1
|
Faqir Y, Li Z, Gul T, Zahoor, Jiang Z, Yu L, Tan C, Chen X, Ma J, Feng J. Uranium's hazardous effects on humans and recent developments in treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118043. [PMID: 40080936 DOI: 10.1016/j.ecoenv.2025.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
Uranium, a naturally occurring element, is predominantly recognized for its role as fuel in both civilian and military energy sectors. Concerns have been raised regarding the adverse environmental impacts and health risks associated with uranium mining due to the exposure it causes. Such exposure leads to systemic toxicity, affecting pulmonary, hepatic, renal, reproductive, neurological, and bone health. This review identifies significant research gaps regarding detoxification methods for uranium contamination and recommends further advancements, including genetic modification and exploration of plant compounds. A comprehensive review of published research materials from diverse sources of uranium, including various treatments and hazardous impacts on the human body, was conducted. Additionally, a PRISMA analysis was performed in this study. This review emphasizes the importance of collaboration and the formulation of research-informed regulations to effectively safeguard vulnerable communities from the consequences of contamination. Public discourse often emphasizes the significance of radiotoxicity; however, the non-radioactive chemotoxicity of uranium has been identified as a significant risk factor for environmental exposures, contingent upon species, enrichment, and exposure route. Given these serious health consequences, several methods are being investigated to ameliorate uranium toxicity. In response to these concerns, several techniques, such as phytomedicinal treatments, biochemical approaches, and chelation therapy, have been investigated to minimize the adverse effects of uranium exposure in the human body.
Collapse
Affiliation(s)
- Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziang Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Talaal Gul
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zahoor
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziwei Jiang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Xi Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China.
| |
Collapse
|
2
|
Yang X, Liu J, Yin Y, Yang L, Gao M, Wu Z, Lu B, Luo S, Wang W, Li R. MSC-EXs inhibits uranium nephrotoxicity by competitively binding key proteins and inhibiting ROS production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117654. [PMID: 39793287 DOI: 10.1016/j.ecoenv.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Uranium poisoning, particularly from exposure to Depleted Uranium (DU), occurs when uranyl ions enter the bloodstream and bind primarily to transferrin, osteopontin, and albumin before entering cells via corresponding receptors on renal tubular membranes, leading to cellular damage. Uranium poisoning remains a significant clinical challenge, with no ideal treatment currently available. In this study, we investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cell exosomes (MSC-EXs) in mice exposed to DU. Our results showed that MSC-EXs could ameliorate renal damage and enhance kidney and bone marrow morphology but also effectively promote uranium excretion while reducing internal retention. Notably, the protective effects of MSC-EXs exceed those of MSCs and are comparable to those of sodium bicarbonate, as confirmed by various analytical techniques. Proteomic studies have shown that MSC-EXs reduce uranyl ion deposition in renal tubule cells through competitive binding with transferrin, osteopontin, and albumin. They also enhance oxidative stress resistance via modulation of glutathione metabolism, Cysteine and Methionine metabolism signaling pathways. This regulation leads to a reduction in mitochondrial ROS production, alleviates lipid peroxidation, and consequently decreases cellular apoptosis and ferroptosis. This study identifies MSC-EXs as a novel therapeutic strategy against depleted uranium poisoning, presenting potential advancements in treatment methodologies.
Collapse
Affiliation(s)
- Xinrui Yang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Jing Liu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yaru Yin
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Luxun Yang
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Mingquan Gao
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Zifei Wu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Binghui Lu
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China.
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Zheng S, Zhao N, Lin X, Qiu L. Impacts and potential mechanisms of fine particulate matter (PM 2.5) on male testosterone biosynthesis disruption. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:777-789. [PMID: 37651650 DOI: 10.1515/reveh-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
Exposure to PM2.5 is the most significant air pollutant for health risk. The testosterone level in male is vulnerable to environmental toxicants. In the past, researchers focused more attention on the impacts of PM2.5 on respiratory system, cardiovascular system, and nervous system, and few researchers focused attention on the reproductive system. Recent studies have reported that PM2.5 involved in male testosterone biosynthesis disruption, which is closely associated with male reproductive health. However, the underlying mechanisms by which PM2.5 causes testosterone biosynthesis disruption are still not clear. To better understand its potential mechanisms, we based on the existing scientific publications to critically and comprehensively reviewed the role and potential mechanisms of PM2.5 that are participated in testosterone biosynthesis in male. In this review, we summarized the potential mechanisms of PM2.5 triggering the change of testosterone level in male, which involve in oxidative stress, inflammatory response, ferroptosis, pyroptosis, autophagy and mitophagy, microRNAs (miRNAs), endoplasmic reticulum (ER) stress, and N6-methyladenosine (m6A) modification. It will provide new suggestions and ideas for prevention and treatment of testosterone biosynthesis disruption caused by PM2.5 for future research.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Nannan Zhao
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Xiaojun Lin
- School of Public Health, Nantong University, Nantong, P.R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P.R. China
| |
Collapse
|
4
|
Wang H, Li L, Fan X, Zhang Y, Lu Q, Ma N, Yu B, Li X, Gao J. Health Implications of Depleted Uranium: An Update. J Appl Toxicol 2024. [PMID: 39517117 DOI: 10.1002/jat.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Depleted uranium (DU), as a heavy metal material extensively utilized in the industrial sector, poses potential health risks to humans through various exposure pathways, including inhalation, ingestion, and dermal contact. To comprehensively understand the toxicological hazards of DU, this study conducted a literature search in the Web of Science Core Collection database using "DU" and "toxicity" as keywords, covering the period from January 2000 to December 2023. A total of 65 papers related to human, animal, or cellular studies on DU were included. This review delves into the latest research advancements on the origin and toxicokinetics of DU, as well as its pulmonary toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, hepatotoxicity, reproductive toxicity, cancer, bone toxicity, and hematological toxicity. The aim of this review is to gain a deeper understanding of the health hazards posed by DU, which is of significant importance for formulating corresponding protection strategies and measures.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| |
Collapse
|
5
|
Meng R, Du X, Fu Y, Wang F, Yang Y, Guo F, Wang X, Ge K, Yang J, Liang X, Guo H, Wang W, Liu X, Zhang H. Short Chain Chlorinated Paraffins Impaired Spermatogenesis Process in Mice via Inhibiting α-KG/TET Enzyme Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17270-17282. [PMID: 39295530 DOI: 10.1021/acs.est.4c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Short chain chlorinated paraffins (SCCPs) are widely found in various environmental media and potentially threaten human health. However, the toxicity mechanisms of SCCPs to the male reproductive system remain unclear. In this study, male BALB/c mice and GC-1 cells were used to investigate the reproductive toxicity of SCCPs and their molecular mechanisms. SCCPs decreased the content of the tricarboxylic acid cycle intermediate α-KG in testicular cells, thus inhibiting the activity of the DNA demethylase TET enzyme and resulting in an increase in the overall methylation level of the testicular genome. Correspondingly, the promoter demethylation and expression of spermatogenesis-related genes Rbm46, Sohlh1, Kit, and Dmrt1 were significantly reduced by SCCPs, which further prevented the transformation of spermatogonia to spermatocytes and reduced sperm quality in mice. The in vitro experiments suggested that the TGFβ pathway activated by oxidative stress might be an essential reason for inhibiting the tricarboxylic acid cycle and the reduction of α-KG content in testicular cells induced by SCCPs. Overall, this study reveals a novel metabolic regulatory mechanism of SCCPs-induced spermatogenesis disorders, which provides an essential theoretical basis for the prevention of reproductive toxicity of SCCPs.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yingfei Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feiyang Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450001, China
| | - Wenjun Wang
- School of Nursing, Jining Medical University, Jining, Shandong 272000, China
| | - Xiaodong Liu
- The Central Laboratory of Beijing Institute of Occupational Disease Prevention and Treatment, Beijing 100093, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
6
|
Xie X, Fu G, Liu Y, Fan C, Tan S, Huang H, Yan J, Jin L. Hedgehog pathway negatively regulated depleted uranium-induced nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3833-3845. [PMID: 38546377 DOI: 10.1002/tox.24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/12/2024]
Abstract
Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.
Collapse
Affiliation(s)
- Xueying Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Guoquan Fu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yuxin Liu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shanshan Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
7
|
Ragab SMM, Almohaimeed HM, Alghriany AAI, Khalil NSA, Abd-Allah EA. Protective effect of Moringa oleifera leaf ethanolic extract against uranyl acetate-induced testicular dysfunction in rats. Sci Rep 2024; 14:932. [PMID: 38195615 PMCID: PMC10776666 DOI: 10.1038/s41598-023-50854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
Uranyl acetate (UA) is used in civilian and military applications, predisposing it to wide dispersion in ecosystems. Using high-performance liquid chromatography, gas chromatography-mass spectrometry, and 2,2-Diphenyl-1-picrylhydrazyl scavenging radical analysis, we confirmed that Moringa oleifera leaf ethanolic extract (MLEE) is rich in biologically active phytochemicals. Thus, this study aims to investigate the possible defensive effect of MLEE against UA-induced testicular dysfunction. To achieve this, rats were divided randomly and evenly into three groups for 14 days. The control group received no treatment, while the UA group received a single intraperitoneal injection of UA at a dose of 5 mg/kg BW dissolved in saline on the 12th day of the experiment, followed by no treatment the following day. The MLEE + UA group received daily oral administration of MLEE (300 mg/kg BW) dissolved in distilled water before exposure to UA intoxication. The disruption observed in the pituitary-gonadal axis of UA-intoxicated rats was characterized by a significant decrease in luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol 17beta levels. Additionally, there was a notable increase in malondialdehyde and a decrease in catalase, superoxide dismutase, reduced glutathione, and nitric oxide, accompanied by an up-regulation in the immuno-expression of nuclear factor-kappa B, indicating a disturbance in the redox balance. The TUNEL assay confirmed a substantial rise in apoptotic cell numbers in the UA group. Testicular histopathological changes, excessive collagen deposition, and reduced glycogen content were evident following UA exposure. However, supplementation with MLEE effectively countered these mentioned abnormalities. MLEE is proposed to combat the toxicological molecular targets in the UA-affected testis by restoring the balance between oxidants and antioxidants while obstructing the apoptotic cascade. MLEE contains an abundance of redox-stabilizing and cytoprotective phytochemicals that have the potential to counteract the mechanistic pathways associated with UA exposure. These findings encourage further research into other plausible protective aspects of Moringa oleifera against the UA challenge.
Collapse
Affiliation(s)
- Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Sciences, Assiut University, Assiut, Egypt
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Nasser S Abou Khalil
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Elham A Abd-Allah
- Department of Zoology, Faculty of Science, New Valley University, El-Kharga, Egypt
| |
Collapse
|
8
|
Shu C, Li J, Liu S, Li Y, Ran Y, Zhao Y, Li J, Hao Y. Depleted uranium induces thyroid damage through activation of ER stress via the thrombospondin 1-PERK pathway. Chem Biol Interact 2023; 382:110592. [PMID: 37270086 DOI: 10.1016/j.cbi.2023.110592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Depleted uranium (DU) can cause damage to the body, but its effects on the thyroid are unclear. The purpose of this study was to investigate the DU-induced thyroid damage and its potential mechanism in order to find new targets for detoxification after DU poisoning. A model of acute exposure to DU was constructed in rats. It was observed that DU accumulated in the thyroid, induced thyroid structure disorder and cell apoptosis, and decreased the serum T4 and FT4 levels. Gene screening showed that thrombospondin 1 (TSP-1) was a sensitive gene of DU, and the expression of TSP-1 decreased with the increase of DU exposure dose and time. TSP-1 knockout mice exposed to DU had more severe thyroid damage and lower serum FT4 and T4 levels than wild-type mice. Inhibiting the expression of TSP-1 in FRTL-5 cells aggravated DU-induced apoptosis, while exogenous TSP-1 protein alleviated the decreased viability in FRTL-5 cells caused by DU. It was suggested that DU may caused thyroid damage by down-regulating TSP-1. It was also found that DU increased the expressions of PERK, CHOP, and Caspase-3, and 4-Phenylbutyric (4-PBA) alleviated the DU-induced FRTL-5 cell viability decline and the decrease levels of rat serum FT4 and T4 caused by DU. After DU exposure, the PERK expression was further up-regulated in TSP-1 knockout mice, and the increased expression of PERK was alleviated in TSP-1 over-expressed cells, as well as the increased expression of CHOP and Caspase-3. Further verification showed that inhibition of PERK expression could reduce the DU-induced increased expression of CHOP and Caspase-3. These findings shed light on the mechanism that DU may activate ER stress via the TSP 1-PERK pathway, thereby leading to thyroid damage, and suggest that TSP-1 may be a potential therapeutic target for DU-induced thyroid damage.
Collapse
Affiliation(s)
- Chang Shu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Suiyi Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yong Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
9
|
Depleted uranium causes renal mitochondrial dysfunction through the ETHE1/Nrf2 pathway. Chem Biol Interact 2023; 372:110356. [PMID: 36681261 DOI: 10.1016/j.cbi.2023.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The kidney is the main organ affected by acute depleted uranium (DU) toxicity. The mechanism of nephrotoxicity induced by DU is complex and needs to be further explored. This study aimed to elucidate the function of mitochondrial dysfunction in nephrotoxicity generated by DU and confirm the latent mechanism. We verified that DU (2.5-10 mg/kg) caused mitochondrial dysfunction in male rat kidneys and decreased ATP content and the mitochondrial membrane potential. In addition, melatonin (20 mg/kg), as an antioxidant, alleviated DU-induced oxidative stress and mitochondrial dysfunction in male rats, further reducing kidney damage caused by DU. These results indicate that mitochondrial dysfunction plays a vital role in DU nephrotoxicity. When ethylmalonic encephalopathy 1 (ETHE1) was knocked down, DU-induced oxidative stress and mitochondrial dysfunction were increased, and renal injury was aggravated. When exogenous ETHE1 protein was applied to renal cells, the opposite changes were observed. We also found that ETHE1 knockdown increased the expression of NF-E2-related factor 2 (Nrf2), a vital oxidative stress regulator, and its downstream molecules heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). Nrf2 knockout also aggravated DU-induced oxidative stress, mitochondrial dysfunction, and kidney damage. In conclusion, DU causes oxidative stress and antioxidant defense imbalance in renal cells through the ETHE1/Nrf2 pathway, further causing mitochondrial dysfunction and ultimately leading to nephrotoxicity.
Collapse
|
10
|
Schilz JR, Dashner-Titus EJ, Simmons KA, Erdei E, Bolt AM, MacKenzie DA, Hudson LG. The immunotoxicity of natural and depleted uranium: From cells to people. Toxicol Appl Pharmacol 2022; 454:116252. [PMID: 36152676 PMCID: PMC10044422 DOI: 10.1016/j.taap.2022.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Uranium is a naturally occurring element found in the environment as a mixture of isotopes with differing radioactive properties. Enrichment of mined material results in depleted uranium waste with substantially reduced radioactivity but retains the capacity for chemical toxicity. Uranium mine and milling waste are dispersed by wind and rain leading to environmental exposures through soil, air, and water contamination. Uranium exposure is associated with numerous adverse health outcomes in humans, yet there is limited understanding of the effects of depleted uranium on the immune system. The purpose of this review is to summarize findings on uranium immunotoxicity obtained from cell, rodent and human population studies. We also highlight how each model contributes to an understanding of mechanisms that lead to immunotoxicity and limitations inherent within each system. Information from population, animal, and laboratory studies will be needed to significantly expand our knowledge of the contributions of depleted uranium to immune dysregulation, which may then inform prevention or intervention measures for exposed communities.
Collapse
Affiliation(s)
- Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, Albuquerque, NM, United States of America.
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Karen A Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Esther Erdei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Debra A MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
11
|
Gu W, Gao X, Wang L, Deng G, Huang J, Yang J, Liu Y, Liu Q, Sang H. The Expression of hnRNP A2/B1 in Benign and Malignant Lung Lesions and Its Early Diagnosis Value in NSCLC. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:5687245. [PMID: 36262980 PMCID: PMC9556203 DOI: 10.1155/2022/5687245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Lung cancer in its occurrence and development of different stages exist different biological behavior changes. This paper studies the expression of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 in benign and malignant lung lesions and its early diagnosis value of nonsmall-cell lung cancer (NSCLC), aiming to provide reference for the early diagnosis and therapy of NSCLC. Some lung surgery specimens are selected from January 2021 to March 2022. All cases received no radiotherapy and chemotherapy before surgery, including 90 sufferers with benign lung lesions as the contrast set. hnRNP A2/B1 expressions are measured for comparison. The experimental results show that for lung cancer sufferers, the positive expression of hnRNP A2/B1 in their malignant lesion tissue is notoriously higher than that in their benign lesion tissue, and hnRNP A2/B1 is differently expressed in different differentiation and in different stages.
Collapse
Affiliation(s)
- Wenchao Gu
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Xiwen Gao
- Department of Pulmonary and Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 266119, China
| | - Linxun Wang
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Guoping Deng
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Jiaru Huang
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Junxia Yang
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Yuan Liu
- Department of Respiratory Medicine, Shanghai Pudong New Area People's Hospital, Shanghai 201200, China
| | - Qun Liu
- Neurology Department, Lianshui County People's Hospital, Lianshui 223400, China
| | - Hongyang Sang
- Department of Cardiothoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 201306, China
| |
Collapse
|
12
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
13
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|