1
|
Liu J, Gao J, Wang H, Fan X, Li L, Wang X, Wang X, Lu J, Shi X, Yang P. Acute Neurobehavioral and Glial Responses to Explosion Gas Inhalation in Rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:5099-5111. [PMID: 39092980 DOI: 10.1002/tox.24389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Military personnel, firefighters, and fire survivors exhibit a higher prevalence of mental health conditions such as depression and post-traumatic stress disorder (PTSD) compared to the general population. While numerous studies have examined the neurological impacts of physical trauma and psychological stress, research on acute neurobehavioral effects of gas inhalation from explosions or fires is limited. This study investigates the early-stage neurobehavioral and neuronal consequences of acute explosion gas inhalation in Sprague-Dawley rats. Rats were exposed to simulated explosive gas and subsequently assessed using behavioral tests and neurobiological analyses. The high-dose exposure group demonstrated significant depression-like behaviors, including reduced mobility and exploration. However, neuronal damage was not evident in histological analyses. Immunofluorescence revealed increased density of radial glia and oligodendrocytes in specific brain regions, suggesting hypoxia and axon damage induced by gas inhalation as a potential mechanism for the observed neurobehavioral changes. These findings underscore the acute impact of explosion gas inhalation on mental health, highlighting the habenula and dentate gyrus of hippocampus as the possible target regions. The findings are expected to support early diagnosis and treatment strategies for brain injuries caused by explosion gas, offering insights into early intervention for depression and PTSD in affected populations.
Collapse
Affiliation(s)
- Jinren Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiangni Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiying Wang
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Lu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xingmin Shi
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Pinglin Yang
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
2
|
Kim DS, Santana Maldonado CM, Giulivi C, Rumbeiha WK. Metabolomic Signatures of Brainstem in Mice following Acute and Subchronic Hydrogen Sulfide Exposure. Metabolites 2024; 14:53. [PMID: 38248856 PMCID: PMC10819975 DOI: 10.3390/metabo14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) is an environmental toxicant of significant health concern. The brain is a major target in acute H2S poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient H2S exposures alter the brain metabolome. Male 7-8-week-old C57BL/6J mice were exposed by whole-body inhalation to 1000 ppm H2S for 45 min and euthanized at 5 min or 72 h for acute exposure. For subchronic study, mice were exposed to 5 ppm H2S 2 h/day, 5 days/week for 5 weeks. Control mice were exposed to room air. The brainstem was removed for metabolomic analysis. Enrichment analysis showed that the metabolomic profiles in acute and subchronic H2S exposures matched with those of cerebral spinal fluid from patients with seizures or Alzheimer's disease. Acute H2S exposure decreased excitatory neurotransmitters, aspartate, and glutamate, while the inhibitory neurotransmitter, serotonin, was increased. Branched-chain amino acids and glucose were increased by acute H2S exposure. Subchronic H2S exposure within OSHA guidelines surprisingly decreased serotonin concentration. In subchronic H2S exposure, glucose was decreased, while polyunsaturated fatty acids, inosine, and hypoxanthine were increased. Collectively, these results provide important mechanistic clues for acute and subchronic ambient H2S poisoning and show that H2S alters brainstem metabolome.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Cristina M. Santana Maldonado
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
- MRI Global, Kansas City, MO 64110, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| | - Wilson Kiiza Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA; (D.-S.K.); (C.M.S.M.); (C.G.)
| |
Collapse
|
3
|
Leite G, de Freitas Germano J, Morales W, Weitsman S, Barlow GM, Parodi G, Pimentel ML, Villanueva-Millan MJ, Sanchez M, Ayyad S, Rezaie A, Mathur R, Pimentel M. Cytolethal distending toxin B inoculation leads to distinct gut microtypes and IBS-D-like microRNA-mediated gene expression changes in a rodent model. Gut Microbes 2024; 16:2293170. [PMID: 38108386 PMCID: PMC10730147 DOI: 10.1080/19490976.2023.2293170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Diarrhea-predominant irritable bowel syndrome (IBS-D), associated with increased intestinal permeability, inflammation, and small intestinal bacterial overgrowth, can be triggered by acute gastroenteritis. Cytolethal distending toxin B (CdtB) is produced by gastroenteritis-causing pathogens and may underlie IBS-D development, through molecular mimicry with vinculin. Here, we examine the effects of exposure to CdtB alone on gut microbiome composition, host intestinal gene expression, and IBS-D-like phenotypes in a rat model. CdtB-inoculated rats exhibited increased anti-CdtB levels, which correlated with increased stool wet weights, pro-inflammatory cytokines (TNFα, IL2) and predicted microbial metabolic pathways including inflammatory responses, TNF responses, and diarrhea. Three distinct ileal microbiome profiles (microtypes) were identified in CdtB-inoculated rats. The first microtype (most like controls) had altered relative abundance (RA) of genera Bifidobacterium, Lactococcus, and Rothia. The second had lower microbial diversity, higher Escherichia-Shigella RA, higher absolute E. coli abundance, and altered host ileal tissue expression of immune-response and TNF-response genes compared to controls. The third microtype had higher microbial diversity, higher RA of hydrogen sulfide (H2S)-producer Desulfovibrio, and increased expression of H2S-associated pain/serotonin response genes. All CdtB-inoculated rats exhibited decreased ileal expression of cell junction component mRNAs, including vinculin-associated proteins. Significantly, cluster-specific microRNA-mRNA interactions controlling intestinal permeability, visceral hypersensitivity/pain, and gastrointestinal motility genes, including several previously associated with IBS were seen. These findings demonstrate that exposure to CdtB toxin alone results in IBS-like phenotypes including inflammation and diarrhea-like stool, decreased expression of intestinal barrier components, and altered ileal microtypes that influenced changes in microRNA-modulated gene expression and predicted metabolic pathways consistent with specific IBS-D symptoms.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | | | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Maya L Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | | | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Sarah Ayyad
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| |
Collapse
|
4
|
Kim DS, Pessah IN, Santana CM, Purnell BS, Li R, Buchanan GF, Rumbeiha WK. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol Sci 2023; 192:kfad022. [PMID: 36882182 PMCID: PMC10109532 DOI: 10.1093/toxsci/kfad022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Cristina M Santana
- VDPAM, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
- MRIGlobal, Kansas City, Missouri 64110, USA
| | - Benton S Purnell
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
- Department of Nerosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Rui Li
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Gordon F Buchanan
- Department of Neurology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52246, USA
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
5
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Santana Maldonado CM, Kim DS, Purnell B, Li R, Buchanan GF, Smith J, Thedens DR, Gauger P, Rumbeiha WK. Acute hydrogen sulfide-induced neurochemical and morphological changes in the brainstem. Toxicology 2023; 485:153424. [PMID: 36610655 DOI: 10.1016/j.tox.2023.153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a toxin affecting the cardiovascular, respiratory, and central nervous systems. Acute H2S exposure is associated with a high rate of mortality and morbidity. The precise pathophysiology of H2S-induced death is a controversial topic; however, inhibition of the respiratory center in the brainstem is commonly cited as a cause of death. There is a knowledge gap on toxicity and toxic mechanisms of acute H2S poisoning on the brainstem, a brain region responsible for regulating many reflective and vital functions. Serotonin (5-HT), dopamine (DA), and γ-aminobutyric acid (GABA) play a role in maintaining a normal stable respiratory rhythmicity. We hypothesized that the inhibitory respiratory effects of H2S poisoning are mediated by 5-HT in the respiratory center of the brainstem. Male C57BL/6 mice were exposed once to an LCt50 concentration of H2S (1000 ppm). Batches of surviving mice were euthanized at 5 min, 2 h, 12 h, 24 h, 72 h, and on day 7 post-exposure. Pulmonary function, vigilance state, and mortality were monitored during exposure. The brainstem was analyzed for DA, 3,4-dehydroxyphenyl acetic acid (DOPAC), 5-HT, 5-hydroxyindoleatic acid (5-HIAA), norepinephrine (NE), GABA, glutamate, and glycine using HPLC. Enzymatic activities of monoamine oxidases (MAO) were also measured in the brainstem using commercial kits. Neurodegeneration was assessed using immunohistochemistry and magnetic resonance imaging. Results showed that DA and DOPAC were significantly increased at 5 min post H2S exposure. However, by 2 h DA returned to normal. Activities of MAO were significantly increased at 5 min and 2 h post-exposure. In contrast, NE was significantly decreased at 5 min and 2 h post-exposure. Glutamate was overly sensitive to H2S-induced toxicity manifesting a time-dependent concentration reduction throughout the 7 day duration of the study. Remarkably, there were no changes in 5-HT, 5-HIAA, glycine, or GABA concentrations. Cytochrome c oxidase activity was inhibited but recovered by 24 h. Neurodegeneration was observed starting at 72 h post H2S exposure in select brainstem regions. We conclude that acute H2S exposure causes differential effects on brainstem neurotransmitters. H2S also induces neurodegeneration and biochemical changes in the brainstem. Additional work is needed to fully understand the implications of both the short- and long-term effects of acute H2S poisoning on vital functions regulated by the brainstem.
Collapse
Affiliation(s)
- Cristina M Santana Maldonado
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Dong-Suk Kim
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| | - Benton Purnell
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Rui Li
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| | - Jodi Smith
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Daniel R Thedens
- Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA.
| | - Phillip Gauger
- Veterinary Diagnostic Production and Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | - Wilson K Rumbeiha
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
8
|
Liu Z, Chen L, Gao X, Zou R, Meng Q, Fu Q, Xie Y, Miao Q, Chen L, Tang X, Zhang S, Zhang H, Schroyen M. Quantitative proteomics reveals tissue-specific toxic mechanisms for acute hydrogen sulfide-induced injury of diverse organs in pig. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150365. [PMID: 34555611 DOI: 10.1016/j.scitotenv.2021.150365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is a highly toxic gas in many environmental and occupational places. It can induce multiple organ injuries particularly in lung, trachea and liver, but the relevant mechanisms remain poorly understood. In this study, we used a TMT-based discovery proteomics to identify key proteins and correlated molecular pathways involved in the pathogenesis of acute H2S-induced toxicity in porcine lung, trachea and liver tissues. Pigs were subjected to acute inhalation exposure of up to 250 ppm of H2S for 5 h for the first time. Changes in hematology and biochemical indexes, serum inflammatory cytokines and histopathology demonstrated that acute H2S exposure induced organs inflammatory injury and dysfunction in the porcine lung, trachea and liver. The proteomic data showed 51, 99 and 84 proteins that were significantly altered in lung, trachea and liver, respectively. Gene ontology (GO) annotation, KEGG pathway and protein-protein interaction (PPI) network analysis revealed that acute H2S exposure affected the three organs via different mechanisms that were relatively similar between lung and trachea. Further analysis showed that acute H2S exposure caused inflammatory damages in the porcine lung and trachea through activating complement and coagulation cascades, and regulating the hyaluronan metabolic process. Whereas antigen presentation was found in the lung but oxidative stress and cell apoptosis was observed exclusively in the trachea. In the liver, an induced dysfunction was associated with protein processing in the endoplasmic reticulum and lipid metabolism. Further validation of some H2S responsive proteins using western blotting indicated that our proteomics data were highly reliable. Collectively, these findings provide insight into toxic molecular mechanisms that could potentially be targeted for therapeutic intervention for acute H2S intoxication.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xin Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ruixia Zou
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Yanjiao Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qixiang Miao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, Gembloux 5030, Belgium
| |
Collapse
|
9
|
Fan J, Chen M, Cao S, Yao Q, Zhang X, Du S, Qu H, Cheng Y, Ma S, Zhang M, Huang Y, Zhang N, Shi K, Zhan S. Identification of a ferroptosis-related gene pair biomarker with immune infiltration landscapes in ischemic stroke: a bioinformatics-based comprehensive study. BMC Genomics 2022; 23:59. [PMID: 35033021 PMCID: PMC8761271 DOI: 10.1186/s12864-022-08295-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08295-0.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Mengying Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Qingling Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Xiaodong Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuang Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Huiyang Qu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yuxuan Cheng
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuyin Ma
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Meijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yizhou Huang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Nan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Kaili Shi
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China.
| |
Collapse
|
10
|
Wang Y, He Y, Hu X, Chi Q, Zhao B, Ye J, Li S. Regulating of LncRNA2264/miR-20b-5p/IL17RD axis on hydrogen sulfide exposure-induced inflammation in broiler thymus by activating MYD88/NF-κB pathway. Toxicology 2021; 467:153086. [PMID: 34979168 DOI: 10.1016/j.tox.2021.153086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 01/30/2023]
Abstract
Hydrogen sulfide (H2S) is an environmental pollutant. Chronic exposure to H2S can damage the immune system of birds, but the detailed mechanisms of H2S-induced thymus toxicity have not been determined. Competitive endogenous RNA (ceRNA) mechanism participates in many pathophysiological processes by regulating gene expression, including environmental pollutant-induced injury. Therefore, we investigate the specific mechanisms of ceRNA in the process of H2S-induced thymic immune damage in broiler chickens. In the current study, 120 one-day-old male Ross 308 broilers were randomly divided into two groups (n = 60 chickens/group), raising in the control chamber (0.5 ± 0.5 ppm) or H2S-exposed chamber (4.0 ± 0.5 ppm at 0-3 weeks of age and 20.0 ± 0.5 ppm at 4-6 weeks of age groups) to replicate the H2S-exposed broilers. NaHS (3 mM or 6 mM) was used to treat chicken macrophages (HD11) to establish an in vitro. Histopathology and ultrastructural changes of thymus were assessed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). Gene expression profiles were analyzed by using transcriptomics. The underlying mechanisms of thymic injury were further revealed by dual luciferase reporter gene assay, qRT-PCR and Western blotting. Research results showed that H2S exposure induced an inflammatory response in thymus, with the expression of LncRNA2264 was significantly down-regulated. LncRNA2264 could competitively bind to miR-20b-5p and caused downregulation of the IL17RD. H2S could activate inflammatory factors through the LncRNA2264/miR-20b-5p/IL17RD axis. In summary, this study suggested that LncRNA2264 acted as a miR-20b-5p molecular sponge to regulate the expression of IL17RD involved in H2S exposure-induced thymic inflammation, which has positive implications for guiding the prevention and control of H2S gas poisoning in livestock housing and ensuring animal welfare.
Collapse
Affiliation(s)
- Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jingying Ye
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|