1
|
Lou J, Dong F, Lu H, Fang S, Pan X. Prolonged Exposure to Environmental Levels of Haloacetamides Exacerbates Cellular Senescence: Phenotypic and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7890-7899. [PMID: 40231784 DOI: 10.1021/acs.est.5c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Disinfection byproducts (DBPs), such as haloacetamides (HAMs), have been associated with adverse health outcomes, including bladder cancer. The potential for DBPs to exacerbate cellular senescence, thereby linking exposure to health impacts, remains underexplored. In this study, MRC-5 cells were exposed to HAMs at concentrations of 2, 5, and 8 μg/L for 30 days to simulate long-term exposure to levels found in drinking water. All six tested HAMs significantly increased the cellular senescence degree and enriched the cellular senescence pathway at the proteomic-wide level. Specifically, HAMs upregulated microRNA-24 expression, which increased p16 mRNA levels and decreased p16 protein levels, thereby activating oncogene-induced senescence pathways. Additionally, HAMs were found to covalently bind to TNRC6A, activating the p53/p21 pathway. Principal component analysis highlighted the critical role of functional groups in activating senescence, and the interaction between HAMs and TNRC6A could extend to at least 27 other amide-containing DBPs. Prolonged exposure to HAMs at environmentally relevant levels notably exacerbates cellular senescence, shedding light on a commonly overlooked phenomenon. Given the widespread presence of DBPs in drinking water and their continuous exposure in humans, their role in cellular senescence represents an ongoing public health concern.
Collapse
Affiliation(s)
- Jinxiu Lou
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Lu
- College of Environmental and Resource Sciences and Academy of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuangxi Fang
- Zhejiang Carbon Neutral Innovation Institute and Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
le Maire A, Bourguet W. What Structural Biology Tells Us About the Mode of Action and Detection of Toxicants. Annu Rev Pharmacol Toxicol 2025; 65:529-546. [PMID: 39107041 DOI: 10.1146/annurev-pharmtox-061724-080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The study of the adverse effects of chemical substances on living organisms is an old and intense field of research. However, toxicological and environmental health sciences have long been dominated by descriptive approaches that enable associations or correlations but relatively few robust causal links and molecular mechanisms. Recent achievements have shown that structural biology approaches can bring this added value to the field. By providing atomic-level information, structural biology is a powerful tool to decipher the mechanisms by which toxicants bind to and alter the normal function of essential cell components, causing adverse effects. Here, using endocrine-disrupting chemicals as illustrative examples, we describe recent advances in the structure-based understanding of their modes of action and how this knowledge can be exploited to develop computational tools aimed at predicting properties of large collections of compounds.
Collapse
Affiliation(s)
- Albane le Maire
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, Inserm, Montpellier, France; ,
| | - William Bourguet
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, Inserm, Montpellier, France; ,
| |
Collapse
|
3
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
4
|
Souza TL, da Luz JZ, Barreto LDS, de Oliveira Ribeiro CA, Neto FF. Structure-based modeling to assess binding and endocrine disrupting potential of polycyclic aromatic hydrocarbons in Daniorerio. Chem Biol Interact 2024; 398:111109. [PMID: 38871163 DOI: 10.1016/j.cbi.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Environmental contaminants, such as polycyclic aromatic hydrocarbons (PAHs), have raised concerns regarding their potential endocrine-disrupting effects on aquatic organisms, including fish. In this study, molecular docking and molecular dynamics techniques were employed to evaluate the endocrine-disrupting potential of PAHs in zebrafish, as a model organism. A virtual screening with 72 PAHs revealed a correlation between the number of PAH aromatic rings and their binding affinity to proteins involved in endocrine regulation. Furthermore, PAHs with the highest binding affinities for each protein were identified: cyclopenta[cd]pyrene for AR (-9.7 kcal/mol), benzo(g)chrysene for ERα (-11.5 kcal/mol), dibenzo(a,e)pyrene for SHBG (-8.7 kcal/mol), dibenz(a,h)anthracene for StAR (-11.2 kcal/mol), and 2,3-benzofluorene for TRα (-9.8 kcal/mol). Molecular dynamics simulations confirmed the stability of the protein-ligand complexes formed by the PAHs with the highest binding affinities throughout the simulations. Additionally, the effectiveness of the protocol used in this study was demonstrated by the receiver operating characteristic curve (ROC) analysis, which effectively distinguished decoys from true ligands. Therefore, this research provides valuable insights into the endocrine-disrupting potential of PAHs in fish, highlighting the importance of assessing their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Luiza Dos Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Tatalovich Z, Chtourou A, Zhu L, Dellavalle C, Hanson HA, Henry KA, Penberthy L. Landscape analysis of environmental data sources for linkage with SEER cancer patients database. J Natl Cancer Inst Monogr 2024; 2024:132-144. [PMID: 39102880 DOI: 10.1093/jncimonographs/lgae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 08/07/2024] Open
Abstract
One of the challenges associated with understanding environmental impacts on cancer risk and outcomes is estimating potential exposures of individuals diagnosed with cancer to adverse environmental conditions over the life course. Historically, this has been partly due to the lack of reliable measures of cancer patients' potential environmental exposures before a cancer diagnosis. The emerging sources of cancer-related spatiotemporal environmental data and residential history information, coupled with novel technologies for data extraction and linkage, present an opportunity to integrate these data into the existing cancer surveillance data infrastructure, thereby facilitating more comprehensive assessment of cancer risk and outcomes. In this paper, we performed a landscape analysis of the available environmental data sources that could be linked to historical residential address information of cancer patients' records collected by the National Cancer Institute's Surveillance, Epidemiology, and End Results Program. The objective is to enable researchers to use these data to assess potential exposures at the time of cancer initiation through the time of diagnosis and even after diagnosis. The paper addresses the challenges associated with data collection and completeness at various spatial and temporal scales, as well as opportunities and directions for future research.
Collapse
Affiliation(s)
- Zaria Tatalovich
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Amina Chtourou
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Li Zhu
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Curt Dellavalle
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Heidi A Hanson
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, US Department of Energy, Oakridge, TN, USA
| | - Kevin A Henry
- Temple University, Philadelphia, PA, USA
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lynne Penberthy
- Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
6
|
Gallego JL, Shipley ER, Vlahos P, Olivero-Verbel J. Occurrence and toxicological relevance of pesticides and trace metals in agricultural soils, sediments, and water of the Sogamoso River basin, Colombia. CHEMOSPHERE 2024; 354:141713. [PMID: 38490613 DOI: 10.1016/j.chemosphere.2024.141713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Historical pesticide use in agriculture and trace metal accumulation have long term impact on soil, sediment, and water quality. This research quantifies legacy and current-use pesticides and trace metals, assessing their occurrence and toxicological implications on a watershed scale in the Sogamoso River basin, tributary of the Magdalena River in Colombia. Organochlorine pesticides (22), organophosphates (7), and azole fungicides (5), as well as trace metals cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were analyzed in croplands and along the river. Toxic units (TU) and hazard quotients (HQ) were calculated to assess the mixture toxicity. Organochlorines were detected in 84% of soils, 100% of sediments, and 80% of water samples. Organophosphates were found in 100% of soil and sediment samples, as well as in 70% of water samples. Azole fungicides were present in 79% of soils, 60% of sediments, and in 10% of water samples. Total pesticide concentrations ranged from 214.2 to 8497.7 μg/kg in soils, 569.6-12768.2 μg/kg in sediments, and 0.2-4.1 μg/L in water. In addition, the use of partition coefficient (Kd) and organic carbon fraction (foc) allowed the distribution analysis for most of the pesticides in sediments, suspended particulate matter (SPM), and water systems, but not for soils. Concentrations of trace metals Cu, Zn, Pb, and Zn exceeded international quality guidelines for agricultural soils in 16% of the samples. Furthermore, Cu and Zn concentrations exceeded sediment quality guidelines in 50 and 90% of the samples, respectively. These findings demonstrate the broad distribution of complex mixtures of trace metals, legacy organochlorines, and current-use pesticides across the basin, indicating that conventional agriculture is a significant source of diffuse pollution. Sustainable agricultural practices are needed to mitigate adverse impacts on ecosystems and human health.
Collapse
Affiliation(s)
- Jorge L Gallego
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia; Engineering Department, University of Medellin, Medellin, 050026, Colombia.
| | - Emma R Shipley
- Department of Marine Sciences, University of Connecticut, Avery Point, 1080 Shennecossett Rd, Groton, CT 06340, United States.
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Avery Point, 1080 Shennecossett Rd, Groton, CT 06340, United States.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
7
|
Mahdavi V, Heidari A, Mousavi Khaneghah A. Probabilistic risk assessment of endocrine disrupting pesticides in Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1355-1369. [PMID: 37017094 DOI: 10.1080/09603123.2023.2199193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The chronic dietary risk assessment for 34 pesticides suspected of acting as endocrine disrupters in Iran was assessed by comparing TMDI with the Acceptable Daily Intakes (ADI). Of 34 investigated endocrine-disrupting pesticides (EDPs), 6 had TMDI > ADI. In addition, potential non-carcinogenic and carcinogenic health risk assessments were evaluated using Monte Carlo simulation. HQ in wheat was 17.40 and 20.29 in adults and children, respectively. Due to dimethoate residue in wheat, HQ was 2.78, and for fenitrothion residue, 3.22. HI was 21.22 for adults and 24.76 for children in wheat, more than 1. Total Carcinogenic risk (TCR) due to EDPs residues was 6.40 × 10-5 in apples, in citrus fruits 5.97 × 10-5, 3.33 × 10-5 in cucumber, 5.30 × 10-5 in lettuce, in potato was 2.36 × 10-5, in rice was 1.61 × 10-5, 1.78 × 10-5 in tomato, and due to epoxiconazole residues in wheat was 3.18 × 10-5, more than acceptable limit 1.0 × 10-6. Therefore, consumers were at significant risk of carcinogenesis.Abbreviations: PCBs: polychlorinated biphenyls; BPA: Bisphenol A; ED: Endocrine Disrupting; EDCs: Endocrine Disrupting Chemicals; EDPs: Endocrine Disrupting Pesticides; ADI: Acceptable Daily Intake; TMDI: Theoretical Maximum Daily Intake; FAO: Food and Agriculture Organization; WHO: World Health Organization; MRL: Maximum Residue Limit; HQ: Hazard Quotient; HI: Hazard Index; CR: Cancer Risk; TCR: Total Cancer Risk; PPP: plant protection products.
Collapse
Affiliation(s)
- Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Ahmad Heidari
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
8
|
Jiao F, Rong H, Zhao Y, Wu P, Long Y, Xu J, Zhao T, Han L, Wang J, Yang H. Insights into spirotetramat-induced thyroid disruption during zebrafish (Danio rerio) larval development: An integrated approach with in vivo, in vitro, and in silico analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123242. [PMID: 38154778 DOI: 10.1016/j.envpol.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Spirotetramat (SPT), a tetronic acid-derived insecticide, is implicated in reproductive and lipid metabolism disorders, as well as developmental toxicity in fish. While these effects are documented, the precise mechanisms underlying its developmental toxicity are not fully elucidated. In this study, zebrafish embryos (2 h post-fertilization, hpf) were exposed to four concentrations of SPT (0, 60, 120, and 240 μg/L) until 21 dpf (days post-fertilization). We delved into the mechanisms by examining its potential disruption of the thyroid endocrine system, employing in vivo, in vitro, and in silico assays. The findings showed notable developmental disturbances, including reduced hatching rates, shortened body lengths, and decelerated heart rates. Additionally, there was an increase in malformations and a decline in locomotor activity. Detailed analyses revealed that SPT exposure led to elevated thyroid hormone levels, perturbed the hypothalamic-pituitary-thyroid (HPT) axis transcript levels, amplified deiodinase type I (Dio1) and deiodinase type II (Dio2) activities, and both transcriptionally and proteomically upregulated thyroid receptor beta (TRβ) in larvae. Techniques like molecular docking and surface plasmon resonance (SPR) confirmed SPT's affinity for TRβ, consistent with in vitro findings suggesting its antagonistic effect on the T3-TR complex. These insights emphasize the need for caution in using tetronic acid-derived insecticides.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Hua Rong
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Panfeng Wu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, PR China
| | - Yaohui Long
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Jie Xu
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Tao Zhao
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China.
| |
Collapse
|
9
|
Zeng N, Huang F, Du J, Huang C, Yang Q, Zhan X, Xing B. Expeditious profiling of polycyclic aromatic hydrocarbons transport and obstruction mechanisms in crop xylem sap proteins via proteomics and molecular docking. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122854. [PMID: 37940018 DOI: 10.1016/j.envpol.2023.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant environmental risks due to their toxicity and carcinogenic properties. This research seeks to pinpoint protein targets in crop xylem sap related to PAH contamination and delve into their protein-ligand interactions using computational tools. Proteomic assessment revealed differentially expressed proteins (DEPs), which were subjected to virtual high-throughput screening. Notably, the phenanthrene's influence on xylem sap proteins in maize and wheat was more pronounced than in soybean, with DEPs expression peak at 24 h post-treatment. Maize DEPs were predominantly associated with lipid biosynthesis. Phenanthrene impacted cell membrane hydrophobicity, limiting PAH adsorption and decreasing its concentration in maize xylem sap. Wheat DEPs exhibited an increase in ABC transporters after 24 h of phenanthrene exposure. ABC transporters interacted with stress-responsive proteins like C6TIY1-Co-chaperone p23 and others that either facilitate or inhibit PAH transport, including Indeno[1,2,3-cd]Pyrene and C6TIY1-Co-chaperone protein p23. Both maize and wheat created high-affinity complexes between specific proteins and PAHs, influencing their transport. This study provides insights into the mechanisms of PAH regulation and movement within plant xylem.
Collapse
Affiliation(s)
- Nengde Zeng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Jiani Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
10
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Chen ZF, Lin ZC, Lu SQ, Chen XF, Liao XL, Qi Z, Cai Z. Azole-Induced Color Vision Deficiency Associated with Thyroid Hormone Signaling: An Integrated In Vivo, In Vitro, and In Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13264-13273. [PMID: 36082512 DOI: 10.1021/acs.est.2c05328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azoles that are used in pesticides, pharmaceuticals, and personal care products can have toxic effects on fish. However, there is no information regarding azole-induced visual disorder associated with thyroid disruption. We evaluated changes in retinal morphology, optokinetic response, transcript abundance of the genes involved in color perception and hypothalamic-pituitary-thyroid (HPT) axis, and thyroid hormone (TH) levels in zebrafish larvae exposed to common azoles, such as climbazole (CBZ, 0.1 and 10 μg/L) and triadimefon (TDF, 50 and 500 μg/L), at environmentally relevant and predicted worst-case environmental concentrations. Subsequently, the effect of azoles on TH-dependent GH3 cell proliferation and thyroid receptor (TR)-regulated transcriptional activity, as well as the in silico binding affinity between azoles and TR isoforms, was investigated. Azole exposure decreased cell densities of the ganglion cell layer, inner nuclear layer, and photoreceptor layer. Zebrafish larvae exposed to environmentally relevant concentrations of CBZ and TDF showed a decrease in optokinetic response to green-white and red-white stripes but not blue-white stripes, consistent with disturbance in the corresponding opsin gene expression. Azole exposure also reduced triiodothyronine levels and concomitantly increased HPT-related gene expression. Molecular docking analysis combined with in vitro TR-mediated transactivation and dual-luciferase reporter assays demonstrated that CBZ and TDF exhibited TR antagonism. These results are comparable to those obtained from a known TR antagonist, namely, TR antagonist 1, as a positive control. Therefore, damage to specific color perception by azoles appears to result from lowered TH signaling, indicating the potential threat of environmental TH disruptors to the visual function of fish.
Collapse
Affiliation(s)
- Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Cheng Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Si-Qi Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Fan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
12
|
Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Front Microbiol 2022; 13:962619. [PMID: 36060785 PMCID: PMC9428564 DOI: 10.3389/fmicb.2022.962619] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.
Collapse
Affiliation(s)
| | - Vijay K. Verma
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Balwant Singh Rawat
- Department of Pharmaceutical Sciences, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Baljinder Kaur
- Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Sudhowala, India
| | - Akansha Sharma
- Allergy and Immunology Section, CSIR-IGIB, New Delhi, India
| | - Seeta Dewali
- Laboratory of Alternative Protocols in Zoology and Biotechnology Research Laboratory, Department of Zoology, Kumaun University, Nainital, India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Reshma Kumari
- Department of Botany & Microbiology, Gurukul Kangri Deemed to be University, Haridwar, India
| | - Sevaram Singh
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, New Delhi, India
| | - Asutosh Mohapatra
- Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Varsha Pandey
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Newai Tonk, India
| | - Nitika Rana
- Department of Environmental Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, India
| | - Jose Maria Cunill
- Biotechnology Engineering, Universidad Politécnica Metropolitana de Puebla, Mexico, Mexico
| |
Collapse
|
13
|
Molecular Human Targets of Bioactive Alkaloid-Type Compounds from Tabernaemontana cymose Jacq. Molecules 2021; 26:molecules26123765. [PMID: 34205626 PMCID: PMC8234993 DOI: 10.3390/molecules26123765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are a group of secondary metabolites that have been widely studied for the discovery of new drugs due to their properties on the central nervous system and their anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking was performed for 10 indole alkaloids identified in the ethanol extract of Tabernaemontana cymosa Jacq. with 951 human targets involved in different diseases. The results were analyzed through the KEGG and STRING databases, finding the most relevant physiological associations for alkaloids. The molecule 5-oxocoronaridine proved to be the most active molecule against human proteins (binding energy affinity average = −9.2 kcal/mol) and the analysis of the interactions between the affected proteins pointed to the PI3K/ Akt/mTOR signaling pathway as the main target. The above indicates that indole alkaloids from T. cymosa constitute a promising source for the search and development of new treatments against different types of cancer.
Collapse
|
14
|
Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food Chem 2021; 360:130106. [PMID: 34034058 DOI: 10.1016/j.foodchem.2021.130106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used worldwide, leading to varying degrees of residues in food. Lactic acid bacteria (LAB) can degrade OPPs by producing phosphatase. This study explored the reasons for the variation in the degradation of different OPPs by Lactobacillus plantarum. The results showed that the degradation effects of OPPs by L. plantarum (intact cells) varied greatly, the degradation rate constant of phoxim was 1.65-fold higher than that of dichlorvos. However, the phosphatase extracted from L. plantarum had no degradation selectivity for OPPs in vitro. It was speculated that the selective uptake of cells determines this degradation selectivity. The results of molecular docking supported this hypothesis because there was no difference in the binding energies between phosphatase and OPPs, while the binding energies between phosphate-binding protein and pesticides were different, and they were negatively correlated with the degradation rate constants of the eight OPPs by L. plantarum.
Collapse
|
15
|
Gallego JL, Olivero-Verbel J. Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116558. [PMID: 33631688 DOI: 10.1016/j.envpol.2021.116558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Pesticides and trace elements occur in complex mixtures in agroecosystems, affecting soil health and food security. Hence, it is necessary to determine their toxicity in field conditions and to develop monitoring approaches to assess conventional and organic agriculture. The aim of this research was to evaluate the associations between Allium cepa L. cytogenetic biomarkers and the realistic mixture of pesticides and trace elements found in soils of conventional, conversion, and organic crops in an intensive agricultural region in Colombia. Pesticide screening was conducted using GC-MS/MS and LC-MS/MS methods. Arsenic, cadmium, lead, and zinc were analyzed by ICP-MS; chromium, copper, nickel, and selenium by ICP-OES; and mercury by a direct analyzer. The meristematic cells in roots of Allium cepa L. were analyzed through microscopic observations to quantify cytogenetic effects. In conventional crops, 26 pesticides were detected in the soil samples, and those were below the limit of quantification in organic crops. The mean levels of As, Cd, Cr, Ni, Pb, and Se were also greater in soils of conventional crops compared to the organics. In addition, the biomarkers of cytotoxicity and genotoxicity appeared augmented in conventional samples, and those were correlated with pesticide and trace element concentrations, pollution indices, and hazard quotients. Subsequently, a discriminant function based on the mitotic index, chromosomal aberrations, and nuclear abnormalities was suitable to classify the samples by crop type. These results demonstrate the sensitivity of Allium cepa L. to the toxicity of complex mixtures in field crops and its potential as an in-situ approach for soil health monitoring in organic and conventional crop systems.
Collapse
Affiliation(s)
- Jorge L Gallego
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
16
|
Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37009. [PMID: 33769846 PMCID: PMC7997610 DOI: 10.1289/ehp7466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A analogs and derivatives (BPs) have emerged as new contaminants with little or no information about their toxicity. These have been found in numerous everyday products, from thermal paper receipts to plastic containers, and measured in human samples. OBJECTIVES The objectives of this research were to identify in silico new protein targets of BPs associated with seven noncommunicable diseases (NCDs), and to study their protein-ligand interactions using computer-aided tools. METHODS Fifty BPs were identified by a literature search and submitted to a virtual high-throughput screening (vHTS) with 328 proteins associated with NCDs. Protein-protein interactions between predicted targets were examined using STRING, and the protocol was validated in terms of binding site recognition and correlation between in silico affinities and in vitro data. RESULTS According to the vHTS, several BPs may target proteins associated with NCDs, some of them with stronger affinities than bisphenol A (BPA). The best affinity score (the highest in silico affinity absolute value) was obtained after docking 4,4'-bis(N-carbamoyl-4-methylbenzensulfonamide)diphenylmethane (BTUM) on estradiol 17-beta-dehydrogenase 1 (-13.7 kcal/mol). However, other molecules, such as bisphenol A bis(diphenyl phosphate) (BDP), bisphenol PH (BPPH), and Pergafast 201 also exhibited great affinities (top 10 affinity scores for each disease) with proteins related to NCDs. DISCUSSION Molecules such as BTUM, BDP, BPPH, and Pergafast 201 could be targeting key signaling pathways related to NCDs. These BPs should be prioritized for in vitro and in vivo toxicity testing and to further assess their possible role in the development of these diseases. https://doi.org/10.1289/EHP7466.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Xiomara Morelos-Cortes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
17
|
Musarurwa H, Tavengwa NT. Switchable solvent-based micro-extraction of pesticides in food and environmental samples. Talanta 2021; 224:121807. [PMID: 33379033 DOI: 10.1016/j.talanta.2020.121807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Switchable solvents are new generation solvents that are environmentally friendly and can be used for the effective pre-concentration of pesticide residues in food and environmental matrices. They have physico-chemical properties that can be switched abruptly and reversibly between two opposite forms. The common switchable solvents used commonly during pesticide pre-concentration involve polarity switch. Such solvent switch between hydrophobic and hydrophilic forms during pesticide pre-concentration. Secondary and tertiary amines are typical switchable hydrophilicity solvents. The amines are hydrophobic but they abruptly and reversibly switch to their hydrophilic forms on addition of CO2 to them. The application of amine-based switchable solvents during pre-concentration of pesticide residue in food and environmental samples are discussed in this paper. Medium-chain fatty acids can also be used as switchable solvents. Their switch between hydrophobic and hydrophilic forms is usually triggered by pH changes. Applications of fatty acid-based switchable solvents during pre-concentration of pesticide residues are reviewed in this paper. Switchable solvent-based micro-extraction can be combined with other pre-concentration techniques to enhance selectivity resulting in clean chromatograms. This paper has a section dedicated to the application of hyphenated switchable solvent-based micro-extraction techniques during pre-concentration of pesticides in food and environmental samples. In addition, the challenges associated with the use of switchable solvents during micro-extraction of pesticide residues are also discussed.
Collapse
Affiliation(s)
- Herbert Musarurwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
18
|
Wang X, Yang Y, Gao Y, Niu X. Discovery of the Novel Inhibitor Against New Delhi Metallo-β-Lactamase Based on Virtual Screening and Molecular Modelling. Int J Mol Sci 2020; 21:ijms21103567. [PMID: 32443639 PMCID: PMC7279046 DOI: 10.3390/ijms21103567] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
New Delhi metallo-β-lactamase (NDM-1), one of the metallo-β-lactamases (MBLs), leads to antibiotic resistance in clinical treatments due to the strong ability of hydrolysis to almost all kinds of β-lactam antibiotics. Therefore, there is the urgent need for the research and development of the novel drug-resistant inhibitors targeting NDM-1. In this study, ZINC05683641 was screened as potential NDM-1 inhibitor by virtual screening and the inhibitor mechanism of this compound was explored based on molecular dynamics simulation. The nitrocefin assay showed that the IC50 value of ZINC05683641 was 13.59 ± 0.52 μM, indicating that the hydrolytic activity of NDM-1 can be obviously suppressed by ZINC05683641. Further, the binding mode of ZINC05683641 with NDM-1 was obtained by molecular modeling, binding free energy calculation, mutagenesis assays and fluorescence-quenching assays. As results, ILE-35, MET-67, VAL-73, TRP-93, CYS-208, ASN-220 and HIS-250 played the key roles in the binding of NDM-1 with ZINC05683641. Interestingly, these key residues were exactly located in the catalytic activity region of NDM-1, implying that the inhibitor mechanism of ZINC05683641 against NDM-1 was the competitive inhibition. These findings will provide an available approach to research and develop new drug against NDM-1 and treatment for bacterial resistance.
Collapse
|