA and plasmid targeting ATF4 were used to transfect MC3T3-E1 cells to knock down and overexpress ATF4 using Lipofectamin 3000. Cell viability, alkaline phosphatase (ALP) activity and levels were determined by MTT, ALP kit assay, quantitative real-time (qRT)-PCR and Western blot. Osteocalcin (OCN) expression was determined by ELISA, PCR and Western blot. The mRNA and protein levels of ATF4, glucose regulated protein 78 kDa (GRP78) and C/EBP homologous protein (CHOP) were detected by PCR and Western blot. In the current study, viabilities of MC3T3-E1 cells were inhibited by high glucose. Meanwhile, the mRNA and protein levels of ATF4 were effectively up-regulated in high glucose-incubated MC3T3-E1 cells. By conducting functional experiments, silencing ATF4 induced by small interfering RNA partially reversed the inhibitory effects of high glucose on viabilities of MC3T3-E1 cells. We also found that the expressions of ER stress-related proteins (ATF4, GRP78 and CHOP) were higher in high glucose-treated MC3T3-E1 cells but were inhibited by siATF4. However, overexpression of AFT4 had opposite results, and high glucose attenuated the protein levels of osteogenic marker genes ALP and OCN, which were further inhibited by ATF4 knockout gene. Thus, ATF4 was a necessary gene for high glucose to inhibit the proliferation and differentiation of MC3T3-E1 cells.
Collapse
|
28
|
Wang S, Shi W, Zhang G, Zhang X, Ma C, Zhao K, Cong B, Li Y. Endoplasmic Reticulum Stress-Mediated Basolateral Amygdala GABAergic Neuron Injury Is Associated With Stress-Induced Mental Disorders in Rats. Front Cell Neurosci 2019; 13:511. [PMID: 31798418 PMCID: PMC6874131 DOI: 10.3389/fncel.2019.00511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
The amygdala is an important center of fear learning and memory and plays a critical role in regulating stress disorders. Previous studies have shown that changes in the amygdala caused by stress are an important cause of mental disorders including anxiety, but the specific mechanism remains unclear. Therefore, the purpose of this study was to investigate whether mental disorders induced by stress are related to γ-aminobutyric acid (GABA)ergic neuron damage in the basolateral amygdala (BLA) and whether endoplasmic reticulum stress (ERS) is involved in the injury process. Rat models of different durations of stress were established by restraint and forced ice-water swimming. Behavioral tests and high-performance liquid chromatography (HPLC) were used to detect anxiety in rats and changes in neurotransmitter levels in the BLA. Morphological approaches and microscopy-based multicolor tissue cytometry (MMTC) were used to detect the damage-induced changes in GABAergic neurons in the BLA. Immunofluorescence double labeling was used to detect the expression of ERS-related proteins before and after the inhibition of protein kinase R-like endoplasmic reticulum kinase (PERK) pathway. Stress resulted in damage to GABAergic neurons in the BLA, decreased GABA and increased glutamic acid (GLU) levels, perturbation of the excitation/inhibition (E/I) ratio in the BLA, and obvious anxiety disorders in rats. Moreover, ERS-mediated GABAergic neuron injury was an important cause of neurotransmitter level changes in the BLA. These results suggested that ERS-mediated GABAergic neuron injury in the BLA may be an important cause of stress-induced mental disorders.
Collapse
Affiliation(s)
- Songjun Wang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Guozhong Zhang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Kai Zhao
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
29
|
Liu Q, Körner H, Wu H, Wei W. Endoplasmic reticulum stress in autoimmune diseases. Immunobiology 2019; 225:151881. [PMID: 31879042 DOI: 10.1016/j.imbio.2019.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
If the body's immune system is disordered and begins to attack "self" and therefore, its own tissues this is considered to be an autoimmune pathology. The specific mechanisms vary between the different diseases and have not always been elucidated but chronic, non-resolving inflammation is a common theme in the pathogenesis of autoimmune diseases. Interestingly, it has been shown that development and occurrence of various inflammatory responses are closely correlated to endoplasmic reticulum stress. Therefore, this review discusses the current progress of research about the relationship between autoimmune diseases and endoplasmic reticulum stress, specifically the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation, China; Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
30
|
Pang L, Deng P, Liang YD, Qian JY, Wu LC, Yang LL, Yu ZP, Zhou Z. Lipoic acid antagonizes paraquat-induced vascular endothelial dysfunction by suppressing mitochondrial reactive oxidative stress. Toxicol Res (Camb) 2019; 8:918-927. [PMID: 32774841 DOI: 10.1039/c9tx00186g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Paraquat (PQ) is a widely used herbicide in the agricultural field. The lack of an effective antidote is the significant cause of high mortality in PQ poisoning. Here, we investigate the antagonistic effects of alpha lipoic acid (α-LA), a naturally existing antioxidant, on PQ toxicity in human microvascular endothelial cells (HMEC-1). All the doses of 250, 500 and 1000 μM α-LA significantly inhibited 1000 μM PQ-induced cytotoxicity in HMEC-1 cells. α-LA pretreatment remarkably diminished the damage to cell migration ability, recovered the declined levels of the vasodilator factor nitric oxide (NO), elevated the expression level of endothelial nitric oxide synthases (eNOS), and inhibited the upregulated expression of vasoconstrictor factor endothelin-1 (ET-1). Moreover, α-LA pretreatment inhibited reactive oxygen species (ROS) generation, suppressed the damage to the mitochondrial membrane potential (ΔΨ m) and mitigated the inhibition of adenosine triphosphate (ATP) production in HMEC-1 cells. These results suggested that α-LA could alleviate PQ-induced endothelial dysfunction by suppressing oxidative stress. In summary, our present study provides novel insight into the protective effects and pharmacological potential of α-LA against PQ toxicity in microvascular endothelial cells.
Collapse
Affiliation(s)
- Li Pang
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China .
| | - Ping Deng
- Department of Occupational Health , Third Military Medical University , Chongqing 400038 , China
| | - Yi-Dan Liang
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China .
| | - Jing-Yu Qian
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China .
| | - Li-Chuan Wu
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China .
| | - Ling-Ling Yang
- Department of Occupational Health , Third Military Medical University , Chongqing 400038 , China
| | - Zheng-Ping Yu
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China . .,Department of Occupational Health , Third Military Medical University , Chongqing 400038 , China
| | - Zhou Zhou
- Department of Cell Biology , School of Life Sciences and School of Medicine , Guangxi University , Nanning 530004 , China .
| |
Collapse
|
31
|
Fu J, Peng L, Wang W, He H, Zeng S, Chen TC, Chen Y. Sodium Valproate Reduces Neuronal Apoptosis in Acute Pentylenetetrzole-Induced Seizures via Inhibiting ER Stress. Neurochem Res 2019; 44:2517-2526. [DOI: 10.1007/s11064-019-02870-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
32
|
Feng J, Chen S, Wang Y, Liu Q, Yang M, Li X, Nie C, Qin J, Chen H, Yuan X, Huang Y, Zhang Q. Maternal exposure to cadmium impairs cognitive development of male offspring by targeting the Coronin-1a signaling pathway. CHEMOSPHERE 2019; 225:765-774. [PMID: 30903850 DOI: 10.1016/j.chemosphere.2019.03.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Direct exposure to cadmium (Cd) may induce persistent impairment in learning and memory. However, the outcomes of maternal exposure on the neurological development of offspring are much less clear, and the underlying mechanism leading to toxicity remains undisclosed. Following chronic exposure of female rats during gestation and lactation, low level of Cd was detectable in the cerebral cortex but not in the hippocampus of F1 male offspring. The synapses and neurites in hippocampus were destroyed by high Cd exposure level as evidenced by abnormal morphology and cognitive behavior deficit lasting from childhood to adulthood. The membrane glycoprotein M6a (GPM6A) regulates the filopodium formation, neurite outgrowth and synaptogenesis, and is a possible target which Cd acts upon. The signaling pathway Coronin-1a (CORO1A), Ras-related C3 botulinum toxin substrate 1 (RAC1) and p21-activated kinase 1 (PAK1) promotes GPM6A-induced filopodium formation. Our results showed that maternal exposure dramatically down-regulated the level of CORO1A as well as the expression of downstream effectors RAC1, PAK1 and GPM6A. CORO1A-knockdown by siRNA caused decreases in the expression of RAC1, PAK1 and GPM6A; and siRNA targeting combined with Cd insult further decreased the expression of these proteins. Following CORO1A overexpression, the neurites were lengthened with increased expression of all the effector proteins in SH-SY5Y cells exposed to Cd, confirming the significance of CORO1A in mediating the Cd neurotoxicity. These findings may help to disclose how Cd impairs the learning and cognitive development in children, and facilitate finding of potential therapeutic targets for the treatment of Cd poisoning.
Collapse
Affiliation(s)
- Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Chuan Nie
- Guangdong Women and Children Hospital, Guangzhou, 510000, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaohui Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|