1
|
Khongmawloh E, Koner D, Snaitang R, Saha N. Nitric oxide-mediated induction of superoxide dismutase and catalase genes, and altered expression of glutathione-dependent genes to defend against the TiO 2 NP-induced oxidative stress in primary hepatocytes of air-breathing catfish, Clarias magur. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110188. [PMID: 40068795 DOI: 10.1016/j.cbpc.2025.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 05/16/2025]
Abstract
The main objectives of the present investigation were to elucidate the possible induction of antioxidant genes under the TiO2 NP-induced oxidative stress and the potential involvement of endogenously produced nitric oxide (NO) in its antioxidant strategies in primary hepatocytes of air-breathing magur catfish (Clarias magur). As expected, exposure to TiO2 NPs led to (1) more ROS production as evidenced by a sharp rise of hydrogen peroxide (H2O2) and malonaldehyde (MDA) associated with cellular damage as evidenced by the increase of lactate dehydrogenase (LDH) leakage from hepatocytes, (2) induction of superoxide dismutase (SOD), catalase (CAT), followed by induction of different glutathione-related genes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST), and thioredoxin glutathione reductase (TGR) with the induction of activities of corresponding enzymes, and (3) more production of NO associated with induction of inducible nitric oxide synthase (iNOS) activity and its corresponding gene. However, inhibition of NO production in primary hepatocytes using certain inhibitors in the presence of TiO2 NPs, resulted in (1) more generation of H2O2 and MDA, (2) inhibition of SOD and CAT genes expression in primary hepatocytes with more leakage of LDH leakage into the culture media. Thus, it can be contemplated that stimulation NO production plays a vital role in inducing the SOD-CAT system to handle the problems associated with enhanced TiO2 NP-induced ROS production and subsequent oxidative stress in magur catfish as a unique adaptational strategy. However, the NO-mediated induction of glutathione-related antioxidant genes under TiO2 NP-induced oxidative stress is yet to be established.
Collapse
Affiliation(s)
- Elvis Khongmawloh
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
2
|
Jelinkova S, Bacova J, Rousarova E, Nyvltova P, Knotek P, Capek J, Ticha L, Rousar T. TiO 2 P25 nanoparticles induce mitochondrial damage and increased glutathione synthesis in SH-SY5Y neural cells. Food Chem Toxicol 2025; 202:115496. [PMID: 40294741 DOI: 10.1016/j.fct.2025.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
The increasing occurrence of TiO2 nanoparticles in the environment leads to a higher risk of their entry into the human body. Because the nanomaterials can cross the blood-brain barrier, the knowledge of their effect in neural cells is also crucial. However, the exact mechanism of toxicity remains unclear. Therefore, our objective was to evaluate the biological effect of TiO2 nanoparticles in neural cells. Therefore, we aimed to evaluate the biological effect of TiO2 nanoparticles in neural cells. We used neuroblastoma SH-SY5Y cells treated with 25 nm TiO2 nanoparticles (TiO2 P25; 1-100 μg·mL-1; 24-72 h). We measured dehydrogenase activity, glutathione metabolism, DNA damage and mitochondrial respiration. After treatment of SH-SY5Y cells with TiO2 P25, we found a dose- and time-dependent decrease in dehydrogenase activity together with nuclear changes. Interestingly, 100 μg·mL-1 TiO2 P25 caused a significant increase of glutathione levels (p < 0.001) linked with increased glutamate-cysteine ligase expression after both 24 and 48 h. Furthermore, as the first study at all, we observed the significant decreases of mitochondrial respiration in SH-SY5Y cells caused by treatments with 10 and 100 μg·mL-1 TiO2 P25 after 48 and 72 h. In conclusion, our study brings new finding of occurrence of decreased mitochondrial respiration without glutathione depletion in SH-SY5Y cells contributing to the understanding of TiO2 P25 toxicity in neural cells.
Collapse
Affiliation(s)
- Stepanka Jelinkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jana Bacova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Petr Knotek
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Lenka Ticha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
3
|
Manco C, Righi D, Locci S, Lucchese G, De Stefano N, Plantone D. A Systematic Review Focusing on the Link between Engineered Nanoparticles and Neurodegeneration. ACS Chem Neurosci 2025; 16:1420-1432. [PMID: 40178529 DOI: 10.1021/acschemneuro.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Engineered nanoparticles (ENPs) have widely revolutionized many fields, including medicine, technology, environmental science, and industry. However, with the wide use of ENPs in everyday life, concerns are increasingly being raised about their potential neurotoxic effects on the central nervous system (CNS), particularly in relation to neurodegeneration and neuroinflammation. The present systematic review focuses on reporting the current knowledge about the neurotoxic potential of ENPs, with particular attention to their mechanism of action in neuroinflammation and neurodegeneration. This PRISMA based systematic review encompassed studies from Pubmed, Embase, and Web of Science. Eligibility criteria included focusing on engineered NPs and their impacts on neuroinflammation, neurodegeneration, and neurotoxicity. Evidence shows that ENPs easily can cross the blood-brain barrier (BBB) inducing neuronal damage and neurotoxicity due to oxidative stress, inflammation, mitochondrial dysfunction, and cell death. Inflammation plays a crucial role in activating glial cells, such as microglia and astrocytes, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species (ROS). This increases the vulnerability of the brain to systemic inflammation. In conclusion, as ENP exposure continues to increase, understanding their long-term effects on the brain is fundamental to developing effective strategies to mitigate their impact on neuronal human health.
Collapse
Affiliation(s)
- Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guglielmo Lucchese
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
- Department of Neurology, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Yang H, Niu S, Guo M, Xue Y. Molecular mechanisms of silver nanoparticle-induced neurotoxic injury and new perspectives for its neurotoxicity studies: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124934. [PMID: 39260546 DOI: 10.1016/j.envpol.2024.124934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Silver nanoparticles (AgNPs) garnered significant attention and applications in the field of nanotechnology due to their unique physicochemical properties. However, with the increasing exposure of AgNPs in the environment and biological systems, concerns about their potential neurotoxicity have also risen. Recent studies on the neurotoxic effects and mechanisms of AgNPs have often relied on traditional toxicological research methods and perspectives. This reliance has limited the extrapolation of these findings to the human brain environment and hindered a deep understanding of the neurotoxicity of AgNPs. This review first outlines the molecular mechanisms of AgNPs-induced neurotoxic injury from a traditional research perspective, identifying oxidative stress, inflammatory responses, and autophagy disorders as key areas of current research. Related molecular signaling pathways, including the nuclear transcription factor-κB (NF-κB) signaling pathway, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the calcium signaling pathway, have been implicated in the neurotoxic injury process induced by AgNPs. Subsequently, we elucidated the unique advantages of the 3D brain organoids applied to the neurotoxicity study of AgNPs by drawing on relevant studies in the same field. We also emphasize that establishing a standardized 3D brain organoids construction platform is a crucial prerequisite for its widespread application. Furthermore, we suggest that future studies should explore the neurotoxicity mechanisms of AgNPs through the lenses of "adaptive homeostasis" and "structure-activity relationship analysis". In conclusion, the neurotoxicity of AgNPs should be comprehensively evaluated by integrating new research techniques and perspectives, ultimately allowing these nanoparticles to better serve human society.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Carrillo-Lopez LM, Villanueva-Verduzco C, Villanueva-Sánchez E, Fajardo-Franco ML, Aguilar-Tlatelpa M, Ventura-Aguilar RI, Soto-Hernández RM. Nanomaterials for Plant Disease Diagnosis and Treatment: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2634. [PMID: 39339607 PMCID: PMC11434773 DOI: 10.3390/plants13182634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Currently, the excessive use of pesticides has generated environmental pollution and harmful effects on human health. The controlled release of active ingredients through the use of nanomaterials (NMs) appears to reduce human exposure and ecosystem alteration. Although the use of NMs can offer an alternative to traditional methods of disease diagnosis and control, it is necessary to review the current approach to the application of these NMs. This review describes the most recent and significant advances in using NMs for diagnosing and treating plant diseases (bacteria, phytopathogenic fungi, viruses, and phytopathogenic nematodes) in cultivated plants. Most studies have focused on reducing, delaying, or eliminating bacteria, fungi, viruses, and nematodes in plants. Both metallic (including metal oxides) and organic nanoparticles (NPs) and composites are widely used in diagnosing and controlling plant diseases due to their biocompatibility and ease of synthesis. Few studies have been carried out with regard to carbon-based NPs due to their toxicity, so future studies should address the development of detection tools, ecological and economic impacts, and human health. The synergistic effect of NMs as fertilizers and pesticides opens new areas of knowledge on the mechanisms of action (plant-pathogen-NMs interaction), the interaction of NMs with nutrients, the effects on plant metabolism, and the traceability of NMs to implement sustainable approaches. More studies are needed involving in vivo models under international regulations to ensure their safety. There is still controversy in the release of NMs into the environment because they could threaten the stability and functioning of biological systems, so research in this area needs to be improved.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Botánica, Colegio de Postgraduados Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Clemente Villanueva-Verduzco
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Evert Villanueva-Sánchez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Marja L Fajardo-Franco
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Martín Aguilar-Tlatelpa
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Rosa I Ventura-Aguilar
- CONAHCYT-Recursos Genéticos y Productividad-Fruticultura, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Ramón Marcos Soto-Hernández
- Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| |
Collapse
|
7
|
Marecki EK, Oh KW, Knight PR, Davidson BA. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. BIOMICROFLUIDICS 2024; 18:051503. [PMID: 39296325 PMCID: PMC11410388 DOI: 10.1063/5.0201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Nanoparticles can be used for drug delivery and consist of many sizes and chemical compositions. They can accommodate a diverse population of drugs and can be made to target specific areas of the body. Fabrication methods generally follow either top-down or bottom-up manufacturing techniques, which have differing production controls, which determine nanoparticle characteristics including but not limited to size and encapsulation efficiency. Functionalizing these nanoparticles is done to add drugs, prevent aggregation, add positive charge, add targeting, etc. As the nanoparticles reach the target cells, cellular uptake occurs, drug is released, and the nanoparticle is broken down. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles have often been used for drug delivery applications as they have shown minimal toxicity, which has helped with US FDA approval. This review breaks down PLGA nanoparticle fabrication, functionalization, and biological considerations.
Collapse
Affiliation(s)
| | | | - Paul R Knight
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Bruce A Davidson
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
8
|
Khan SS, Kour D, Kaur T, Sharma A, Kumar S, Kumari S, Ramniwas S, Singh S, Negi R, Sharma B, Devi T, Kumari C, Kour H, Kaur M, Rai AK, Singh S, Rasool S, Yadav AN. Microbial Nanotechnology for Precision Nanobiosynthesis: Innovations, Current Opportunities and Future Perspectives for Industrial Sustainability. Curr Microbiol 2024; 81:251. [PMID: 38954017 DOI: 10.1007/s00284-024-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
Collapse
Affiliation(s)
- Sofia Sharief Khan
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Anjali Sharma
- Department of Biotechnology and Genetics, Jain University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sanjeev Kumar
- Department of Genetics and Plant Breeding, Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Physics, Rayat Bahra University, Mohali, 140105, Punjab, India
| | - Seema Ramniwas
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Shaveta Singh
- Dolphin PG College of Life Sciences, Chunni Kalan, Fatehgarh Sahib, Punjab, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India
| | - Tishu Devi
- Government College for Women, Parade, Jammu, Jammu and Kashmir, India
| | - Chandresh Kumari
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Vill-Bhajhol, Solan, 173229, Himachal Pradesh, India
| | - Harpreet Kour
- Department of Botany, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manpreet Kaur
- Department of Physics, IEC University, Baddi, Solan, 174103, Himachal Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, India
| | - Shafaq Rasool
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, Jammu and Kashmir, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, Himachal Pradesh, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| |
Collapse
|
9
|
Liu M, Ding R, Li Z, Xu N, Gong Y, Huang Y, Jia J, Du H, Yu Y, Luo G. Hyaluronidase-Responsive Bactericidal Cryogel for Promoting Healing of Infected Wounds: Inflammatory Attenuation, ROS Scavenging, and Immune Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306602. [PMID: 38350733 PMCID: PMC11077649 DOI: 10.1002/advs.202306602] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Wounds infected with multidrug-resistant (MDR) bacteria are increasingly threatening public health and challenging clinical treatments because of intensive bacterial colonization, excessive inflammatory responses, and superabundant oxidative stress. To overcome this malignant burden and promote wound healing, a multifunctional cryogel (HA/TA2/KR2) composed of hyaluronic acid (HA), tannic acid (TA), and KR-12 peptides is designed. The cryogel exhibited excellent shape-memory properties, strong absorption performance, and hemostatic capacity. In vitro experiments demonstrated that KR-12 in the cryogel can be responsively released by stimulation with hyaluronidase produced by bacteria, reaching robust antibacterial activity against Escherichia coli (E. coli), MDR Pseudomonas aeruginosa (MDR-PA), and methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial cell membranes. Furthermore, the synergetic effect of KR-12 and TA can efficiently scavenge ROS and decrease expression of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α & interleukin (IL)-6), as well as modulate the macrophage phenotype toward the M2 type. In vivo animal tests indicated that the cryogel can effectively destroy bacteria in the wound and promote healing process via accelerating angiogenesis and re-epithelialization. Proteomic analysis revealed the underlying mechanism by which the cryogel mainly reshaped the infected wound microenvironment by inhibiting the Nuclear factor kappa B (NF-κB) signaling pathway and activating the Janus kinase-Signal transducer and activator of transcription (JAK-STAT6) signaling pathway. Therefore, the HA/TA2/KR2 cryogel is a promising dressing candidate for MDR bacteria-infected wound healing.
Collapse
Affiliation(s)
- Menglong Liu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Rui Ding
- College of Chemical Engineering and TechnologyTaiyuan University of TechnologyYingze West Street 79Taiyuan030024China
| | - Zheng Li
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Na Xu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Yali Gong
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Yong Huang
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Jiezhi Jia
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Haiyan Du
- College of Chemical Engineering and TechnologyTaiyuan University of TechnologyYingze West Street 79Taiyuan030024China
| | - Yunlong Yu
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of TraumaBurns and Combined InjurySouthwest HospitalThird Military Medical University (Army Medical University)Gaotanyan Street, Shapingba DistrictChongqing400038China
| |
Collapse
|
10
|
Nance E. Intracerebral fate of engineered nanoparticles. NATURE NANOTECHNOLOGY 2024; 19:273-274. [PMID: 38158437 DOI: 10.1038/s41565-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
|
11
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
12
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
Rothpan M, Chandra Teja Dadi N, McKay G, Tanzer M, Nguyen D, Hart A, Tabrizian M. Titanium-Dioxide-Nanoparticle-Embedded Polyelectrolyte Multilayer as an Osteoconductive and Antimicrobial Surface Coating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7026. [PMID: 37959623 PMCID: PMC10649639 DOI: 10.3390/ma16217026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Bioactive surface coatings have retained the attention of researchers and physicians due to their versatility and range of applications in orthopedics, particularly in infection prevention. Antibacterial metal nanoparticles (mNPs) are a promising therapeutic, with vast application opportunities on orthopedic implants. The current research aimed to construct a polyelectrolyte multilayer on a highly porous titanium implant using alternating thin film coatings of chitosan and alginate via the layer-by-layer (LbL) self-assembly technique, along with the incorporation of silver nanoparticles (AgNPs) or titanium dioxide nanoparticles (TiO2NPs), for antibacterial and osteoconductive activity. These mNPs were characterized for their physicochemical properties using quartz crystal microgravimetry with a dissipation system, nanoparticle tracking analysis, scanning electron microscopy, and atomic force microscopy. Their cytotoxicity and osteogenic differentiation capabilities were assessed using AlamarBlue and alkaline phosphatase (ALP) activity assays, respectively. The antibiofilm efficacy of the mNPs was tested against Staphylococcus aureus. The LbL polyelectrolyte coating was successfully applied to the porous titanium substrate. A dose-dependent relationship between nanoparticle concentration and ALP as well as antibacterial effects was observed. TiO2NP samples were also less cytotoxic than their AgNP counterparts, although similarly antimicrobial. Together, these data serve as a proof-of-concept for a novel coating approach for orthopedic implants with antimicrobial and osteoconductive properties.
Collapse
Affiliation(s)
- Matthew Rothpan
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B6, Canada;
| | - Nitin Chandra Teja Dadi
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (G.M.); (D.N.)
| | - Michael Tanzer
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (G.M.); (D.N.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A OG4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Adam Hart
- Jo Miller Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada; (N.C.T.D.); (M.T.)
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B6, Canada;
- Faculty of Dentistry and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
14
|
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023; 23:1059. [PMID: 37268899 PMCID: PMC10239112 DOI: 10.1186/s12889-023-15958-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Use of nanoparticles have established benefits in a wide range of applications, however, the effects of exposure to nanoparticles on health and the environmental risks associated with the production and use of nanoparticles are less well-established. The present study addresses this gap in knowledge by examining, through a scoping review of the current literature, the effects of nanoparticles on human health and the environment. We searched relevant databases including Medline, Web of Science, ScienceDirect, Scopus, CINAHL, Embase, and SAGE journals, as well as Google, Google Scholar, and grey literature from June 2021 to July 2021. After removing duplicate articles, the title and abstracts of 1495 articles were first screened followed by the full-texts of 249 studies, and this resulted in the inclusion of 117 studies in the presented review.In this contribution we conclude that while nanoparticles offer distinct benefits in a range of applications, they pose significant threats to humans and the environment. Using several biological models and biomarkers, the included studies revealed the toxic effects of nanoparticles (mainly zinc oxide, silicon dioxide, titanium dioxide, silver, and carbon nanotubes) to include cell death, production of oxidative stress, DNA damage, apoptosis, and induction of inflammatory responses. Most of the included studies (65.81%) investigated inorganic-based nanoparticles. In terms of biomarkers, most studies (76.9%) used immortalised cell lines, whiles 18.8% used primary cells as the biomarker for assessing human health effect of nanoparticles. Biomarkers that were used for assessing environmental impact of nanoparticles included soil samples and soybean seeds, zebrafish larvae, fish, and Daphnia magna neonates.From the studies included in this work the United States recorded the highest number of publications (n = 30, 25.64%), followed by China, India, and Saudi Arabia recording the same number of publications (n = 8 each), with 95.75% of the studies published from the year 2009. The majority of the included studies (93.16%) assessed impact of nanoparticles on human health, and 95.7% used experimental study design. This shows a clear gap exists in examining the impact of nanoparticles on the environment.
Collapse
Affiliation(s)
- Elizabeth Adjoa Kumah
- Depeartment of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Raoul Djou Fopa
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Saeed Harati
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Paul Boadu
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tannaz Pak
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK.
| |
Collapse
|
15
|
Miu BA, Voinea IC, Diamandescu L, Dinischiotu A. MRC-5 Human Lung Fibroblasts Alleviate the Genotoxic Effect of Fe-N Co-Doped Titanium Dioxide Nanoparticles through an OGG1/2-Dependent Reparatory Mechanism. Int J Mol Sci 2023; 24:ijms24076401. [PMID: 37047374 PMCID: PMC10094865 DOI: 10.3390/ijms24076401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fibroblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase 1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.
Collapse
|
16
|
Li X, Peng L, Cai Y, He F, Zhou Q, Shi D. Potential Threat of Lead Oxide Nanoparticles for Food Crops: Comprehensive Understanding of the Impacts of Different Nanosized PbO x ( x = 1, 2) on Maize ( Zea mays L.) Seedlings In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4235-4248. [PMID: 36854048 DOI: 10.1021/acs.jafc.2c06843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PbOx (PbO2 and PbO, x = 1, 2) nanoparticles are emerging contaminants in dust, soil, and water due to extensive application of commercial lead products. As far as we know, the current studies are first conducted to understand the phytotoxic effects of PbO2 (10 ± 3 nm) and PbO NPs (20 ± 5 nm) on maize (Zea mays L.) grown in hydroponic treatments. The exposure assays indicated that phytotoxic effects were dose- and size-dependent on PbOx NPs. Water uptake would be the crucial mechanism to govern the effects of PbOx on maize seed germination and root elongation, while the nanosize of particles and water transpiration processes would control maize growth and biomass production. PbOx NPs significantly influenced the macro- and micronutrients in roots and shoots of maize and significantly affected the maize growth and grain development. Our findings provide clear-cut evidence that PbO/PbO2 NPs can bioaccumulate in maize cell organelles via apoplastic and symplastic routes from the seed and root pathways along with water uptake and transportation. The significance of this research elucidates the impacts of PbO/PbO2 NPs on food security and indicates the threat of emerging PbO/PbO2 NPs to human dietary health.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
- Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Liyuan Peng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yue Cai
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Feng He
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Danqian Shi
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
17
|
Huang T, Wu J, Mu J, Gao J. Advanced Therapies for Traumatic Central Nervous System Injury: Delivery Strategy Reinforced Efficient Microglial Manipulation. Mol Pharm 2023; 20:41-56. [PMID: 36469398 DOI: 10.1021/acs.molpharmaceut.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traumatic central nervous system (CNS) injuries, including spinal cord injury and traumatic brain injury, are challenging enemies of human health. Microglia, the main component of the innate immune system in CNS, can be activated postinjury and are key participants in the pathological procedure and development of CNS trauma. Activated microglia can be typically classified into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. Reducing M1 polarization while promoting M2 polarization is thought to be promising for CNS injury treatment. However, obstacles such as the low permeability of the blood-brain barrier and short retention time in circulation limit the therapeutic outcomes of administrated drugs, and rational delivery strategies are necessary for efficient microglial regulation. To this end, proper administration methods and delivery systems like nano/microcarriers and scaffolds are investigated to augment the therapeutic effects of drugs, while some of these delivery systems have self-efficacies in microglial manipulation. Besides, systems based on cell and cell-derived exosomes also show impressive effects, and some underlying targeting mechanisms of these delivery systems have been discovered. In this review, we introduce the roles of microglia play in traumatic CNS injuries, discuss the potential targets for the polarization regulation of microglial phenotype, and summarize recent studies and clinical trials about delivery strategies on enhancing the effect of microglial regulation and therapeutic outcome, as well as targeting mechanisms post CNS trauma.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer, Pharmacology and Toxicology Research of Zhejiang Province, Affiliated, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Jinhua Institute of Zhejiang University, Jinhua 321002, China
| |
Collapse
|
18
|
Zhai X, Shan S, Wan J, Tian H, Wang J, Xin L. Silver Nanoparticles Induce a Size-dependent Neurotoxicity to SH-SY5Y Neuroblastoma Cells via Ferritinophagy-mediated Oxidative Stress. Neurotox Res 2022; 40:1369-1379. [PMID: 36040578 DOI: 10.1007/s12640-022-00570-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in a variety of consumer products because of their antibacterial and antifungal characteristics, but little is known about their toxicity to the brain. In this study, we investigated AgNP-induced neurotoxicity using the human neuroblastoma cancer (SH-SY5Y) cell line. After a 24 h treatment of AgNPs with two primary sizes (5 and 50 nm labeled as Ag-5 and Ag-50, respectively), a series of toxicological endpoints including cell viability, expression of proteins and genes in amyloid precursor protein (APP) amyloid hydrolysis process and ferritinophagy signaling pathways, oxidative stress, intracellular iron levels, and molecular regulators of iron metabolism were evaluated. Our results showed that both Ag-5 and Ag-50 induced notable neurotoxic effects on SH-SY5Y cells indicated by cell proliferation inhibition, increased BACE1 protein expression, and decreased APP and ADAM10 gene expression. Activation of nuclear receptor coactivator 4-mediated ferritinophagy and blockade of autophagic flux were induced by AgNPs, accompanied by intracellular iron accumulation and overexpression of divalent metal-ion transporter-1 and ferroportin1 in SH-SY5Y cells. In addition, AgNPs significantly decreased glutathione peroxidase 4 protein expression but increased malondialdehyde concentration, suggesting that AgNP-induced iron accumulation may trigger oxidative stress by disruption of the intracellular oxidant and antioxidant systems. In addition, compared with Ag-50, Ag-5 with higher cellular uptake efficiency caused more detrimental effects on SH-SY5Y cells. In conclusion, our findings demonstrated a size-dependent neurotoxicity in SH-SY5Y cells by AgNPs via ferritinophagy-mediated oxidative stress.
Collapse
Affiliation(s)
- Xuedi Zhai
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Shan Shan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Jianmei Wan
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Hailin Tian
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, 215004, China.
| | - Lili Xin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
19
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
20
|
O'Sullivan J, Muñoz-Muñoz J, Turnbull G, Sim N, Penny S, Moschos S. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv 2022; 12:20432-20446. [PMID: 35919168 PMCID: PMC9281799 DOI: 10.1039/d2ra01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic Acid Therapeutics (NATs) are establishing a leading role for the management and treatment of genetic diseases following FDA approval of nusinersen, patisiran, and givosiran in the last 5 years, the breakthrough of milasen, with more approvals undoubtedly on the way. Givosiran takes advantage of the known interaction between the hepatocyte specific asialoglycoprotein receptor (ASGPR) and N-acetyl galactosamine (GalNAc) ligands to deliver a therapeutic effect, underscoring the value of targeting moieties. In this review, we explore the history of GalNAc as a ligand, and the paradigm it has set for the delivery of NATs through precise targeting to the liver, overcoming common hindrances faced with this type of therapy. We describe various complex oligosaccharides (OSs) and ask what others could be used to target receptors for NAT delivery and the opportunities awaiting exploration of this chemical space.
Collapse
Affiliation(s)
- Joseph O'Sullivan
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Jose Muñoz-Muñoz
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Graeme Turnbull
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Neil Sim
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Stuart Penny
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Sterghios Moschos
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| |
Collapse
|
21
|
Li L, Dong R, Liu T, Yang Y, Chang H, Meng X, Deng Y, Wang Q, Zhao Y, Song G, Hu Y. Nano-titanium dioxide exposure and autophagy: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Tao Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, PR China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| |
Collapse
|
22
|
Wei F, Yang A, Zhao Z, An H, Li Y, Duan Y. Mechanism of ER Stress-mediated ER-phagy by CdTe-QDs in Yeast Cells. Toxicol Lett 2022; 365:36-45. [DOI: 10.1016/j.toxlet.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
|
23
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
24
|
Wei F, Xie Q, Huang Z, Yang A, Duan Y. Induction of autophagy and ER-phagy caused by CdTe-QDs are protective mechanisms of yeast cell. J Appl Toxicol 2022; 42:1146-1158. [PMID: 34989008 DOI: 10.1002/jat.4282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Quantum dots (QDs), with unique and tunable optical properties, have been are widely used in many fields closely related to our daily lives, such as biomedical application and electronic products. Therefore, the potential toxicity of QDs on the human health should be understood. Autophagy plays an important role in cell survival and death. Endoplasmic reticulum autophagy (ER-phagy), a selective autophagy that degrades ER, responds to the accumulation of misfolded proteins and ER stress. Although many reports have revealed that autophagy can be disturbed by CdTe-QDs and other nanomaterials, there are still lack more detail researches to illustrate the function of autophagy in CdTe-QDs treated cells. And the function of ER-phagy in CdTe-QDs-treated cells remains to be illustrated. On the basis of transcriptome analysis, we explored the effect of CdTe-QDs on Saccharomyces cerevisiae, and firstly illustrated that both of autophagy and ER-phagy were protective mechanisms in CdTe-QDs-treated cells. It was found that CdTe-QDs inhibited the proliferation of yeast cells, disrupted homeostasis of cells, membrane integrity and metabolism process. All of these can be reasons of the reduction of cell viability. The abolish of autophagy and ER-phagy reduce the cell survival, indicating both of them are cell protective mechanisms against CdTe-QDs toxicity in yeast cells. Therefore, our data are significant for the application of CdTe-QDs and provide precious information for understanding of nanomaterials-related ER-phagy.
Collapse
Affiliation(s)
- Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China.,School of Life Sciences, Chongqing University, Chongqing, China
| | - Qiyue Xie
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shanxi, PR China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
25
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Xu P, Cao M, Dong X, Yu Z, Liu J, Tan J, Wang Y, Li T, Zhao S. Nanosized copper particles induced mesangial cell toxicity via the autophagy pathway. Braz J Med Biol Res 2022; 55:e12252. [DOI: 10.1590/1414-431x2022e12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, China
| | - Min Cao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xueqian Dong
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhichao Yu
- Tianjin Sino-German University of Applied Sciences, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, China
| | - Junzhen Tan
- Tianjin University of Traditional Chinese Medicine, China
| | | | - Tao Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Shuwu Zhao
- Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
27
|
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149584. [PMID: 34399324 DOI: 10.1016/j.scitotenv.2021.149584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
28
|
Ahmed T, Noman M, Manzoor N, Ali S, Rizwan M, Ijaz M, Allemailem KS, BinShaya AS, Alhumaydhi FA, Li B. Recent advances in nanoparticles associated ecological harms and their biodegradation: Global environmental safety from nano-invaders. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106093. [DOI: 10.1016/j.jece.2021.106093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
29
|
Sharma HS, Lafuente JV, Muresanu DF, Sahib S, Tian ZR, Menon PK, Castellani RJ, Nozari A, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Neuroprotective effects of insulin like growth factor-1 on engineered metal nanoparticles Ag, Cu and Al induced blood-brain barrier breakdown, edema formation, oxidative stress, upregulation of neuronal nitric oxide synthase and brain pathology. PROGRESS IN BRAIN RESEARCH 2021; 266:97-121. [PMID: 34689867 DOI: 10.1016/bs.pbr.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are vulnerable to environmental or industrial exposure of engineered nanoparticles (NPs) from metals. Long-term exposure of NPs from various sources affect sensory-motor or cognitive brain functions. Thus, a possibility exists that chronic exposure of NPs affect blood-brain barrier (BBB) breakdown and brain pathology by inducing oxidative stress and/or nitric oxide production. This hypothesis was examined in the rat intoxicated with Ag, Cu or Al (50-60nm) nanoparticles (50mg/kg, i.p. once daily) for 7 days. In these NPs treated rats the BBB permeability, brain edema, neuronal nitric oxide synthase (nNOS) immunoreactivity and brain oxidants levels, e.g., myeloperoxidase (MP), malondialdehyde (MD) and glutathione (GT) was examined on the 8th day. Cu and Ag but not Al nanoparticles increased the MP and MD levels by twofold in the brain although, GT showed 50% decline. At this time increase in brain water content and BBB breakdown to protein tracers were seen in areas exhibiting nNOS positive neurons and cell injuries. Pretreatment with insulin like growth factor-1 (IGF-1) in high doses (1μg/kg, i.v. but not 0.5μg/kg daily for 7 days) together with NPs significantly reduced the oxidative stress, nNOS upregulation, BBB breakdown, edema formation and cell injuries. These novel observations demonstrate that (i) NPs depending on their metal constituent (Cu, Ag but not Al) induce oxidative stress and nNOS expression leading to BBB disruption, brain edema and cell damage, and (ii) IGF-1 depending on doses exerts powerful neuroprotection against nanoneurotoxicity, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Bhattarai SR, Saudi S, Khanal S, Aravamudhan S, Rorie CJ, Bhattarai N. Electrodynamic assisted self-assembled fibrous hydrogel microcapsules: a novel 3D in vitro platform for assessment of nanoparticle toxicity. RSC Adv 2021; 11:4921-4934. [PMID: 35424445 PMCID: PMC8694512 DOI: 10.1039/d0ra09189h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle (NP) toxicity assessment is a critical step in assessing the health impacts of NP exposure to both consumers and occupational workers. In vitro assessment models comprising cells cultured in a two-dimensional tissue culture plate (2D-TCP) are an efficient and cost-effective choice for estimating the safety risks of NPs. However, in vitro culture of cells in 2D-TCPs distorts cell–integrin and cell–cell interactions and is not able to replicate an in vivo phenotype. Three-dimensional (3D) in vitro platforms provide a unique alternative to bridge the gap between traditional 2D in vitro and in vivo models. In this study, novel microcapsules of alginate hydrogel incorporated with natural polymeric nanofibers (chitin nanofibrils) and synthetic polymeric nanofibers poly(lactide-co-glycolide) are designed as a 3D in vitro platform. This study demonstrates for the first time that electrodynamic assisted self-assembled fibrous 3D hydrogel (3D-SAF hydrogel) microcapsules with a size in the range of 300–500 μm in diameter with a Young's modulus of 12.7–42 kPa can be obtained by varying the amount of nanofibers in the hydrogel precursor solutions. The 3D-SAF microcapsules were found to mimic the in vivo cellular microenvironment for cells to grow, as evaluated using A549 cells. Higher cellular spreading and prolonged proliferation of A549 cells were observed in 3D-SAF microcapsules compared to control microcapsules without the nanofibers. The 3D-SAF microcapsule integrated well plate was used to assess the toxicity of model NPs, e.g., Al2O3 and ZnO. The toxicity levels of the model NPs were found to be dependent on the chemistry of the NPs and their physical agglomeration in the test media. Our results demonstrate that 3D-SAF microcapsules with an in vivo mimicking microenvironment can be developed as a physiologically relevant platform for high-throughput toxicity screening of NPs or pharmaceutical drugs. Electrohydrodynamic-assisted fabrication of novel nano-net-nanofibrous 3D-SAF hydrogel microcapsules leads to them having tunable mechanical and cell adhesive properties that are applicable to diverse biomedical fields.![]()
Collapse
Affiliation(s)
- Shanta R. Bhattarai
- Department of Biology
- North Carolina A&T State University
- Greensboro
- USA
- Department of Biological Science
| | - Sheikh Saudi
- Department of Nanoengineering
- Joint School of Nanoscience and Nanoengineering
- North Carolina A&T State University
- Greensboro
- USA
| | - Shalil Khanal
- Department of Applied Science and Technology
- North Carolina A&T State University
- Greensboro
- USA
| | - Shyam Aravamudhan
- Department of Nanoengineering
- Joint School of Nanoscience and Nanoengineering
- North Carolina A&T State University
- Greensboro
- USA
| | - Checo J. Rorie
- Department of Biology
- North Carolina A&T State University
- Greensboro
- USA
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering
- North Carolina A & T State University
- Greensboro
- USA
| |
Collapse
|
31
|
Martínez G, Merinero M, Pérez-Aranda M, Pérez-Soriano EM, Ortiz T, Begines B, Alcudia A. Environmental Impact of Nanoparticles' Application as an Emerging Technology: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E166. [PMID: 33396469 PMCID: PMC7795427 DOI: 10.3390/ma14010166] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
The unique properties that nanoparticles exhibit, due to their small size, are the principal reason for their numerous applications, but at the same time, this might be a massive menace to the environment. The number of studies that assess the possible ecotoxicity of nanomaterials has been increasing over the last decade to determine if, despite the positive aspects, they should be considered a potential health risk. To evaluate their potential toxicity, models are used in all types of organisms, from unicellular bacteria to complex animal species. In order to better understand the environmental consequences of nanotechnology, this literature review aims to describe and classify nanoparticles, evaluating their life cycle, their environmental releasing capacity and the type of impact, particularly on living beings, highlighting the need to develop more severe and detailed legislation. Due to their diversity, nanoparticles will be discussed in generic terms focusing on the impact of a great variety of them, highlighting the most interesting ones for the industry.
Collapse
Affiliation(s)
- Guillermo Martínez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Manuel Merinero
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - María Pérez-Aranda
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Eva María Pérez-Soriano
- Department of Materials Science and Engineering and Transport, Escuela Politécnica Superior, University of Seville, 41011 Seville, Spain;
| | - Tamara Ortiz
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, 41009 Seville, Spain;
| | - Belén Begines
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| | - Ana Alcudia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/Profesor García González, 2, 41012 Seville, Spain; (G.M.); (M.M.); (P.-A.M.)
| |
Collapse
|
32
|
Nalci OB, Nadaroglu H, Genc S, Hacimuftuoglu A, Alayli A. The effects of MgS nanoparticles-Cisplatin-bio-conjugate on SH-SY5Y neuroblastoma cell line. Mol Biol Rep 2020; 47:9715-9723. [PMID: 33191478 DOI: 10.1007/s11033-020-05987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Magnesium sulfide nanoparticles (MgS NPs) is a nanomaterial that has an important place in diagnosis, treatment, diagnosis, and drug delivery systems. Neuroblastoma, a type of brain cancer, is an extremely difficult cancer to treat with today's treatment options. This study was carried out to determine the cytotoxic, oxidant, and antioxidant effects on the neuroblastoma cancer line (SH-SY5Y cell line) along with the green synthesis and characterization of MgS NPs structures. MgS NPs were synthesized by green synthesis using Na2S and Punica granatum, a cleaner method for toxic effects, and characterized using Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, X-Ray diffraction methods. In cell culture, SH-SY5Y cells were grown in a suitable nutrient medium under favorable conditions. Five different doses of MgS NPs (10, 25, 50, 75, and 100 µg/mL) were applied to the cell line for 24 h. The analysis of the MgS NPs applications was performed with MTT cytotoxicity test and total oxidant and total antioxidant tests. According to the data obtained, 75 μg/mL MgS NPs application decreased cancer cell viability up to 48.54%. MgS NPs exhibited a dose-dependent effect on the SH-SY5Y cell line. Also, it was determined that MgS NPs increased oxidant activity in neuroblastoma cells, which was compatible with the cytotoxicity test. As a result, MgS NPs exhibited an effective activity on the neuroblastoma cell line. It was clearly seen that NPs obtained by green synthesis prevented the related cancer line from proliferating.
Collapse
Affiliation(s)
- Ozge Balpinar Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Erzurum Vocational College, Ataturk University, 25240, Erzurum, Turkey. .,Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, 25240, Erzurum, Turkey.
| | - Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Azize Alayli
- Department of Nursing, Faculty of Health Sciences, Sakarya University of Applied Sciences, 54187, Sakarya, Turkey
| |
Collapse
|
33
|
Ertugrul MS, Nadaroglu H, Nalci OB, Hacimuftuoglu A, Alayli A. Preparation of CoS nanoparticles-cisplatin bio-conjugates and investigation of their effects on SH-SY5Y neuroblastoma cell line. Cytotechnology 2020; 72:10.1007/s10616-020-00432-5. [PMID: 33095405 PMCID: PMC7695799 DOI: 10.1007/s10616-020-00432-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 μg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 μg/mL + CoS 75 μg/mL.
Collapse
Affiliation(s)
- Muhammed Sait Ertugrul
- Department of Pharmacology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, 25240, Erzurum, Turkey.
| | - Ozge Balpinar Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Azize Alayli
- Department of Nursing, Faculty of Health Sciences, Sakarya University of Applied Sciences, 54187, Sakarya, Turkey
| |
Collapse
|
34
|
Lojk J, Babič L, Sušjan P, Bregar VB, Pavlin M, Hafner-Bratkovič I, Veranič P. Analysis of the Direct and Indirect Effects of Nanoparticle Exposure on Microglial and Neuronal Cells In Vitro. Int J Mol Sci 2020; 21:E7030. [PMID: 32987760 PMCID: PMC7582992 DOI: 10.3390/ijms21197030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022] Open
Abstract
Environmental or biomedical exposure to nanoparticles (NPs) can results in translocation and accumulation of NPs in the brain, which can lead to health-related problems. NPs have been shown to induce toxicity to neuronal cells through several direct mechanisms, but only a few studies have also explored the indirect effects of NPs, through consequences due to the exposure of neighboring cells to NPs. In this study, we analysed possible direct and indirect effects of NPs (polyacrylic acid (PAA) coated cobalt ferrite NP, TiO2 P25 and maghemite NPs) on immortalized mouse microglial cells and differentiated CAD mouse neuronal cells in monoculture (direct toxicity) or in transwell co-culture system (indirect toxicity). We showed that although the low NP concentrations (2-25 µg/mL) did not induce changes in cell viability, cytokine secretion or NF-κB activation of microglial cells, even low NP concentrations of 10 µg/mL can affect the cells and change their secretion of protein stress mediators. These can in turn influence neuronal cells in indirect exposure model. Indirect toxicity of NPs is an important and not adequately assessed mechanism of NP toxicity, since it not only affects cells on the exposure sites, but through secretion of signaling mediators, can also affect cells that do not come in direct contact with NPs.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lea Babič
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
| | - Petra Sušjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000 Ljubljana, Slovenia; (L.B.); (V.B.B.); (M.P.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia; (P.S.); (I.H.-B.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| |
Collapse
|
35
|
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y. Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002019. [PMID: 32761797 DOI: 10.1002/smll.202002019] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano-TiO2 on human and environmental health is provided. A meta-analysis is conducted to analyze the toxicity of nano-TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano-TiO2 , aquatic environments that receive high nano-TiO2 inputs are focused on, and the toxicity of nano-TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano-TiO2 toxicity. Furthermore, nano-TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano-TiO2 toxicity is manifested as the negative effects on fitness-related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano-TiO2 on humans and non-target organisms has emerged as an underexplored topic requiring further investigation.
Collapse
Affiliation(s)
- Zhen Luo
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, 18051, Germany
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, RA, 2300, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
36
|
Park SB, Jung WH, Kim KY, Koh B. Toxicity Assessment of SiO 2 and TiO 2 in Normal Colon Cells, In Vivo and in Human Colon Organoids. Molecules 2020; 25:molecules25163594. [PMID: 32784677 PMCID: PMC7464288 DOI: 10.3390/molecules25163594] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
We conducted systemic assessments on the toxicity of silicon dioxide (SiO2) and titanium dioxide (TiO2) nanoparticles using different forms of normal colon cells (CCD-18Co), in vivo and in human colon organoids. The in vivo acute oral toxicity data showed that the LD50 values are greater than 2000 mg/kg for both the SiO2 and TiO2 nanoparticles; however, the SiO2 and TiO2 nanoparticles induced cytotoxicity in two-dimensional CCD-18Co cells and three-dimensional CCD-18Co spheroids and human colon organoids, with IC50 values of 0.6, 0.8 and 0.3 mM for SiO2 and 2.5, 1.1 and 12.5 mM for TiO2 nanoparticles, respectively. The data suggest that, when SiO2 and TiO2 are in nanoparticle form, cytotoxicity is induced; thus, care should be taken with these materials.
Collapse
Affiliation(s)
| | | | - Ki Young Kim
- Correspondence: (K.Y.K.); (B.K.); Tel.: +82-42-860-7471 (K.Y.K.); +82-42-860-7465 (B.K.); Fax: +82-42-861-0770 (K.Y.K.); +82-42-860-7459 (B.K.)
| | - Byumseok Koh
- Correspondence: (K.Y.K.); (B.K.); Tel.: +82-42-860-7471 (K.Y.K.); +82-42-860-7465 (B.K.); Fax: +82-42-861-0770 (K.Y.K.); +82-42-860-7459 (B.K.)
| |
Collapse
|
37
|
In Vitro Cytotoxicity Study of Cyclophosphamide, Etoposide and Paclitaxel on Monocyte Macrophage Cell Line Raw 264.7. Indian J Microbiol 2020; 60:511-517. [PMID: 33088001 DOI: 10.1007/s12088-020-00896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The presence of antineoplastic compounds in aquatic ecosystem is an emerging challenge for the society. Antineoplastic compounds released into the aquatic environment exhibit a potential threat to normal aquatic life. Particularly, antineoplastic compounds are responsible for direct or indirect interference with the cellular DNA of an organism and cause toxicity to cells. The present study focused on the assessment of in vitro toxic effect of cyclophosphamide, etoposide and paclitaxel on Raw 264.7 cell line (mouse monocyte macrophage cells). The inhibitory concentration of cyclophosphamide, etoposide, and paclitaxel was determined. The IC50 values of these compounds were 145.44, 5.40, and 69.76 µg ml-1 respectively. This is the first report on toxicity analysis of cyclophosphamide, paclitaxel and etoposide on Raw 264.7 cell line by reducing cell viability and indicating the cell cytotoxicity i.e., 69.58% for cyclophosphamide, 92.01% for etoposide and 88.85% for paclitaxel on concentration 250 µg ml-1. The results of their cytotoxicity assessment highlight the need of improvement in sewage treatment technology for the efficient removal of these compounds from aquatic environment.
Collapse
|
38
|
Mazur P, Skiba-Kurek I, Mrowiec P, Karczewska E, Drożdż R. Synergistic ROS-Associated Antimicrobial Activity of Silver Nanoparticles and Gentamicin Against Staphylococcus epidermidis. Int J Nanomedicine 2020; 15:3551-3562. [PMID: 32547013 PMCID: PMC7246328 DOI: 10.2147/ijn.s246484] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Increasing bacteria resistance to antibiotics is a major problem of healthcare system. There is a need for solutions that broaden the spectrum of bactericidal agents improving the efficacy of commonly used antibiotics. One of the promising directions of search are silver nanoparticles (obtained by different methods and displaying diversified physical and chemical properties), and their combination with antibiotics. Purpose In this study, we tested the role of reactive oxygen species in the mechanism of synergistic antibacterial activity of gentamicin and Tween-stabilized silver nanoparticles against gentamicin-resistant clinical strains of Staphylococcus epidermidis. Methods Synergistic bactericidal activity of gentamicin and silver nanoparticles stabilized with non-ionic detergent (Tween 80) was tested by the checkerboard titration method on microtiter plates. Detection of reactive oxygen species was based on the chemiluminescence of luminol. Results Hydrophilic non-ionic surface functionalization of silver nanoparticles enabled the existence of non-aggregated active nanoparticles in a complex bacterial culture medium. Tween-stabilized silver nanoparticles in combination with gentamicin exhibited bactericidal activity against multidrug-resistant biofilm forming clinical strains of Staphylococcus epidermidis. A synergistic effect significantly decreased the minimal inhibitory concentration of gentamicin (the antibiotic with numerous undesirable effects). Gentamicin significantly enhanced the generation of reactive oxygen species by silver nanoparticles. Conclusion Generation of reactive oxygen species by Tween-coated metallic silver nanoparticles was significantly enhanced by gentamicin, confirming the hypothesis of oxidative-associated mechanism of the synergistic antibacterial effect of the gentamicin-silver nanoparticles complex.
Collapse
Affiliation(s)
- Paulina Mazur
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Iwona Skiba-Kurek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Paulina Mrowiec
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Elżbieta Karczewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Cracow, Poland
| |
Collapse
|