1
|
Frodella CM, Pruett SB, Ross MK, Kaplan BLF. Oxytocin and Vasopressin Gene Expression in the Brain as Potential Biomarkers for Cannabidiol Therapeutic Efficacy. Biomedicines 2024; 12:1273. [PMID: 38927480 PMCID: PMC11200880 DOI: 10.3390/biomedicines12061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Over the last several years, there has been increased interest in cannabidiol (CBD) to treat various ailments such as pain, anxiety, insomnia, and inflammation. The potential for CBD as an anti-inflammatory therapy has come, in part, from its demonstrated ability to suppress neuroinflammation in autoimmune diseases, such as the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). The increased use of CBD strongly suggests that more research is necessary to elucidate its safety and efficacy and determine the mechanisms by which it acts. Thus, we conducted two separate studies. In the first, RNA sequencing (RNA-Seq) analysis of brains of female mice undergoing EAE in the presence and absence of CBD was conducted to identify potential genes that mediated its neuroprotective effects when efficacious. In the second, we assessed some of the same genes in male and female mice treated with CBD in the absence of an immune stimulus. Together, these data showed that CBD modestly increased oxytocin (Oxt) and arginine vasopressin (vasopressin, Avp) gene expression in the brains of mice, regardless of whether there was active inflammation. Overall, these data suggest that Oxt and Avp might act as biomarkers for CBD exposure.
Collapse
Affiliation(s)
- Christa M. Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Matthew K. Ross
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.); (M.K.R.)
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
2
|
Frodella CM, Pruett SB, Kaplan BLF. Mild Disease Course of Experimental Autoimmune Encephalomyelitis without Pertussis Toxin: Brain Transcriptome Analysis Reveals Similar Signaling to Active Lesions in Multiple Sclerosis. Biomedicines 2024; 12:1215. [PMID: 38927422 PMCID: PMC11201189 DOI: 10.3390/biomedicines12061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a powerful model to study multiple sclerosis (MS). One of the approaches for EAE is to actively immunize with myelin-derived peptides with immune adjuvants. One of the commonly used immune adjuvants is pertussis toxin (PTx), without which EAE disease is mild with relatively longer onset. However, pertussis toxin can also inhibit G protein-coupled receptor (GPCR) signaling so it can confound investigations into the role of GPCRs in EAE or therapies designed to target GPCRs. Since EAE via active immunization without PTx results in a relatively mild disease state, we wanted to confirm that appropriate signaling molecules for the disease were being induced in one target tissue (i.e., brain). RNA-Seq analysis of whole brain tissue demonstrated that the MS signaling pathway was strongly activated in symptomatic mice. In addition, there was activation of Th1 (IFN signaling), Th2 (IL-4 signaling), and Th17 (IL-17 signaling). In comparing canonical pathways from our mouse mild EAE brains with a human MS atlas, EAE shared the most pathways with active and inactive lesions. An advantage of this approach is that disease induction is slower to develop and results in modest clinical signs, which likely more closely mimic human disease onset.
Collapse
Affiliation(s)
- Christa M. Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.)
| | - Stephen B. Pruett
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (C.M.F.); (S.B.P.)
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Nagarkatti PS, Nagarkatti M. 6-Formylindolo[3,2-b]carbazole, a potent ligand for the aryl hydrocarbon receptor, attenuates concanavalin-induced hepatitis by limiting T-cell activation and infiltration of proinflammatory CD11b+ Kupffer cells. J Leukoc Biol 2024; 115:1070-1083. [PMID: 38366630 PMCID: PMC11135611 DOI: 10.1093/jleuko/qiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024] Open
Abstract
FICZ (6-formylindolo[3,2-b]carbazole) is a potent aryl hydrocarbon receptor agonist that has a poorly understood function in the regulation of inflammation. In this study, we investigated the effect of aryl hydrocarbon receptor activation by FICZ in a murine model of autoimmune hepatitis induced by concanavalin A. High-throughput sequencing techniques such as single-cell RNA sequencing and assay for transposase accessible chromatin sequencing were used to explore the mechanisms through which FICZ induces its effects. FICZ treatment attenuated concanavalin A-induced hepatitis, evidenced by decreased T-cell infiltration, decreased circulating alanine transaminase levels, and suppression of proinflammatory cytokines. Concanavalin A revealed an increase in natural killer T cells, T cells, and mature B cells upon concanavalin A injection while FICZ treatment reversed the presence of these subsets. Surprisingly, concanavalin A depleted a subset of CD55+ B cells, while FICZ partially protected this subset. The immune cells showed significant dysregulation in the gene expression profiles, including diverse expression of migratory markers such as CCL4, CCL5, and CXCL2 and critical regulatory markers such as Junb. Assay for transposase accessible chromatin sequencing showed more accessible chromatin in the CD3e promoter in the concanavalin A-only group as compared to the naive and concanavalin A-exposed, FICZ-treated group. While there was overall more accessible chromatin of the Adgre1 (F4/80) promoter in the FICZ-treated group, we observed less open chromatin in the Itgam (CD11b) promoter in Kupffer cells, supporting the ability of FICZ to reduce the infiltration of proinflammatory cytokine producing CD11b+ Kupffer cells. Taken together, these data demonstrate that aryl hydrocarbon receptor activation by FICZ suppresses liver injury through the limitation of CD3+ T-cell activation and CD11b+ Kupffer cell infiltration.
Collapse
Affiliation(s)
- Alkeiver S Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Bryan L Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, United States
| |
Collapse
|
4
|
Huang RG, Li XB, Wang YY, Wu H, Li KD, Jin X, Du YJ, Wang H, Qian FY, Li BZ. Endocrine-disrupting chemicals and autoimmune diseases. ENVIRONMENTAL RESEARCH 2023; 231:116222. [PMID: 37224951 DOI: 10.1016/j.envres.2023.116222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) widely exist in people's production and life which have great potential to damage human and animal health. Over the past few decades, growing attention has been paid to the impact of EDCs on human health, as well as immune system. So far, researchers have proved that EDCs (such as bisphenol A (BPA), phthalate, tetrachlorodibenzodioxin (TCDD), etc.) affect human immune function and promotes the occurrence and development of autoimmune diseases (ADs). Therefore, in order to better understand how EDCs affect ADs, we summarized the current knowledge about the impact of EDCs on ADs, and elaborated the potential mechanism of the impact of EDCs on ADs in this review.
Collapse
Affiliation(s)
- Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xue Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yu-Jie Du
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | | | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
5
|
Zhang Y, Pan Y, Zhang P, Wang F, Han Y, Li K, Jiang W, Wang J, Luan Y, Xin Q. AhR agonist tapinarof ameliorates lupus autoimmunity by suppressing Tfh cell differentiation via regulation of the JAK2-STAT3 signaling pathway. Immun Inflamm Dis 2023; 11:e903. [PMID: 37382269 PMCID: PMC10266146 DOI: 10.1002/iid3.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a critical regulator of the pathogenesis of autoimmune disorders. We aimed to investigate the therapeutic effect of the AhR agonist tapinarof during the development of systemic lupus erythematosus (SLE). METHODS MRL/lpr mice were intraperitoneally injected with 1 or 5 mg/kg tapinarof for 6 weeks. Kidney histopathology was evaluated using hematoxylin and eosin (H&E) and Periodic-Acid-Schiff (PAS) staining. Immunofluorescence microscopy was performed to detect immune complex renal depositions. Flow cytometry (FCM) analysis was carried out to determine the proportions of T and B cell subsets. Realtime qPCR was used to quantify the expression of Tfh cell-associated genes. We conducted an in vitro polarization experiment to observe the effect of tapinarof on Tfh differentiation. Western blotting was used to detect the expression of target proteins. RESULTS We found that tapinarof treatment ameliorated lupus phenotypes, including splenomegaly, lymph node enlargement, kidney damages, immune complex deposition, and excessive secretion of antibodies. Additionally, we showed that Treg subpopulation frequencies significantly increased in MRL/lpr mice treated with tapinarof, while the proportion of Th1/Th2 cells was reduced after tapinarof administration. Moreover, tapinarof suppressed Tfh cell differentiation and germinal center (GC) reaction in vivo. The inhibitory effect of tapinarof on Tfh cells was further verified in the in vitro Tfh cell polarization experiment. Realtime qPCR revealed that tapinarof repressed the expression of Tfh signature genes. Mechanistically, tapinarof significantly inhibited the phosphorylation levels of JAK2 and STAT3. The capacity for Tfh differentiation was partially rescued by the STAT3 activator Colivelin TFA. Furthermore, our in vitro Tfh polarization experiments indicated that tapinarof suppressed Tfh cell development in SLE. CONCLUSIONS Our data demonstrated that tapinarof modulated the JAK2-STAT3 pathway to suppress Tfh cell differentiation for the treatment of lupus symptoms in MRL/lpr mice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory MedicineThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yanyan Pan
- Department of PediatricsQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Peiyi Zhang
- Department of Rheumatology and ImmunologyJinan Central HospitalJinanShandongChina
| | - Fang Wang
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Ying Han
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Kailin Li
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Wen Jiang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Jue Wang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yun Luan
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Qian Xin
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
6
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
7
|
McDonald A, Nicaise A, Sears ER, Bell A, Kummari E, Kaplan BLF. Potential for TCDD to induce regulatory functions in B cells as part of the mechanism for T cell suppression in EAE. Toxicol Appl Pharmacol 2022; 454:116259. [PMID: 36179859 PMCID: PMC10509645 DOI: 10.1016/j.taap.2022.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Part of the mechanism by which 2,3,7.8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses immune function involves induction of regulatory T cells and suppression of effector T cells. The goal of this project was to examine whether TCDD's suppression of effector T cells was due in part to inducing B regulatory cells (Bregs). TCDD's potential to increase the percentage and/or function of CD24+CD38+ B cells was assessed in response to lipopolysaccharide (LPS) + interleukin (IL)-4 in vitro and in a mild model of experimental autoimmune encephalomyelitis (EAE) in vivo. In vitro, TCDD did not consistently increase the percentage of CD19+CD24+CD38+ cells using splenocytes, purified B cells or bone marrow (BM) cells. However, TCDD increased IL-10 in all three culture preparations, and TCDD increased the percentage of CD5+CD24+CD38+ cells producing IL-10. In EAE, TCDD did not affect the percentage of the CD24+CD38+ cell population in CD19, B220 or CD5 B cells in splenocytes (SPLC), lymph nodes (LN) nor BM cells at end-stage disease. On the other hand, TCDD increased the CD19+CD24+CD38+ percentage in the spinal cord (SC) in EAE. Moreover, TCDD-treated B cells isolated from spleens or TCDD-treated BM cells in EAE mice modestly reduced the ability of naïve effector T cells to express interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Together these data show that TCDD can induce regulatory functions in B cells, although it was not obvious simply by examining the expression of regulatory markers but by assessing function by cytokine production or mixed lymphocyte responses.
Collapse
Affiliation(s)
- Amye McDonald
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ashleigh Nicaise
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Erin Rushing Sears
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Abigail Bell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Evangel Kummari
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
8
|
Germolec DR, Lebrec H, Anderson SE, Burleson GR, Cardenas A, Corsini E, Elmore SE, Kaplan BL, Lawrence BP, Lehmann GM, Maier CC, McHale CM, Myers LP, Pallardy M, Rooney AA, Zeise L, Zhang L, Smith MT. Consensus on the Key Characteristics of Immunotoxic Agents as a Basis for Hazard Identification. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:105001. [PMID: 36201310 PMCID: PMC9536493 DOI: 10.1289/ehp10800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.
Collapse
Affiliation(s)
- Dori R. Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Herve Lebrec
- Translational Safety & Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Stacey E. Anderson
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Gary R. Burleson
- Burleson Research Technologies, Inc., Morrisville, North Carolina, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sarah E. Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Barbara L.F. Kaplan
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Curtis C. Maier
- In Vitro In Vivo Translation, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - L. Peyton Myers
- Division of Pharm/Tox, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Federal Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc Pallardy
- Inserm, Inflammation microbiome immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Andrew A. Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Dinse GE, Co CA, Parks CG, Weinberg CR, Xie G, Chan EKL, Birnbaum LS, Miller FW. Expanded assessment of xenobiotic associations with antinuclear antibodies in the United States, 1988-2012. ENVIRONMENT INTERNATIONAL 2022; 166:107376. [PMID: 35785669 PMCID: PMC9792625 DOI: 10.1016/j.envint.2022.107376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND The prevalence of autoimmunity in the U.S. has increased recently for undetermined reasons. Little is known about associations between autoimmunity and environmental causes. OBJECTIVES In a large representative sample of the U.S. population, we expanded our prior exploratory study of how exposures to selected xenobiotics and dioxin-like (DL) mixtures relate to antinuclear antibodies (ANA), the most common biomarker of autoimmunity. METHODS We analyzed cross-sectional data on 12,058 participants aged ≥ 12 years from three time periods of the National Health and Nutrition Examination Survey between 1988 and 2012, of whom 14% were ANA-positive. We used lognormal regression models and censored-data methods to estimate ANA associations with xenobiotic concentrations overall and in sex, age, and race/ethnicity subgroups. Our analyses adjusted for potential confounders and appropriately handled concentrations below detection limits. RESULTS Observed ANA associations were positive for most DL compounds and nonDL polychlorinated biphenyls (PCBs), negative for most phthalates, and mixed for other xenobiotic classes. After correcting for multiple comparisons, some associations remained statistically significant. In subgroup analyses, the most significant finding was a positive ANA association with N-acetyl-S-(2-hydroxy-3-butenyl)-L-cysteine (MHB2) in males, followed by positive associations with 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5'-tetrachlorobiphenyl (PCB 49), and 2,2',3,4',5',6-hexachlorobiphenyl (PCB 149) in 12-19 year-olds, and with 3,4,4',5-tetrachlorobiphenyl (PCB 81), 2,2',3,3',4,4',5,5',6-nonachlorobiphenyl (PCB 206), and N-acetyl-S-(phenyl)-L-cysteine (PMA) in Mexican Americans. Negative associations were found with mono-benzyl phthalate (MBzP) in 20-49 year-olds and mono-n-butyl phthalate (MnBP) in 12-19 year-olds. In overall analyses, combining stratum-specific results across race/ethnicity strata revealed a positive ANA association with PCB 81 and a negative ANA association with N-acetyl-S-(2-hydroxyethyl)-L-cysteine (HEMA). DISCUSSION This study identified potential associations between ANA and various xenobiotics. Further investigation to confirm these observations and elucidate effects of certain xenobiotics on immune regulation could have important mechanistic, preventive, and treatment implications for a variety of immune-mediated disorders.
Collapse
Affiliation(s)
- Gregg E Dinse
- Public Health & Scientific Research, Social & Scientific Systems, Durham, NC, USA.
| | - Caroll A Co
- Public Health & Scientific Research, Social & Scientific Systems, Durham, NC, USA.
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Guanhua Xie
- Public Health & Scientific Research, Social & Scientific Systems, Durham, NC, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, Gainesville, FL, USA.
| | - Linda S Birnbaum
- Mechanistic Toxicology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Frederick W Miller
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
10
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, Nagarkatti M. AhR Activation Leads to Attenuation of Murine Autoimmune Hepatitis: Single-Cell RNA-Seq Analysis Reveals Unique Immune Cell Phenotypes and Gene Expression Changes in the Liver. Front Immunol 2022; 13:899609. [PMID: 35720411 PMCID: PMC9204231 DOI: 10.3389/fimmu.2022.899609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed ligand-activated transcription factor. While initially identified as an environmental sensor, this receptor has been shown more recently to regulate a variety of immune functions. AhR ligands vary in structure and source from environmental chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and indoles found in cruciferous vegetables to endogenous ligands derived from tryptophan metabolism. In the current study, we used TCDD, a high affinity AhR ligand to study the impact of AhR activation in the murine model of autoimmune hepatitis (AIH). Primarily, we used single-cell RNA-sequencing (scRNA-seq) technology to study the nature of changes occurring in the immune cells in the liver at the cellular and molecular level. We found that AhR activation attenuated concanavalin A (ConA)-induced AIH by limiting chemotaxis of pro-inflammatory immune cell subsets, promoting anti-inflammatory cytokine production, and suppressing pro-inflammatory cytokine production. scRNA-seq analysis showed some unusual events upon ConA injection such as increased presence of mature B cells, natural killer (NK) T cells, CD4+ or CD8+ T cells, Kupffer cells, memory CD8+ T cells, and activated T cells while TCDD treatment led to the reversal of most of these events. Additionally, the immune cells showed significant alterations in the gene expression profiles. Specifically, we observed downregulation of inflammation-associated genes including Ptma, Hspe1, and CD52 in TCDD-treated AIH mice as well as alterations in the expression of migratory markers such as CXCR2. Together, the current study characterizes the nature of inflammatory changes occurring in the liver during AIH, and sheds light on how AhR activation during AIH attenuates liver inflammation by inducing phenotypic and genotypic changes in immune cells found in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
11
|
Nicaise AJ, McDonald A, Sears ER, Sturgis T, Kaplan BLF. TCDD Inhibition of IgG1 Production in Experimental Autoimmune Encephalomyelitis (EAE) and In Vitro. Antibodies (Basel) 2022; 11:4. [PMID: 35076460 PMCID: PMC8788515 DOI: 10.3390/antib11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) is a ligand for the aryl hydrocarbon receptor (AhR). TCDD is well-characterized to produce immunotoxicity, including suppression of antibody production. Previously we showed that TCDD inhibited myelin oligodendrocyte glycoprotein (MOG) peptide-specific IgG and attenuated disease in experimental autoimmune encephalomyelitis (EAE) model in mice. Thus, the purpose of this study was to characterize the effects of TCDD on IgG subclasses in EAE and in vitro and assess effects in B cells derived from various tissues. TCDD modestly suppressed intracellular IgG expression in splenocytes (SPLC), but not bone marrow (BM) or lymph node (LN) cells. To further understand TCDD's effects on IgG, we utilized LPS and LPS + IL-4 in vitro to stimulate IgG3 and IgG1 production, respectively. TCDD preferentially suppressed IgG1+ cell surface expression, especially in SPLC. However, TCDD was able to suppress IgG1 and IgG3 secretion from SPLC and B cells, but not BM cells. Lastly, we revisited the EAE model and determined that TCDD suppressed MOG-specific IgG1 production. Together these data show that the IgG1 subclass of IgG is a sensitive target of suppression by TCDD. Part of the pathophysiology of EAE involves production of pathogenic antibodies that can recruit cytolytic cells to destroy MOG-expressing cells that comprise myelin, so inhibition of IgG1 likely contributes to TCDD's EAE disease attenuation.
Collapse
Affiliation(s)
| | | | | | | | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.J.N.); (A.M.); (E.R.S.); (T.S.)
| |
Collapse
|
12
|
Stokes JV, Nicaise AJ, Frodella CM, Varela-Stokes AS, Thompson T, Kaplan BLF. Isolation of Transcriptomic-Quality Total RNA from Mouse Spinal Cords. Curr Protoc 2022; 2:e338. [PMID: 35030295 PMCID: PMC8852305 DOI: 10.1002/cpz1.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Assessing cells, proteins, and total RNA in the spinal cord is vital for advancing our understanding of neuroinflammation and neurodegenerative diseases. For instance, immune cells infiltrate the spinal cord in the experimental autoimmune encephalomyelitis (EAE) model, commonly used to study multiple sclerosis. Thus, it is valuable to assess total RNA to determine the neuronal and inflammatory profiles in the spinal cord. Further, RNA profiles are useful for deciphering the effects of drugs or chemicals on neuroinflammation and neurodegenerative diseases such as EAE. The purpose of this protocol and the online video illustrating it is to describe and demonstrate the expulsion of the spinal cord from the mouse spinal column and homogenization of the spinal cord using liquid nitrogen for optimal RNA isolation. Although we present this method with spinal cords from EAE mice, the technique is broadly applicable, including RNA isolation from the spinal cords of healthy mice. Proper performance of these steps is critical to achieving a sufficient yield of transcriptomic-quality spinal cord RNA when combined with final isolation using commercially available kits. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Isolation of the spinal cord from the spinal column Support Protocol: Preparation of blunt-end needle for spinal cord isolation Basic Protocol 2: Spinal cord homogenization using liquid nitrogen Basic Protocol 3: Assessment of RNA purity, quantification, and integrity.
Collapse
Affiliation(s)
- John V. Stokes
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Ashleigh J. Nicaise
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS,Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Christa M. Frodella
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Andrea S. Varela-Stokes
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Tom Thompson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS
| | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS,Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS,College of Veterinary Medicine, Mississippi State University, Mississippi State, MS,Corresponding author:
| |
Collapse
|
13
|
Zhu Q, Rui K, Wang S, Tian J. Advances of Regulatory B Cells in Autoimmune Diseases. Front Immunol 2021; 12:592914. [PMID: 33936028 PMCID: PMC8082147 DOI: 10.3389/fimmu.2021.592914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
With the ability to induce T cell activation and elicit humoral responses, B cells are generally considered as effectors of the immune system. However, the emergence of regulatory B cells (Bregs) has given new insight into the role of B cells in immune responses. Bregs exhibit immunosuppressive functions via diverse mechanisms, including the secretion of anti-inflammatory cytokines and direct cell contact. The balance between Bregs and effector B cells is important for the immune tolerance. In this review, we focus on recent advances in the characteristics of Bregs and their functional roles in autoimmunity.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|