1
|
Jado JC, Dow M, Carolino K, Klie A, Fonseca GJ, Ideker T, Carter H, Winzeler EA. In vitro evolution and whole genome analysis to study chemotherapy drug resistance in haploid human cells. Sci Rep 2024; 14:13989. [PMID: 38886371 PMCID: PMC11183241 DOI: 10.1038/s41598-024-63943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle Dow
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam Klie
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gregory J Fonseca
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre, 1001 Decaire Blvd, Montreal, QC, H4A 3J1, Canada
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Chen Y, Zhu S, Liao T, Wang C, Han J, Yang Z, Lu X, Hu Z, Hu J, Wang X, Gu M, Gao R, Liu K, Liu X, Ding C, Hu S, Liu X. The HN protein of Newcastle disease virus induces cell apoptosis through the induction of lysosomal membrane permeabilization. PLoS Pathog 2024; 20:e1011981. [PMID: 38354122 PMCID: PMC10866534 DOI: 10.1371/journal.ppat.1011981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.
Collapse
Affiliation(s)
- Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Shanshan Zhu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Tianxing Liao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Jiajun Han
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Zhenyu Yang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
| | - Xiaolong Lu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Kaituo Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University; Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Xie S, Yang Y, Luo Z, Li X, Liu J, Zhang B, Li W. Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review. iScience 2022; 25:105283. [PMID: 36300001 PMCID: PMC9589207 DOI: 10.1016/j.isci.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotoxicity induced by anticancer drugs interferes with the continuation of optimal treatment, inducing life-threatening risks or leading to long-term morbidity. The heart is a complex pluricellular organ comprised of cardiomyocytes and non-cardiomyocytes. Although the study of these cell populations has been often focusing on cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarized the role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity, including the mechanism of direct damage to resident non-cardiomyocytes, cardiomyocytes injury caused by paracrine modality, myocardial inflammation induced by transient cell populations and the protective agents that focused on non-cardiomyocytes.
Collapse
Affiliation(s)
- Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Algieri C, Bernardini C, Oppedisano F, La Mantia D, Trombetti F, Palma E, Forni M, Mollace V, Romeo G, Troisio I, Nesci S. The Impairment of Cell Metabolism by Cardiovascular Toxicity of Doxorubicin Is Reversed by Bergamot Polyphenolic Fraction Treatment in Endothelial Cells. Int J Mol Sci 2022; 23:8977. [PMID: 36012238 PMCID: PMC9409165 DOI: 10.3390/ijms23168977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of bergamot polyphenolic fraction (BPF) on the mitochondrial bioenergetics of porcine aortic endothelial cells (pAECs) were verified under the cardiotoxic action of doxorubicin (DOX). The cell viability of pAECs treated for 24 h with different concentrations of DOX was reduced by 50%, but the negative effect of DOX was reversed in the presence of increasing doses of BPF (100 µg/mL and 200 µg/mL BPF). An analysis of the protective effect of BPF on the toxic action of DOX was also carried out on cell respiration. We observed the inhibition of the mitochondrial activity at 10 µM DOX, which was not restored by 200 µg/mL BPF. Conversely, the decrease in basal respiration and ATP production caused by 0.5 or 1.0 µM DOX were improved in the presence of 100 or 200 µg/mL BPF, respectively. After 24 h of cell recovery with 100 µg/mL or 200 µg/mL BPF on pAECs treated with 0.5 µM or 1.0 µM DOX, respectively, the mitochondrial parameters of oxidative metabolism impaired by DOX were re-boosted.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, 40126 Bologna, Italy
| | - Ilaria Troisio
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
5
|
Cannabidiol Enhances Microglial Beta-Amyloid Peptide Phagocytosis and Clearance via Vanilloid Family Type 2 Channel Activation. Int J Mol Sci 2022; 23:ijms23105367. [PMID: 35628181 PMCID: PMC9140666 DOI: 10.3390/ijms23105367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with the accumulation and aggregation of amyloid in the brain. The cation channel TRPV2 may mediate the pathological changes in mild cognitive impairment. A high-affinity agonist of TRPV2 named cannabidiol is one of the candidate drugs for AD. However, the molecular mechanism of cannabidiol via TRPV2 in AD remains unknown. The present study investigated whether cannabidiol enhances the phagocytosis and clearance of microglial Aβ via the TRPV2 channel. We used a human dataset, mouse primary neuron and microglia cultures, and AD model mice to evaluate TRPV2 expression and the ability of microglial amyloid-β phagocytosis in vivo and in vitro. The results revealed that TRPV2 expression was reduced in the cortex and hippocampus of AD model mice and AD patients. Cannabidiol enhanced microglial amyloid-β phagocytosis through TRPV2 activation, which increased the mRNA expression of the phagocytosis-related receptors, but knockdown of TRPV2 or Trem2 rescued the expression. TRPV2-mediated effects were also dependent on PDK1/Akt signaling, a pathway in which autophagy was indispensable. Furthermore, cannabidiol treatment successfully attenuated neuroinflammation while simultaneously improving mitochondrial function and ATP production via TRPV2 activation. Therefore, TRPV2 is proposed as a potential therapeutic target in AD, while CBD is a promising drug candidate for AD.
Collapse
|
6
|
Shi C, Xu S, Huang C, Wang Z, Wang W, Ming D, Yin X, Liu H, Wang F. Pyrroloquinoline Quinone Regulates Enteric Neurochemical Plasticity of Weaned Rats Challenged With Lipopolysaccharide. Front Neurosci 2022; 16:878541. [PMID: 35592257 PMCID: PMC9112857 DOI: 10.3389/fnins.2022.878541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The enteric nervous system (ENS) is important for the intestinal barrier to defend and regulate inflammation in the intestine. The aim of this study was to investigate the effect of pyrroloquinoline quinone (PQQ) on regulating neuropeptide secretion by ENS neurons of rats challenged with lipopolysaccharide (LPS) to create enteritis. Thirty Sprague Dawley rats were divided into five groups, namely, basal (CTRL), basal plus LPS challenge (LPS), basal with 2.5 mg/kg b.w./day of PQQ plus challenge with LPS (PQQ 2.5), basal with 5.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 5), and basal with 10.0 mg/kg b.w./day PQQ plus challenge with LPS (PQQ 10). After treatment with basal diet or PQQ for 14 days, rats were challenged with LPS except for the CTRL group. Rats were euthanized 6 h after the LPS challenge. Rats showed an increased average daily gain in PQQ treatment groups (P < 0.05). Compared with the LPS group, PQQ 5 and PQQ 10 rats showed increased villus height and villus height/crypt depth of jejunum (P < 0.05). In PQQ treatment groups, concentrations of IL-1β and TNF-α in serum and intestine of rats were decreased, and IL-10 concentration was increased in serum compared with the LPS group (P < 0.05). Compared with the LPS group, the concentration of neuropeptide Y (NPY), nerve growth factor (NGF), vasoactive intestinal peptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), and brain-derived neurotropic factor (BDNF) in serum were decreased in PQQ treatment groups (P < 0.05). Compared with the LPS group, ileal mRNA levels of BDNF, NPY, and NGF were decreased in PQQ treatment groups (P < 0.05). Jejunal concentrations of SP, CGRP, VIP, BDNF, NPY, and NGF were decreased in PQQ treatment groups compared with the LPS group (P < 0.05). Compared with the LPS group, phosphor-protein kinase B (p-Akt)/Akt levels in jejunum and colon were decreased in PQQ treatment groups (P < 0.05). In conclusion, daily treatment with PQQ improved daily gain, jejunal morphology, immune responses. PQQ-regulated enteric neurochemical plasticity of ENS via the Akt signaling pathway of weaned rats suffering from enteritis.
Collapse
Affiliation(s)
- Chenyu Shi
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Song Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zijie Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenhui Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxu Ming
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xindi Yin
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hu Liu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fenglai Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Pantazi D, Tselepis AD. Cardiovascular toxic effects of antitumor agents: Pathogenetic mechanisms. Thromb Res 2022; 213 Suppl 1:S95-S102. [DOI: 10.1016/j.thromres.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
|
8
|
Pyrroloquinoline quinone (PQQ) protects mitochondrial function of HEI-OC1 cells under premature senescence. NPJ AGING 2022; 8:3. [PMID: 35927260 PMCID: PMC9158787 DOI: 10.1038/s41514-022-00083-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the effects of pyrroloquinoline quinone (PQQ), an oxidoreductase cofactor, on the H2O2-induced premature senescence model in HEI-OC1 auditory cells and to elucidate its mechanism of action in vitro. Cells were treated with PQQ for 1 day before H2O2 (100 μM) exposure. Mitochondrial respiratory capacity was damaged in this premature senescence model but was restored in cells pretreated with PQQ (0.1 nM or 1.0 nM). A decrease in mitochondrial potential, the promotion of mitochondrial fusion and the accelerated movement of mitochondria were all observed in PQQ-pretreated cells. The protein expression of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) were significantly decreased under H2O2 exposure while they were increased with PQQ pretreatment, and PGC-1α acetylation was significantly decreased. In conclusion, PQQ has a protective effect on the premature senescence model of HEI-OC1 auditory cells and is associated with the SIRT1/PGC-1α signaling pathway, mitochondrial structure, and mitochondrial respiratory capacity.
Collapse
|
9
|
Graziani S, Scorrano L, Pontarin G. Transient Exposure of Endothelial Cells to Doxorubicin Leads to Long-Lasting Vascular Endothelial Growth Factor Receptor 2 Downregulation. Cells 2022; 11:cells11020210. [PMID: 35053325 PMCID: PMC8773916 DOI: 10.3390/cells11020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (Dox) is an effective antineoplastic drug with serious cardiotoxic side effects that persist after drug withdrawal and can lead to heart failure. Dysregulation of vascular endothelium has been linked to the development of Dox-induced cardiotoxicity, but it is unclear whether and how transient exposure to Dox leads to long-term downregulation of Endothelial Vascular Endothelial Growth Factor Receptor type2 (VEGFR2), essential for endothelial cells function. Using an in vitro model devised to study the long-lasting effects of brief endothelial cells exposure to Dox, we show that Dox leads to sustained protein synthesis inhibition and VEGFR2 downregulation. Transient Dox treatment led to the development of long-term senescence associated with a reduction in VEGFR2 levels that persisted days after drug withdrawal. By analyzing VEGFR2 turnover, we ruled out that its downregulation was depended on Dox-induced autophagy. Conversely, Dox induced p53 expression, reduced mTOR-dependent translation, and inhibited global protein synthesis. Our data contribute to a mechanistic basis to the permanent damage caused to endothelial cells by short-term Dox treatment.
Collapse
Affiliation(s)
- Silvia Graziani
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
| | - Luca Scorrano
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
- Veneto Institute of Molecular Medicine (VIMM), 35127 Padova, Italy
| | - Giovanna Pontarin
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.G.); (L.S.)
- Correspondence:
| |
Collapse
|
10
|
Guo J, Chen W, Bao B, Zhang D, Pan J, Zhang M. Protective effect of berberine against LPS-induced endothelial cell injury via the JNK signaling pathway and autophagic mechanisms. Bioengineered 2021; 12:1324-1337. [PMID: 33896366 PMCID: PMC8806223 DOI: 10.1080/21655979.2021.1915671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
The role of autophagic mechanisms in the protective effect of berberine (BBR) on lipopolysaccharide (LPS)-induced injury in the endothelial cells human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs) was investigated. Cell viability, proliferation, and apoptosis were detected by the CCK-8 assay, the EdU kit, and flow cytometry, respectively, and autophagy-related protein expression, the number of autophagic vacuoles, and LC3 double-fluorescence were examined using western blot analysis, transmission electron microscopy, and confocal microscopy, respectively. LPS resulted in a decrease in the cell viability and proliferation of HUVECs and HPMECs and an increase in the number of apoptotic cells, while BBR treatment resulted in an increase in cell viability and proliferation, as well as a decrease in cell apoptosis. Furthermore, BBR could inhibit LPS-induced autophagy, as demonstrated by its inhibitory effects on the LC3-II/LC3-I ratio and Beclin-1 levels and its promotive effect on p62 expression. Addition of the autophagy inducer rapamycin (RAPA) aggravated LPS-induced injury, while treatment with the autophagy blocker 3-methyladenine (3-MA) attenuated the injury. Further, the protective effect of BBR was inhibited by rapamycin. JNK inhibition by SP600125 inhibited LPS-induced autophagy, and BBR could not alter the LPS-induced autophagy in HUVECs and HPMECs that were pretreated with SP600125. The present data indicate that BBR attenuated LPS-induced cell apoptosis by blocking JNK-mediated autophagy in HUVECs and HPMECs. Therefore, the JNK-mediated autophagy pathway could be a potential target for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Junping Guo
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beibei Bao
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Dayong Zhang
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Jianping Pan
- Department of Clinical Medicine, Zhejiang University City College, School of Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institue of Emergency Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Dong Z, Qiu T, Zhang J, Sha S, Han X, Kang J, Shi X, Sun X, Jiang L, Yang G, Yao X, Ma Y. Perfluorooctane sulfonate induces autophagy-dependent lysosomal membrane permeabilization by weakened interaction between tyrosinated alpha-tubulin and spinster 1. Food Chem Toxicol 2021; 157:112540. [PMID: 34500008 DOI: 10.1016/j.fct.2021.112540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Tianming Qiu
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jingyuan Zhang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Jian Kang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaoxia Shi
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiance Sun
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Liping Jiang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Guang Yang
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China
| | - Xiaofeng Yao
- Department of Preventive Medicine, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian, 116044, PR China.
| |
Collapse
|
12
|
Cheng Q, Chen J, Guo H, Lu JL, Zhou J, Guo XY, Shi Y, Zhang Y, Yu S, Zhang Q, Ding F. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson's disease model via AMPK activation. Acta Pharmacol Sin 2021; 42:665-678. [PMID: 32860006 PMCID: PMC8115282 DOI: 10.1038/s41401-020-0487-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction is considered to be one of the important pathogenesis in Parkinson's disease (PD). We previously showed that pyrroloquinoline quinone (PQQ) could protect SH-SY5Y cells and dopaminergic neurons from cytotoxicity and prevent mitochondrial dysfunction in rotenone-induced PD models. In the present study we investigated the mechanisms underlying the protective effects of PQQ in a mouse PD model, which was established by intraperitoneal injection of rotenone (3 mg·kg-1·d-1, ip) for 3 weeks. Meanwhile the mice were treated with PQQ (0.8, 4, 20 mg·kg-1·d-1, ip) right after rotenone injection for 3 weeks. We showed that PQQ treatment dose-dependently alleviated the locomotor deficits and nigral dopaminergic neuron loss in PD mice. Furthermore, PQQ treatment significantly diminished the reduction of mitochondria number and their pathological change in the midbrain. PQQ dose-dependently blocked rotenone-caused reduction in the expression of PGC-1α and TFAM, two key activators of mitochondrial gene transcription, in the midbrain. In rotenone-injured human neuroblastoma SH-SY5Y cells, PTMScan Direct analysis revealed that treatment with PQQ (100 μM) differentially regulated protein phosphorylation; the differentially expressed phosphorylated proteins included the signaling pathways related with adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway. We conducted Western blot analysis and confirmed that AMPK was activated by PQQ both in PD mice and in rotenone-injured SH-SY5Y cells. Pretreatment with AMPK inhibitor dorsomorphin (4 μM) significantly attenuated the protective effect and mitochondrial biogenesis by PQQ treatment in rotenone-injured SH-SY5Y cells. Taken together, PQQ promotes mitochondrial biogenesis in rotenone-injured mice and SH-SY5Y cells via activation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Hui Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jin-Li Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xin-Yu Guo
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yue Shi
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Yu Zhang
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong, 226001, China.
| |
Collapse
|
13
|
Effects of Pyrroloquinoline Quinone on Lipid Metabolism and Anti-Oxidative Capacity in a High-Fat-Diet Metabolic Dysfunction-Associated Fatty Liver Disease Chick Model. Int J Mol Sci 2021; 22:ijms22031458. [PMID: 33535680 PMCID: PMC7867196 DOI: 10.3390/ijms22031458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.
Collapse
|
14
|
Niu R, Wang J, Geng C, Li Y, Dong L, Liu L, Chang Y, Shen J, Nie Z, Zhang Y, Hu B. Tandem mass tag-based proteomic analysis reveals cathepsin-mediated anti-autophagic and pro-apoptotic effects under proliferative diabetic retinopathy. Aging (Albany NY) 2020; 13:973-990. [PMID: 33293479 PMCID: PMC7835038 DOI: 10.18632/aging.202217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/08/2020] [Indexed: 04/20/2023]
Abstract
Proliferative diabetic retinopathy (PDR) is a severe complication of diabetes and can cause blindness. However, the available therapeutic modalities to PDR have unsatisfactory efficacies and incur adverse effects, which is due to the paucity in the understanding of pathogenic mechanisms responsible for the disease. In this study, tandem mass tag labeling technology combined with liquid chromatography and tandem mass spectrometry were utilized to identify differentially expressed proteins in vitreous humor of patients with rhegmatogenous retinal detachment and PDR. The data are available via ProteomeXchange with identifier PXD021788. Afterwards, the downregulated protein expression of Cathepsin B, D, and L was verified in vitreous and serum of another cohort. The gene expression profiling of the 3 cathepsins was confirmed in blood cells of an extra cohort. Furthermore, in high glucose (HG)-treated retinal vascular endothelial cell cultures recapitulating the cathepsin expression patterns, Cathepsin B or D downregulation mediated the HG-induced anti-autophagic and pro-apoptotic effects, thereby may contribute to vascular lesions under hyperglycemia. This study demonstrates previously undescribed expression patterns of cathepsins, reveals a novel cathepsin-involved pathogenic mechanism under PDR, and sheds light on potential therapeutic targets to this debilitating retinal disease.
Collapse
Affiliation(s)
- Rui Niu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jindan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yuwen Chang
- Hetian District People's Hospital, Xinjiang, China
| | - Jianqun Shen
- Hetian District People's Hospital, Xinjiang, China
| | - Zetong Nie
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bojie Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
15
|
Wu X, Geng F, Cheng X, Guo Q, Zhong Y, Cloughesy TF, Yong WH, Chakravarti A, Guo D. Lipid Droplets Maintain Energy Homeostasis and Glioblastoma Growth via Autophagic Release of Stored Fatty Acids. iScience 2020; 23:101569. [PMID: 33083736 PMCID: PMC7549116 DOI: 10.1016/j.isci.2020.101569] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, lipid metabolism reprogramming has been further evidenced in malignancies via the observation of large amounts of lipid droplets (LDs) in human tumors, including in glioblastoma (GBM), the most lethal primary brain tumor. However, the role played by LDs in tumor cells remains unknown. Here, we show that triglycerides (TG), the major components of LDs, serve as a critical energy reservoir to support GBM cell survival. TG/LDs rapidly diminished in GBM cells upon glucose reduction, whereas inhibiting fatty acid oxidation or autophagy resulted in the accumulation of TG/LDs and strongly potentiated GBM cell death. Immunofluorescence imaging and time-lapse videos showed that LDs are hydrolyzed by autophagy to release free fatty acids that mobilize into mitochondria for energy production. Our study demonstrates that autophagy-mediated hydrolysis of TG/LDs maintains energy homeostasis and GBM survival upon glucose reduction, suggesting that limiting TG/LDs utilization might be necessary upon treating GBM. TG/LDs function as energy reservoir for GBM tumors TG/LDs are hydrolyzed by autophagy to maintain GBM survival when glucose levels decrease TG/LD hydrolysis releases fatty acids that enter into mitochondria for energy production Inhibiting autophagy causes TG/LD accumulation and GBM cell death
Collapse
Affiliation(s)
- Xiaoning Wu
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Qiang Guo
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Timothy F Cloughesy
- Department of Neurology (Neuro-Oncology), David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine (Neuropathology), David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at the Ohio State University, Columbus, OH 43210, USA.,Center for Cancer Metabolism, James Comprehensive Cancer Center at the Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Sala V, Della Sala A, Hirsch E, Ghigo A. Signaling Pathways Underlying Anthracycline Cardiotoxicity. Antioxid Redox Signal 2020; 32:1098-1114. [PMID: 31989842 DOI: 10.1089/ars.2020.8019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: The cardiac side effects of hematological treatments are a major issue of the growing population of cancer survivors, often affecting patient survival even more than the tumor for which the treatment was initially prescribed. Among the most cardiotoxic drugs are anthracyclines (ANTs), highly potent antitumor agents, which still represent a mainstay in the treatment of hematological and solid tumors. Unfortunately, diagnosis, prevention, and treatment of cardiotoxicity are still unmet clinical needs, which call for a better understanding of the molecular mechanism behind the pathology. Recent Advances: This review article will discuss recent findings on the pathomechanisms underlying the cardiotoxicity of ANTs, spanning from DNA and mitochondrial damage to calcium homeostasis, autophagy, and apoptosis. Special emphasis will be given to the role of reactive oxygen species and their interplay with major signaling pathways. Critical Issues: Although new promising therapeutic targets and new drugs have started to be identified, their efficacy has been mainly proven in preclinical studies and requires clinical validation. Future Directions: Future studies are awaited to confirm the relevance of recently uncovered targets, as well as to identify new druggable pathways, in more clinically relevant models, including, for example, human induced pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
17
|
Cytotoxic Property of Grias neuberthii Extract on Human Colon Cancer Cells: A Crucial Role of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1565306. [PMID: 32328120 PMCID: PMC7152961 DOI: 10.1155/2020/1565306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Traditional herbal medicine has become an important alternative in the treatment of various cancer types, including colon cancer, which represents one of the main health problems around the world. Therefore, the search for new therapies to counteract this disease is very active. Grias neuberthii is an endemic plant located in the Ecuadorian Amazon region, which has been used in traditional medicine for its pharmacological properties, including its ability to inhibit tumor cell growth, although scientific studies are limited. We have analyzed the effect of this plant on two colon carcinoma cell lines, that is, RKO (normal p53) and SW613-B3 (mutated p53) cells. Among several extracts obtained from various parts of G. neuberthii plant, we identified the extract with the greatest cytotoxic potential, derived from the stem bark. The cytotoxic effect was similar on both cell lines, thus indicating that it is independent of the status of p53. However, significant differences were observed after the analysis of colony formation, with RKO cells being more sensitive than SW613-B3. No evidence for apoptotic markers was recorded; nevertheless, both cell lines showed signs of autophagy after the treatment, including increased Beclin-1 and LC3-II and decreased p62. Finally, three chemical compounds, possibly responsible for the effect observed in both cell lines, were identified: lupeol (1), 3′-O-methyl ellagic acid 4-O-β-D-rhamnopyranoside (2), and 19-α-hydroxy-asiatic acid monoglucoside (3).
Collapse
|
18
|
Xu D, Jiang X, He H, Liu D, Yang L, Chen H, Wu L, Geng G, Li Q. SIRT2 functions in aging, autophagy, and apoptosis in post-maturation bovine oocytes. Life Sci 2019; 232:116639. [PMID: 31295472 DOI: 10.1016/j.lfs.2019.116639] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 02/07/2023]
Abstract
AIMS Sirtuins have been implicated in the aging process, however, the functions of SIRT2 in post-maturation aging of oocytes are not fully understood. The purpose of the present investigation was to assess the roles of SIRT2 in aged oocytes and mechanisms involved. MAIN METHODS The fresh MII oocytes were aging in vitro, and treated with SIRT2 inhibitor (SirReal2), autophagy activator (Rapamycin), and autophagy inhibitor (3-Ma) for 24 h, respectively. Oocyte activation, cytoplasmic fragmentation, and spindle defects, mitochondrial distribution, ROS levels, ATP production, mitochondrial membrane potential, and early apoptosis were investigated. Western blotting was performed to determine LC3-II accumulation, SQSTM1 degradation, and caspase-3 activity. KEY FINDINGS SIRT2 expression gradually decreased in a time-dependent manner during oocyte aging. Treatment with SirReal2 significantly increased the rates of oocyte activation, cytoplasmic fragmentation, and spindle defects. In particular, the high ROS levels, abnormal mitochondrial distribution, low ATP production, and lost ΔΨm were observed in SirReal2-exposed oocytes. Further analysis revealed that LC3-II accumulation and SQSTM1 degradation were induced by SIRT2 inhibition. By performing early apoptosis analysis showed that oocyte aging was accompanied with cellular apoptosis, and SIRT2 inhibition increased apoptosis rates of aged oocytes. Importantly, upregulating autophagy with Rapamycin could mimic the effects of SIRT2 inhibition on apoptosis by increasing caspase-3 activation, whereas downregulating autophagy with 3-MA could abolish those effects by blocking caspase-3 activation. SIGNIFICANCE Our results suggest that SIRT2 inactivation is a key mechanism underlying of cellular aging, and SIRT2 inhibition contributes to autophagy-dependent cellular apoptosis in post-maturation oocytes.
Collapse
Affiliation(s)
- Dejun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xiaohan Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huanshan He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dingbang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huali Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lin Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guoxia Geng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|