1
|
Zheng X, Sun Y, Wang J, Yin Y, Li Z, Liu B, Hu H, Xu J, Dai Y, Kanwar YS, Tang Y. Cadmium exposure induces Leydig cell injury via necroptosis caused by oxidative stress and TNF-α/TNFR1 signaling. Biochem Biophys Res Commun 2025; 761:151717. [PMID: 40188597 DOI: 10.1016/j.bbrc.2025.151717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
Cadmium, a ubiquitous environmental pollutant, has been linked to testicular damage, primarily through mechanisms such as oxidative stress and various forms of programmed cell death. Despite extensive studies on its toxic effects, the specific role of necroptosis in cadmium-induced reproductive toxicity remains unclear. In this study, we provide critical insights into how cadmium triggers necroptosis in Leydig cells, leading to testicular dysfunction. Using both in vitro and in vivo models, we demonstrated that cadmium exposure induces necroptotic cell death in Leydig cells, with significant involvement of the TNF-α/TNFR1 signaling pathway and reactive oxygen species (ROS) generation. Co-treatment with Nec-1, a specific necroptosis inhibitor, significantly reduced elevated ROS levels and suppressed TNF-α/TNFR1-induced necroptotic cell death, suggesting that ROS and the TNF-α/TNFR1 signaling pathway contribute to necroptosis activation in cadmium-induced Leydig cell injury. In conclusion, we demonstrate that necroptosis is a key driver of cadmium-induced testicular damage, suggesting that targeting necroptosis could offer novel therapeutic strategies for mitigating reproductive toxicity caused by heavy metals.
Collapse
Affiliation(s)
- Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA
| | - Yaohui Sun
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Biao Liu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiarong Xu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
2
|
Su Y, Mou S, Song Y, Zhang H, Zhang Q. Genome-wide identification of the TGF-β superfamily and their expression in the Chinese mitten crab Eriocheir sinensis. Sci Rep 2025; 15:12709. [PMID: 40223023 PMCID: PMC11994790 DOI: 10.1038/s41598-025-97772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
Transforming growth factor-β superfamily genes are multifunctional cytokines that play central roles in the regulation of cell proliferation, differentiation, apoptosis, adhesion, and migration. Identifying the TGF-β superfamily in crabs could provide a basis for elucidating the genetic regulatory mechanism of growth, development, sex differentiation and environmental adaptation. To understand the complexity and evolution of the TGF-β superfamily in the Chinese mitten crab Eriocheir sinensis, this study comprehensively and systematically analysed this superfamily in the genome of E. sinensis. A total of 9 TGF-β superfamily genes have been identified, including EsBMP2, EsBMP3, EsBMP7, EsBMP10, EsBMP15, EsGDF8, EsUnivin, EsINHB and EsINHBB. A wide variation in the number of motifs and CDSs was found among different subfamilies. The expression of EsBMP2 and EsBMP7 suggested that these genes may be the main genes controlling embryonic development in E. sinensis. EsBMP2, EsBMP7 and EsBMP10 are very highly expressed in the gills. The TGF-β superfamily genes presented different expression patterns during limb regeneration and molting. In addition, this gene family also responds to environmental stresses, including nanoplastic stress, cadmium stress, air exposure, and high-salinity stress, which provides a new perspective for understanding the strong tolerance and adaptability of crabs to environmental stress. To our knowledge, this study is the first genome-wide investigation of the TGF-β superfamily in crabs. This study identified the sequence structure, phylogenetic relationship, and gene expression profiles of the TGF-β superfamily genes in the Chinese mitten crab, and the above results lay a foundation for further investigation of the evolution and biological functions of this gene family.
Collapse
Affiliation(s)
- Yu Su
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Siyu Mou
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yifan Song
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Huanglong Zhang
- Bureau of Agriculture and Rural Affairs, Quanzhou, 362100, Hui'an County, China
| | - Qian Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2025; 480:1999-2013. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
4
|
Duan M, Liu J, Cai Z, Chen L, Tian Y, Xu W, Zeng T, Gu T, Lu L. Multi-omics elucidates the kidney damage caused by aquatic Cu via the gut-kidney axis in ducks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117844. [PMID: 39914079 DOI: 10.1016/j.ecoenv.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 03/03/2025]
Abstract
Copper (Cu) is an essential trace element for biological growth and development. Excessive intake of Cu exists harmful effects on organisms. However, whether excessive Cu intake induces kidney function damage by gut microbiota regulation remains unclear. Ducks are important species of waterfowl that are often exposed to Cu contamination in water sources. In this study, we aim to elucidate the effects of Cu exposure on renal inflammation through the gut-kidney axis in ducks. The ducks were gavaged with different doses of CuSO4 (0, 100, and 200 mg/kg body weight) for 4 weeks. Results indicate that Cu exposure causes pathological damage to the kidney, with a significant increase in the levels of TNFα, IL-6, and IL-1β in both serum and renal tissue. 16S rDNA analysis revealed that the relative abundances of Candidatus_Saccharimonas and Bacteroides were significantly reduced in the Cu-induced group. Transcriptomic analysis of kidney tissue reveals that following Cu exposure, 30 genes show significant differential expression. GO and KEGG enrichment analyses were most involved in Interleukin-1 Receptor Activity, Taurine and hypotaurine metabolism, Nitrogen metabolism, and Proximal tubule bicarbonate reclamation. Metabolomic analysis revealed that 28 metabolites are present in both kidney tissue and cecal contents. Correlation analysis revealed a strong correlation among 5 common metabolites: Aminoglutethimide, Boscalid, Dantrolene, Cer[ns] d34:1, and Stearidonic acid. In the cecum, these five metabolites are closely associated with 26 intestinal microorganisms, including Bacteroides, Candidatus_Saccharimonas, and Colidextribacter. In the kidney, apart from Stearidonic acid, the other four metabolites are closely correlated with genes such as FOS, and IL1RL1. Overall, our study indicates that excessive Cu induces significant kidney inflammation, the metabolites alteration and gut microbiota disorders. These findings shed light on the underlying mechanisms of Cu-induced kidney damage via the indirect pathway of the gut-kidney axis.
Collapse
Affiliation(s)
- Mingcai Duan
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Liu P, Chen X, Zhao Y, Ali W, Xu T, Sun J, Liu Z. Anti-Stemness and Anti-Proliferative Effects of Cadmium on Bovine Mammary Epithelial Cells. Vet Sci 2024; 12:7. [PMID: 39852882 PMCID: PMC11769218 DOI: 10.3390/vetsci12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation. Western blotting results found that exposure to different concentrations of cadmium (0, 1.25, 2.5, and 5 μm) for 48 h significantly increased Gli1 expression but unexpectedly decreased the expression of downstream stem cell-related proteins including BMI1, SOX2, and ALDH. However, we also observed that treatment with 5 μm cadmium for 48 h inhibited mammosphere formation using microscopy. In this study, cadmium exposure significantly reduced cell viability and mobility. Flow cytometry detection found that cadmium decreased the percentage of cells in the G0 phase but increased the percentage of cells in the S phase and the apoptosis rate. Furthermore, cadmium exposure significantly increased the levels of caspase-8, caspase-3, and PARP cleavage as assessed by western blotting. Our study uncovers a previously unrecognized role of cadmium in mammary cell stemness and suggests that cadmium may affect breast development by impairing normal stem cell self-renewal and inducing their apoptosis. Therefore, this study provides important scientific significance regarding whether heavy metal cadmium affects normal breast development.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xueli Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Yuqing Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jing Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.C.); (Y.Z.)
| |
Collapse
|
6
|
Faruk EM, Ibrahim F, El-Wafaey DI, El Sayed YMI, Hablas MGA, Hassan MM, Zaazaa AM, Kamal KM. Spirulina platensis shields the submandibular gland from cadmium toxicity by bolstering antioxidant defenses and maintaining its structural integrity. Int Immunopharmacol 2024; 140:112851. [PMID: 39126733 DOI: 10.1016/j.intimp.2024.112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cadmium (Cd), an element categorized as a non-essential transitional metal, has potential hazards to the health of both human beings and animals. Spirulina platensis (SP), a type of blue-green algae, possesses a high concentration of essential antioxidants. The present study aimed to explore the possible defensive role of SP against Cd-induced submandibular gland injury in rats by assessment of biomarkers related to both oxidative stress and inflammatory processes, which were further explored through histopathological examination of submandibular gland tissue. Consequently, the study included 32 mature rats, subdivided into four different groups as follows: control, SP, Cadmium chloride (CdCl2), and CdCl2/SP. The duration of the study was 24days. The results revealed that CdCl2 induced submandibular gland injury as shown by the oxidant/antioxidant imbalance and increased inflammatory reactions, in addition to, histopathological changes and overexpression of BAX immunostaining. Concurrent SP administration to CdCl2-treated rats significantly improved all these effects. We concluded that concurrent SP supplement improved the submandibular gland injury provoked by CdCl2.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt.
| | - Fatma Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | | - Mahmoud M Hassan
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Mohammed Zaazaa
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Kamal M Kamal
- Student at Faculty of Medicine, Benha National University, Benha Colleges in Cairo, Egypt
| |
Collapse
|
7
|
Cui T, Dai X, Guo H, Wang D, Huang B, Pu W, Chu X, Zhang C. Molybdenum and cadmium co-induce necroptosis through Th1/Th2 imbalance-mediated endoplasmic reticulum stress in duck ovaries. J Environ Sci (China) 2024; 142:92-102. [PMID: 38527899 DOI: 10.1016/j.jes.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 03/27/2024]
Abstract
Cadmium (Cd) and excess molybdenum (Mo) pose serious threats to animal health. Our previous study has determined that Cd and/or Mo exposure can cause ovarian damage of ducks, while the specific mechanism is still obscure. To further investigate the toxic mechanism of Cd and Mo co-exposure in the ovary, forty 8-day-old female ducks were randomly allocated into four groups for 16 weeks, and the doses of Cd and Mo in basic diet per kg were as follows: control group, Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo + 4 mg Cd). Cadmium sulfate 8/3-hydrate (CdSO4·8/3H2O) and hexaammonium molybdate ((NH4)6Mo7O24·4H2O) were the origins of Cd and Mo, respectively. At the 16th week of the experiment, all ovary tissues were collected for the detection of related indexes. The data indicated that Mo and/or Cd induced trace element disorders and Th1/Th2 balance to divert toward Th1 in the ovary, which activated endoplasmic reticulum (ER) stress and then provoked necroptosis through triggering RIPK1/RIPK3/MLKL signaling pathway, and eventually caused ovarian pathological injuries and necroptosis characteristics. The alterations of above indicators were most apparent in the joint group. Above all, this research illustrates that Mo and/or Cd exposure can initiate necroptosis through Th1/Th2 imbalance-modulated ER stress in duck ovaries, and Mo and Cd combined exposure aggravates ovarian injuries. This research explores the molecular mechanism of necroptosis caused by Mo and/or Cd, which reveals that ER stress attenuation may be a therapeutic target to alleviate necroptosis.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
8
|
Feng X, Zhang R, Miao X, Li X, Cui J, Xu H, Fang X, Zhou C, Ye L, Zhou L. Role of formyl peptide receptor 2 in steatosis of L02 cells exposed to Mono-(2-ethylhexyl) phthalate. ENVIRONMENTAL TOXICOLOGY 2024; 39:3967-3979. [PMID: 38598732 DOI: 10.1002/tox.24256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) can accumulate in the liver and then lead to hepatic steatosis, while the underlying mechanism remains unclear. Inflammation plays an important role in the disorder of hepatic lipid metabolism. This study aims to clarify the role of the inflammatory response mediated by formyl peptide receptor 2 (FPR2) in steatosis of L02 cells exposed to MEHP. L02 cells were exposed to MEHP of different concentrations and different time. A steatosis model of L02 cells was induced with oleic acid and the cells were exposed to MEHP simultaneously. In addition, L02 cells were incubated with FPR2 antagonist and then exposed to MEHP. Lipid accumulation was determined by oil red O staining and extraction assay. The indicators related to lipid metabolism and inflammatory response were measured with appropriate kits. The relative expression levels of FPR2 and its ligand were determined by Western blot, and the interaction of them was detected by co-immunoprecipitation. As a result, MEHP exposure could promote the occurrence and progression of steatosis and the secretion of chemokines and inflammatory factors in L02 cells. MEHP could also affect the expression and activation of FPR2 and the secretion of FPR2 ligands. In addition, the promotion effect of MEHP on the secretion of total cholesterol and interleukin 1β in L02 cells could be significantly inhibited by the FPR2 antagonist. We concluded that FPR2 might affect the promotion effect of MEHP on steatosis of L02 cells by mediating inflammatory response.
Collapse
Affiliation(s)
- Xuemin Feng
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hang Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaoqi Fang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Chunkui Zhou
- Department of Neurology, the First Hospital of Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
9
|
Meng X, Xie S, Liu J, Lv B, Huang X, Liu Q, Wang X, Malashicheva A, Liu J. Low dose cadmium inhibits syndecan-4 expression in glycocalyx of glomerular endothelial cells. J Appl Toxicol 2024; 44:908-918. [PMID: 38396353 DOI: 10.1002/jat.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-β signaling pathway to further investigate the role of TGF-β. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-β/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.
Collapse
Affiliation(s)
- Xianli Meng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shuhui Xie
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiang Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xia Wang
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Ju Liu
- Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
10
|
Xu YR, Talukder M, Li CX, Zhao YX, Zhang C, Ge J, Li JL. Nano-selenium alleviates cadmium-induced neurotoxicity in cerebrum via inhibiting gap junction protein connexin 43 phosphorylation. ENVIRONMENTAL TOXICOLOGY 2024; 39:1163-1174. [PMID: 37860879 DOI: 10.1002/tox.24001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.
Collapse
Affiliation(s)
- Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
11
|
Yang Z, Wong J, Wang L, Sun F, Lee M, Yue GH. Unveiling the underwater threat: Exploring cadmium's adverse effects on tilapia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169104. [PMID: 38070565 DOI: 10.1016/j.scitotenv.2023.169104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Prolonged exposure to environmentally relevant amounts of cadmium (Cd) in aquatic environments, even at small doses (0.1 and 1 μg/L), might endanger the health of underwater creatures. This research delved into the impacts of a four-month cadmium exposure on Mozambique tilapia (Oreochromis mossambicus), aiming to uncover the mechanisms behind it. Through close examination, we found that the 4-momth cadmium exposure led to harmful effects on the fish's gills, muscles, brain, and intestines. This exposure also triggered changes in gene expressions in the brain and liver, affected the respiratory system and weakened liver's ability to detoxify and defend against potential infections. Looking deeper into the fish's gut, we noticed alterations in energy-related genes and disruptions in immune pathways, making it more susceptible to illnesses. The exposure to cadmium also had an impact on the fish's gut and water-dwelling microorganisms, reducing diversity and encouraging harmful microbial communities. Interestingly, some gut microbes seemed to assist in breaking down and detoxifying cadmium, which could potentially protect the fish. Taken together, prolonged low-level cadmium exposure impaired gill, muscle, and brain function, suppressed immunity, disrupted intestines, and altered microbial balance, leading to hindered growth. These insights illuminate cadmium's impact on fish, addressing vital environmental concerns.
Collapse
Affiliation(s)
- Zituo Yang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Joey Wong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Le Wang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Fei Sun
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
12
|
Hou L, Dong H, Zhang E, Lu H, Zhang Y, Zhao H, Xing M. A new insight into fluoride induces cardiotoxicity in chickens: Involving the regulation of PERK/IRE1/ATF6 pathway and heat shock proteins. Toxicology 2024; 501:153688. [PMID: 38036095 DOI: 10.1016/j.tox.2023.153688] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Fluorosis poses a significant threat to human and animal health and is an urgent public safety concern in various countries. Subchronic exposure to fluoride has the potential to result in pathological damage to the heart, but its potential mechanism requires further investigation. This study investigated the effects of long-term exposure to sodium fluoride (0, 500, 1000, and 2000 mg/kg) on the hearts of chickens were investigated. The results showed that an elevated exposure dose of sodium fluoride led to congested cardiac tissue and disrupted myofiber organisation. Sodium fluoride exposure activated the ERS pathways of PERK, IRE1, and ATF6, increasing HSP60 and HSP70 and decreasing HSP90. The NF-κB pathway and the activation of TNF-α and iNOS elicited an inflammatory response. BAX, cytc, and cleaved-caspase3 were increased, triggering apoptosis and leading to cardiac injury. The abnormal expression of HSP90 and HSP70 affected the stability and function of RIPK1, RIPK3, and MLKL, which are crucial necroptosis markers. HSPs inhibited TNF-α-mediated necroptosis and apoptosis of the death receptor pathway. Sodium fluoride resulted in heart injury in chickens because of the ERS and variations in HSPs, inducing inflammation and apoptosis. Cardiac-adapted HSPs impeded the activation of necroptosis. This paper may provide a reference for examining the potential cardiotoxic effects of sodium fluoride.
Collapse
Affiliation(s)
- Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Haiyan Dong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Enyu Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
13
|
Liu H, Dai X, Xu S, Guo H, Zhu J, Wang S, Wu Y, Zhang C. Co-exposure to molybdenum and cadmium evokes necroptosis and decreases apoptosis in duck myocardium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166074. [PMID: 37544436 DOI: 10.1016/j.scitotenv.2023.166074] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Superfluous molybdenum (Mo) and cadmium (Cd) in the environment are detrimental to organisms through their accumulation. The NF-κB/TNF-α axis plays a vital part in regulating necroptosis and apoptosis. However, the impacts of Mo and/or Cd on myocardium injury in ducks and the function of NF-κB/TNF-α axis are not clear in the process. In this research, ducks exposed to different dosages of Mo and/or Cd were applied as the study object. The findings substantiated that the accumulation of Mo and/or Cd caused elements imbalance and necroptosis in myocardial tissue. As p-NF-κB/TNF-α expression up-regulated, RIPK1/RIPK3/p-MLKL expression significantly increased in all treatment groups, while the expression of c-caspase-8/3 markedly decreased. Moreover, apoptosis rate obviously decreased in Cd treated groups and clearly elevated in Mo group. Mitochondria-mediated apoptosis was activated by excessive Mo and inhibited by Mo + Cd, but Cd exposure alone had little effect on it. Collectively, our research confirmed that Mo and/or Cd evoked necroptosis via NF-κB/TNF-α axis, and decreased death receptor-mediated apoptosis in duck myocardium, the impacts of Mo and/or Cd on mitochondrial-mediated apoptosis were different. These results are significant for studying toxicology of Mo and/or Cd and preserving the ecosystem.
Collapse
Affiliation(s)
- Hang Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sunan Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuning Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
14
|
Hou L, Wang S, Wang Y, Wang M, Cui Z, Huang H. Antagonistic effect of selenium on programmed necrosis of testicular Leydig cells caused by cadmium through endoplasmic reticulum stress in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112517-112535. [PMID: 37831247 DOI: 10.1007/s11356-023-29803-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Cadmium (Cd) is a widely distributed environmental contaminant that is highly toxic to animals and humans. However, detailed reports on Cd-induced programmed necrosis have not been seen in chicken testicular Leydig cells. Selenium (Se) is a trace element in the human body that has cytoprotective effects in a variety of pathological damages caused by heavy metals. This study investigated the potential mechanisms of Cd-induced programmed cell necrosis and the antagonistic effect of Se on Cd toxicity. Chicken testis Leydig cells were divided into six groups, namely, control, Se (5 µmol/L Na2SeO3), Cd (20 µmol/L CdCl2), Se + Cd (5 µmol/L Na2SeO3 and 20 µmol/L CdCl2), 4-phenylbutyric acid (4-PBA) + Cd (10 mmol/L 4-phenylbutyric acid and 20 µmol/L CdCl2), and Necrostatin-1 (Nec-1) + Cd (60 µmol/L Necrostatin-1 and 20 µmol/L CdCl2). The results showed that Cd exposure decreased the activity of CAT, GSH-Px, and SOD and the concentration of GSH, and increased the concentration of MDA and the content of ROS. Relative mRNA and protein expression of GRP78, PERK, ATF6, IRE1, CHOP, and JNK increased in the Cd group, and mRNA and protein expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 significantly increased in the Cd group, while Caspase-8 mRNA and protein expression significantly decreased. The abnormal expression of endoplasmic reticulum stress-related proteins was significantly reduced by 4-PBA pretreatment; the increased expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 caused by Cd toxicity was alleviated; and the expression of caspase-8 was upregulated. Conversely, the increased mRNA and protein expression of endoplasmic reticulum stress marker genes (GRP78, ATF6, PERK, IRE1, CHOP, JNK) caused by Cd was not affected after pretreatment with Nec-1. We also found that these Cd-induced changes were significantly attenuated in the Se + Cd group. We clarified that Cd can cause programmed necrosis of chicken testicular Leydig cells through endoplasmic reticulum stress, and Se can antagonize Cd-induced programmed necrosis of chicken testicular Leydig cells.
Collapse
Affiliation(s)
- Lulu Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Size Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yueyue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Min Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zilin Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
15
|
Guan M, Wang X, Pan Y, Xu Y, Cao Y, Yan L, Ma L, Ma F, Zhang X. Delving into the molecular initiating event of cadmium toxification via the dose-dependent functional genomics approach in Saccharomyces cerevisiae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121287. [PMID: 36791950 DOI: 10.1016/j.envpol.2023.121287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Determining dose-response relationship is essential for comprehensively revealing chemical-caused effects on organisms. However, uncertainty and complexity of gene/protein interactions cause the inability of traditional toxicogenomic methods (e.g., transcriptomics, proteomics and metabolomics) to effectively establish the direct relationship between chemical exposure and genes. In this work, we built an effective dose-dependent yeast functional genomics approach, which can clearly identify the direct gene-chemical link in the process of cadmium (Cd) toxification from a genome-wide scale with wide range concentrations (0.83, 2.49, 7.48, 22.45, 67.34, 202.03 and 606.1 μM). Firstly, we identified 220 responsive strains, and found that 142, 110, 91, 34, 8, 0 and 0 responsive strains can be respectively modulated by seven different Cd exposure concentrations ranging from high to low. Secondly, our results demonstrated that these genes induced by the high Cd exposure were mainly enriched in the process of cell autophagy, but ones caused by the low Cd exposure were primarily involved in oxidative stress. Thirdly, we found that the top-ranked GO biological processes with the lowest point of departure (POD) were transmembrane transporter complex and mitochondrial respiratory chain complex III, suggesting that mitochondrion might be the toxicity target of Cd. Similarly, nucleotide excision repair was ranked first in KEGG pathway with the least POD, indicating that this dose-dependent functional genomics approach can effectively detect the molecular initiating event (MIE) of cadmium toxification. Fourthly, we identified four key mutant strains (RIP1, QCR8, CYT1 and QCR2) as biomarkers for Cd exposure. Finally, the dose-dependent functional genomics approach also performed well in identifying MIE for additional genotoxicity chemical 4-nitroquinoline-1-oxide (4-NQO) data. Overall, our study developed a dose-dependent functional genomics approach, which is powerful to delve into the MIE of chemical toxification and is beneficial for guiding further chemical risk assessment.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yi Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yuqi Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Lili Ma
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of the Environment, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| |
Collapse
|
16
|
Zhao L, Cheng J, Liu D, Gong H, Bai D, Sun W. Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway. Chin J Nat Med 2023; 21:279-291. [PMID: 37120246 DOI: 10.1016/s1875-5364(23)60436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/01/2023]
Abstract
Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.
Collapse
Affiliation(s)
- Lixia Zhao
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Di Liu
- Key laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Hongxia Gong
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Decheng Bai
- Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Sun
- Department of Cardiac Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
17
|
Hassanein EHM, Bakr AG, El-Shoura EAM, Ahmed LK, Ali FEM. Acetovanillone augmented the cardioprotective effect of carvedilol against cadmium-induced heart injury via suppression of oxidative stress and inflammation signaling pathways. Sci Rep 2023; 13:5278. [PMID: 37002251 PMCID: PMC10066216 DOI: 10.1038/s41598-023-31231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Cardiac toxicity is a public health issue that can be caused by both environmental and occupational exposures. The current study aimed to investigate the effectiveness of carvedilol (CV), Acetovanillone (ACET), and their combination for ameliorating cadmium (Cd)-induced oxidative stress, inflammation, and necroptosis. Rats were assigned to; the normal group, Cd group (2 mg/kg; i.p., single dose), and the other three groups received orally CV (10 mg/kg), ACET (25 mg/kg), and CV plus ACET, respectively and a single dose of Cd. Oral administration of CV, ACET, and their combination significantly dampens cardiac oxidative injury by increasing antioxidants GSH and SOD levels, while it decreases MDA and NADPH oxidase levels mediated by decreasing cardiac abundance of Nrf2, HO-1, and SIRT1 and downregulating KEAP-1 and FOXO-3 levels. Also, they significantly attenuated inflammatory response as indicated by reducing MPO and NOx as well as proinflammatory cytokines TNF-α and IL-6 mediated by downregulating TLR4, iNOS, and NF-κB proteins expression as well as IκB upregulation. Moreover, they potently counteracted cardiac necroptosis by downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins expression. Of note, the combination of CV and ACET have marked protection that exceeded each drug alone. Conclusively, CV ad ACET potently mitigated Cd-induced cardiac intoxication by regulating NADPH oxidase, KEAP-1/Nrf2/HO-1, SIRT1/FOXO-3, TLR4/NF-κB/iNOS, and RIPK1/RIPK3/MLKL signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Lamiaa Khalaf Ahmed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
18
|
Wang M, Wang Y, Wang S, Hou L, Cui Z, Li Q, Huang H. Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress and programmed necrosis in chicken testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160601. [PMID: 36528095 DOI: 10.1016/j.scitotenv.2022.160601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a common heavy metal pollutant, and one of the important target organs of its toxicity is the testis. Selenium (Se) has the ability to antagonize the toxicity of Cd. However, the mechanism of the alleviating effects of Se on Cd in chicken testis injury through oxidative stress, endoplasmic reticulum stress (ERS), and programmed necrosis remained unclear. To explore this, 80 7-day-old chickens were divided into the Control group, the Se group (1.00 mg/kg Se), the Cd group (150.00 mg/kg Cd), and the CdSe group. On the 30th and 60th days, serum and chicken testis tissue samples were collected for testing. The results showed that Cd exposure resulted in swelling and deformation of seminiferous tubules, and thinning of the seminiferous epithelium. The ROS and MDA increased, and the SOD, CAT, GSH, GSH-Px decreased. The expression of GRP78, PERK, IRE1, ATF6, CHOP, and JNK in the Cd group increased. The expression of TNF-α, TNFR1, RIP1, RIP3, MLKL, and PARP1 increased, while the expression of Caspase-8 decreased. Histopathological changes, oxidative stress, ERS, and programmed necrosis were improved after CdSe treatment. In conclusion, Se antagonized the toxicity of Cd, and Se could alleviate Cd-induced oxidative stress, ERS, and programmed necrosis in chicken testis.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yueyue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Size Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lulu Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zilin Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
19
|
Hu Q, Zhu B, Yang G, Jia J, Wang H, Tan R, Zhang Q, Wang L, Kantawong F. Calycosin pretreatment enhanced the therapeutic efficacy of mesenchymal stem cells to alleviate unilateral ureteral obstruction-induced renal fibrosis by inhibiting necroptosis. J Pharmacol Sci 2023; 151:72-83. [PMID: 36707181 DOI: 10.1016/j.jphs.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) show antifibrotic activity in various chronic kidney diseases. Here, we aimed to investigate whether Calycosin (CA), a phytoestrogen, could enhance the antifibrotic activity of MSCs in primary tubular epithelial cells (PTECs) induced by TGF-β1 and in a mouse model of unilateral ureteral obstruction (UUO). We found that MSCs treatment significantly inhibited fibrosis, and CA pretreatment enhanced the effects of MSCs on fibrosis in vitro. Consistent with the in vitro studies, MSCs alleviated tubular injury and renal fibrosis in mice after UUO, and CA-pretreated MSCs resulted in more significant improvements in tubular injury and renal fibrosis than MSCs after UUO. Moreover, MSCs treatment significantly inhibited necroptosis by repressing the elevation of MLKL, RIPK1, and RIPK3 in PTECs treated by TGF-β1and in mice after UUO, and CA-pretreated MSCs were superior to MSCs in alleviating necroptosis. MSCs significantly reduced TNF-α and TNFR1 expression induced by TGF-β1 in PTECs and inhibited TGF-β1, TNF-α, and TNFR1 expression induced by UUO in mice. These effects of MSCs were significantly enhanced after CA pretreatment. Therefore, our results suggest that CA pretreatment enhances the antifibrotic activity of MSCs by inhibiting TGF-β1/TNF-α/TNFR1 signaling-induced necroptosis.
Collapse
Affiliation(s)
- Qiongdan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Bingwen Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Guoqiang Yang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Honglian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Ruizhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Qiong Zhang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Sichuan, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
20
|
Zhang W, Sun X, Shi X, Qi X, Shang S, Lin H. Subacute Cadmium Exposure Induces Necroptosis in Swine Lung via Influencing Th1/Th2 Balance. Biol Trace Elem Res 2023; 201:220-228. [PMID: 35118606 DOI: 10.1007/s12011-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) is a type of toxic substance, which widely exists in nature. However, the effect of Cd exposure on the toxicity of swine lungs and its underlying mechanism involved have not yet been reported. In our study, we divided swine into two groups, including a control group (C group) and Cd-exposed group. Swine in the C group were fed a basic diet, whereas swine in the Cd group were fed a 20 mg Cd/kg diet. Immunofluorescence, qRT-PCR, western blot analysis, and H&E staining were performed to detect necroptosis-related indicators. Our results found that after Cd exposure, Th1/Th2 imbalance occurred, miR-181-5p was down-regulated, TNF-α expression was increased, and the NF-κB/NLRP3 and JAK/STAT pathways and RIPK1/RIPK3/MLKL axis were activated. Furthermore, histopathological examination showed necrosis in swine lung after Cd exposure. Together, the above-mentioned results indicate that subacute Cd exposure is closely linked with necroptosis in swine lung. Our study provided evidence that Cd may act through miR-181-5p/TNF-α to induce necroptosis in swine lung. The findings of this study supplement the toxicological study of Cd and provide a reference for comparative medicine.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shaoqian Shang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
21
|
Gao M, Zhu H, Guo J, Lei Y, Sun W, Lin H. Tannic acid through ROS/TNF-α/TNFR 1 antagonizes atrazine induced apoptosis, programmed necrosis and immune dysfunction of grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 131:312-322. [PMID: 36220537 DOI: 10.1016/j.fsi.2022.09.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is a commonly used triazine herbicide, which will remain in the water source, soil and biological muscle tissue for a long time, threatening the survival of related organisms and future generations. Tannic acid (TAN), a glucosyl compound found in gallnuts, has previously been shown to antagonize heavy metal toxicity, antioxidant activity, and inflammation. However, it is unclear whether TAN can antagonize ATR-induced Grass carp hepatocytes (L8824 cells) cytotoxicity. Therefore, we treated L8824 cells with 3 μg mL-1 ATR for 24 h to establish a toxic group model. The experimental data of flow cytometry and AO/EB staining together showed that the ratio of apoptosis and necrosis in L8824 cells after ATR exposure was significantly higher than that in the control group. Furthermore, RT-qPCR showed that inflammatory factors (TNF-α, IL-1β, IL-6, INF-γ) were up-regulated and antimicrobial peptides (hepcidin, β-defensin and LEAP2) were induced down-regulated in L8824 cells, leading to immune dysfunction. The measurement results of oxidative stress-related indicators showed that the levels of ROS and MDA increased after ATR exposure, the overall anti-oxidative system was down-regulated. Western blotting confirmed that TNF-α/TNFR 1-related genes were also up-regulated. This indicates that ATR stimulates oxidative stress in L8824 cells, which in turn promotes the binding of TNF-α to TNFR 1. In addition, TRADD, FADD, Caspase-3, P53, RIP1, RIP3 and MLKL were found to be significantly up-regulated by Western blotting and RT-qPCR. Conditioned after ATR exposure compared to controls. It indicates that ATR activates apoptosis and necrosis of TNF-α/TNFR 1 pathway by inducing oxidative stress in L8824 cells. Furthermore, the use of TAN (5 μM) significantly alleviated the toxic effects of ATR on L8824 cells mentioned above. In conclusion, TAN restrains ATR-induced apoptosis, programmed necrosis and immune dysfunction through the ROS/TNF-α/TNFR 1 pathway.
Collapse
Affiliation(s)
- Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijun Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongiiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Zhao X, Shi X, Yao Y, Li X, Xu S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022; 48:946-958. [PMID: 35286732 DOI: 10.1002/biof.1834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd), a common toxic heavy metal, is believed as a risk factor for the induction and progression of cardiovascular disease. Autophagy is a highly ordered intracellular lysosomal-mediated degradation pathway that is crucial for protein and organelle quality control. Autophagy dysfunction could develop exacerbated cardiac dysfunction. However, the role of autophagy in Cd exposure-induced cardiotoxicity remains largely unknown. In this study, the Cd-induced swine cardiotoxicity model was established by feeding with a CdCl2 suppled diet (20 mg Cd/kg diet). The results showed that Cd exposure increased the expression of endoplasmic reticulum stress-related genes (GRP78, GRP94, IRE1, XBP1, PERK, ATF4, and ATF6), increased the expression of Ca2+ release channels IP3R and RYR1 and decreased the expression of Ca2+ uptake pump SERCA1. Cd exposure upregulated the expression of autophagy-related genes (CAMKKII, AMPK, ATG5, ATG7, ATG12, Beclin1, LC3-II, and P62) and downregulated mTOR expression. Cd exposure inhibited the expression of V-ATPase and cathepsins (CTSB and CTSD), and increased the expression of cathepsins in cytoplasm. Cd exposure decreased the colocalization of autophagosome and lysosome. This study revealed that autophagy flux inhibition caused by lysosomal dysfunction participates in the cardiotoxicity induced by Cd exposure in swine.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Zhang T, Shen Y, Zhu R, Shan W, Li Y, Yan M, Zhang Y. Benzo[a]pyrene exposure promotes RIP1-mediated necroptotic death of osteocytes and the JNK/IL-18 pathway activation via generation of reactive oxygen species. Toxicology 2022; 476:153244. [PMID: 35777681 DOI: 10.1016/j.tox.2022.153244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/11/2023]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) of environmental pollutants, readily produced during the processing of petroleum and fatty foods. BaP exposure can cause skeletal deformities. However, whether BaP affects osteocytes, making up over 95% of all the bone cells, remains unknown. This study aimed to investigate the effect of BaP on osteocytes in vivo and in vitro, as well as explore the underlying mechanisms. The in vivo data showed that BaP (50mg/kg) exposure for 12 weeks could cause bone destruction, and increase osteocytes death in mouse cortical femur. Our in vitro results revealed that BaP (25-100 μmol/L) exposure inhibited cell viability of MLO-Y4 cells, and resulted in cell death in a dose-dependent manner. Furthermore, BaP exposure significantly triggered necroptosis of MLO-Y4 cells, as indicated by increased propidium iodide (PI)-positive cells and up-regulation of necroptosis-related protein expressions of receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). This necrotic effect was reversed by the RIP1 inhibitor necrostatin-1 (Nec-1). Simultaneously, BaP activated the downstream c-Jun N-terminal kinase (JNK)/ interleukin (IL)-18 signaling pathway, which was suppressed after the JNK inhibitor SP600125 or Nec-1 treatment. In addition, BaP exposure promoted the production of intracellular reactive oxygen species (ROS), mitochondrial ROS (mtROS), and elevated malondialdehyde (MDA) levels; while BaP decreased superoxide dismutase (SOD) activity and antioxidant enzymes including nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels, leading to oxidative damage. The ROS scavenger N-acetylcysteine (NAC) inhibited this necroptotic death and the JNK/IL-18 pathway activation. Collectively, BaP exposure may cause RIP1-mediated necroptotic death of osteocytes and activate the JNK/IL-18 pathway via ROS generation.
Collapse
Affiliation(s)
- Tao Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Yuchen Shen
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Ruirong Zhu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Weiyan Shan
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Yurong Li
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 1158 2nd Avenue, Hangzhou 310018, China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China.
| |
Collapse
|
24
|
Li Y, Zhang Y, Feng R, Zheng P, Huang H, Zhou S, Ji W, Huang F, Liu H, Zhang G. Cadmium induces testosterone synthesis disorder by testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to reduced sexual behavior in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113345. [PMID: 35219259 DOI: 10.1016/j.ecoenv.2022.113345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a highly toxic metal pollutant that can endanger the life and health of animals. Toll-like receptor 4 (TLR4) can result in testicular cell damage by positively regulating mitogen-activated protein kinase (MAPK)/nuclear factor-kappaB (NF-κB) signaling pathway. Meanwhile, Testosterone (T) synthesis disorder can affect sexual behavior. However, the harmful influence of Cd on animal sexual behavior during its growth and development and the role of TLR4/MAPK/NF-κB signaling pathway in testicular cell damage and testosterone production remained poorly understood. Forty-two-day-old male piglets were fed with diets that contained CdCl2 (20 mg Cd/kg) for 40 days to explore the toxic effects of Cd on sexual behavior. The results showed that Cd activated TLR4, promoted MAPK (p-ERK, p-JNK, and p-p38)/NF-κB expression, induced apoptosis (Caspase-3, Cleaved Caspase3, Bax, Cyt-c, and Caspase-9 expression increased, but Bcl-2 expression decreased) and necroptosis (MLKL, RIPK1, and RIPK3 expression increased) in piglet testis. In addition, Cd exposure decreased mRNA expression of STAR, CYP11A1, 3β-HSD, CYP17A1, and 17β-HSD of testis and the concentrations of T and thyroid-stimulating hormone (TSH). Both the mRNA and protein expression levels of the major genes in TLR4/MAPK/NF-κB signaling pathway, apoptosis signaling pathway, and necroptosis signaling pathway increased significantly and the expression levels of testosterone decreased gradually in pig Leydig cells cultured in vitro after being treated with different concentrations of Cd. Moreover, Cd reduced sexual behavior (the parameters of sniffing, chin resting, and mounting decreased) in piglets. In conclusion, Cd induced testicular cell damage via TLR4/MAPK/NF-κB signaling pathway leading to testosterone synthesis disorder and sexual behavior reduction in piglets.
Collapse
Affiliation(s)
- Yulong Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenbo Ji
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China.
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
Cai J, Yang J, Chen X, Zhang H, Zhu Y, Liu Q, Zhang Z. Melatonin ameliorates trimethyltin chloride-induced cardiotoxicity: The role of nuclear xenobiotic metabolism and Keap1-Nrf2/ARE axis-mediated pyroptosis. Biofactors 2022; 48:481-497. [PMID: 34570919 DOI: 10.1002/biof.1787] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Trimethyltin chloride (TMT) is a stabilizer for polyvinyl chloride plastics that causes serious health hazards in nontarget organisms. Melatonin (MT) exhibits powerful protective effects in cardiac diseases. As a new environmental pollutant, TMT-induced cardiotoxicity and the protective effects of MT remain unclear. To explore this, the mice were treated with TMT (2.8 mg/kg) and/or MT (10 mg/kg) for 7 days. Firstly, the histopathological and ultrastructural evaluation showed that TMT induced cardiac damage, tumescent rupture and nuclear pyknosis. Moreover, TMT elevated the expressions of pyroptosis genes NLRP3, ASC and Cas1 and inflammation factors IL-6, IL-17 and TNFα. Secondly, TMT reduced antioxidant enzymes (GSH, CAT and T-AOC) via decreasing the expression of genes associated with the Keap1-Nrf2/ARE pathway to increase oxidative stress. Thirdly, TMT decreased the expression of genes associated with the ARE-driven drug metabolizing enzymes (DMEs), including Akr7a3, Akr1b8, and Akr1b10. Besides, TMT upregulated the mRNA expression of nuclear Xenobiotic metabolism on cytochrome P450s enzymes via increasing the expression of CAR, PXP, and AHR genes. Furthermore, MT treatment mitigated the aforementioned adverse changes induced by TMT. Overall, these results demonstrated that TMT caused pyroptosis and inflammation to aggravate cardiac damage via inducing excessive oxidative stress, imbalance of DMEs homeostasis, and nuclear Xenobiotic metabolism disorder, which could be alleviated by MT.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, P.R. China
| |
Collapse
|
26
|
Li S, Li A, Zhai L, Sun Y, Yu L, Fang Z, Zhang L, Peng Y, Zhang M, Wang X. Suppression of FPR2 expression inhibits inflammation in preeclampsia by improving the biological functions of trophoblast via NF-κB pathway. J Assist Reprod Genet 2022; 39:239-250. [PMID: 35018584 PMCID: PMC8866586 DOI: 10.1007/s10815-022-02395-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/04/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The dysfunction of trophoblast during inflammation plays an important role in PE. Formyl peptide receptor 2 (FPR2) plays crucial roles in the development of inflammation-associated disease. This present study aimed to explore the effect of FPR2 on a trophoblast cellular model of preeclampsia. METHODS The expression of FPR2 in placenta was detected by immunohistochemical staining and western blotting. Transfection of siRNA was used to knockdown FPR2 in HTR-8/SVneo cells. Inflammatory cytokines were detected by ELISA. CCK8, Transwell, wound healing, FACS and tube formation assays were performed to observe the abilities of cell proliferation, migration, invasion, apoptosis and angiogenesis. Western blotting was implemented to clarify that NF-κB signaling pathway was downstream of FPR2. RESULTS The expression levels of FPR2 were higher in placental tissues of patients with PE. Knockdown of FPR2 expression by siFPR2 or inhibition of its activity by WRW4 decreased the release of proinflammatory cytokines in HTR8/SVneo cells treated with LPS. Knockdown of FPR2 expression or inhibition of its activity further reversed the LPS-induced attenuation of the proliferation, migration, invasion and angiogenesis and increase in apoptosis in HTR8/SVneo cells. Moreover, the NF-κB signaling pathway was activated in both placental tissues of patients with PE and LPS-treated HTR8/SVneo cells. However, the activation was attenuated when FPR2 was knocked down or inhibited. CONCLUSION Suppression of FPR2 expression alleviated the effects of inflammation induced by LPS on trophoblasts via the NF-κB signaling pathway, which provided a novel and potential strategy for the treatment of PE.
Collapse
Affiliation(s)
- Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Liping Zhai
- Shandong Provincial Institute of Endemic Disease Control, Jinan, 250014, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Ling Yu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Yanjie Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China.
| |
Collapse
|
27
|
Dong L, Xiang J, Guo J, Chen G, Di G. Can static electric fields increase the activity of nitric oxide synthase and induce oxidative stress and damage of spleen? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4093-4100. [PMID: 34398376 DOI: 10.1007/s11356-021-15853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of ultra-high-voltage (UHV) direct-current (DC) transmissions, the impact of static electric fields (SEF) in the vicinity of overhead UHV DC transmission lines on health has aroused much public concern. This study explored the effects of 56.3kV/m SEF on the spleen of mice. Results showed that SEF exposure of 21days significantly increased malonic dialdehyde content, superoxide dismutase activity, calcineurin activity, nitric oxide synthase (NOS) activity, and the mRNA expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the spleen and caused the separation of nucleus and nuclear membrane, the disappearance of mitochondrial membrane, and the deficiency of mitochondrial cristae in splenic lymphocytes. By analysis and discussion, it was deduced that SEF could induce oxidative stress of the spleen by increasing the activity of NOS. Oxidative stress could further cause ultrastructural changes of splenic lymphocytes. Moreover, oxidative stress could cause the increase of the mRNA expression levels of TNF-α and NF-κB, which contributed to the occurrence of spleen inflammation.
Collapse
Affiliation(s)
- Li Dong
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Junli Xiang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jingyi Guo
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Institute of Environmental Health, School of Public Health, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guoqing Di
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
28
|
Ju Y, Qiu L, Sun X, Liu H, Gao W. Ac2-26 mitigated acute respiratory distress syndrome rats via formyl peptide receptor pathway. Ann Med 2021; 53:653-661. [PMID: 34008449 PMCID: PMC8143635 DOI: 10.1080/07853890.2021.1925149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by severe local and systemic inflammation. Ac2-26, an Annexin A1 Peptide, can reduce the lung injury induced by reperfusion via the inhibition of inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 in ARDS. METHODS Thirty-two rats were anaesthetized and randomized into four groups: sham (S), ARDS (A), ARDS/Ac2-26 (AA), and ARDS/Ac2-26/BOC-2 (AAB) groups. Rats in the S group received saline for intratracheal instillation, while rats in the other three groups received endotoxin for intratracheal instillation, in order to prepare the ARDS and inject the saline, Ac2-26, and Ac2-26 combined with BOC-2. After 24 h, the PaO2/FiO2 ratio was calculated. The lung tissue wet-to-dry weight ratio and the protein level in bronchoalveolar lavage fluid (BALF) were tested. Then, the cytokines in BALF and serum, and the inflammatory cells in BALF were investigated. Afterwards, the oxidative stress response and histological injury was evaluated. Subsequently, the epithelium was cultured and analyzed to estimate the effect of Ac2-26 on apoptosis. RESULTS Compared to the S group, all indexes worsened in the A, AA, and AAB groups. Furthermore, compared to the S group, Ac2-26 significantly improved the lung injury and alveolar-capillary permeability, and inhibited the oxidative stress response. In addition, Ac2-26 reduced the local and systemic inflammation through the regulation of pro- and anti-inflammatory cytokines, and the decrease in inflammatory cells in BALF. Moreover, Ac2-26 inhibited the epithelium apoptosis induced by LPS through the modulation of apoptosis-regulated proteins. The protective effect of Ac2-26 on ARDS was partially reversed by the FPR inhibitor, BOC-2. CONCLUSION Ac2-26 reduced the lung injury induced by LPS, promoted alveolar-capillary permeability, ameliorated the local and systemic inflammation, and inhibited the oxidative stress response and apoptosis. The protection of Ac2-26 on ARDS was mainly dependent on the FPR pathway.
Collapse
Affiliation(s)
- Yingnan Ju
- Department of ICU, The Cancer Hospital of Harbin Medical University, Harbin, China
| | - Lin Qiu
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xikun Sun
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengyu Liu
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Danes JM, Palma FR, Bonini MG. Arsenic and other metals as phenotype driving electrophiles in carcinogenesis. Semin Cancer Biol 2021; 76:287-291. [PMID: 34563651 DOI: 10.1016/j.semcancer.2021.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022]
Abstract
There are several sources of heavy metal exposures whether occupational or environmental. These are connected both with the existence of natural reservoirs of metal toxicants or human activity such as mining, welding and construction. In general, exposure to heavy metals, such as cadmium (Cd), mercury (Hg), nickel (Ni), lead (Pb) and metalloids, such as arsenic (As), has been associated with diseases including neurodegenerative diseases, diabetes and cancer. Common to these diseases is the loss of cellular physiologic performance and phenotype required for proper function. On the metal side, electrophilic behavior that disrupts the electronic (or redox) state of cells is a common feature. This suggests that there may be a connection between changes to the redox equilibrium of cells caused by environmental exposures to heavy metals and the pathogenic effects of such exposures. In this mini-review, we will focus on two environmental contaminants cadmium (a metal) and arsenic (a metalloid) and explore their interactions with living organisms from the perspective of their electrophilic chemical reactivity that underlies both their potential as carcinogens and as drivers of more aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Jeanne M Danes
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States
| | - Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, United States.
| |
Collapse
|
30
|
Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology 2021; 461:152899. [PMID: 34416349 DOI: 10.1016/j.tox.2021.152899] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant with immunotoxicity and endocrine toxicity. M1/M2 macrophages participate in the immune response and exert an essential influence on fibrosis. Nevertheless, whether Cd can induce porcineadrenal fibrosis by affecting the polarization of M1/M2 macrophages and its potential regulatory mechanism have not been explored. We added 20 mg/kg CdCl2 to the pig diet for 40 days to investigate the fibrogenic effect of subacute Cd exposure on the adrenal gland. The results indicated that the ACTH and CORT in serum were decreased by 15.26 % and 21.99 %, respectively. The contents of adrenal mineral elements Cd, Cr, Mn were increased up to 34, 1.93, 1.42 folds and Co, Zn, Sn were reduced by 21.57 %, 20.52 %, 15.75 %. Concurrently, the pro-oxidative indicators (LPO, MDA and H2O2) were increased by 1.85, 2.20, 2.77 folds and 3.60, 11.15, 4.11 folds upregulated mRNA levels of TLR4, NF-κB, NLRP3 were observed. Subsequently, the expression of M1 macrophages polarization markers (IL-6, iNOS, TNF-α, CCL2 and CXCL9) were raised by 2.03, 2.30, 2.35, 1.58, 1.56 folds, while M2 macrophages (IL-4, CCL24, Arg1, IL-10, MRC1) showed a 62.34 %, 31.88 %, 50.26 %, 74.00 %, 69.34 % downregulation. The expression levels of AMPK subunits and genes related to glycolysis, oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) were also markedly increased. Additionally, the expression level of TGF-β1, Smad2/3 and downstream pro-fibrotic markers was obviously upregulated. Taken together, we conclude that Cd activates the oxidative stress-mediated TLR4/NF-κB/NLRP3 inflammatory signal transduction, leading to porcine adrenal fibrosis by promoting macrophage polarization toward M1.
Collapse
|
31
|
Cadmium exposure induces inflammation and necroptosis in porcine adrenal gland via activating NF-κB/MAPK pathway. J Inorg Biochem 2021; 223:111516. [PMID: 34237625 DOI: 10.1016/j.jinorgbio.2021.111516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a heavy metal harmful to animals and humans. Cd exposure causes inflammation or necroptosis in many tissues, including adrenal tissue. However, the current researches on the effects of Cd2+ in adrenal tissues are not enough. Therefore, in our experiment Cd chloride (CdCl2) was added to the piglet's diet at a concentration of 20 mg/kg to study the effects of Cd2+ exposure on the porcine adrenal tissue. Our results showed that Cd2+ exposure could cause inflammation by activating the nuclear factor kappa-B (NF-κB) pathway, which in turn induced necroptosis in adrenal tissue with the activated mitogen-activated protein kinase (MAPK) pathway. The expression increase of inflammatory factors and necroptosis downstream genes, and the downregualtion of cysteinyl aspartate specific proteinase 8 (Caspase 8) proved that Cd2+ exposure caused inflammation and necroptosis in adrenal tissue. We conclude that this report provides more basic theoretical data for exploring the mechanism of adrenal injury.
Collapse
|