1
|
Zhu L, Yang Y, Tan J, Lin Y, Qing J, Li X, Zeng L. Effect of 2,5-hexanedione on rat ovarian granulosa cell apoptosis involves endoplasmic reticulum stress-dependent m-TOR signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:319-328. [PMID: 39668517 DOI: 10.1080/15287394.2024.2438832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Occupational exposure to N-hexane/2,5-hexanedione (2,5-HD) was found to adversely affect reproductive functions in females. However, there are few studies regarding the mechanisms underlying reproductive system damage initiated by 2,5-HD. Several studies demonstrated that 2,5-HD exerts hormonal dysfunctions in females by promoting apoptosis using rat ovarian granulosa cells (GCs) as a model. The endoplasmic reticulum (ER) plays a key role in cellular processes such as protein folding and modification, Ca2+ storage, and lipid synthesis, which are known to involve the activation of stress (ERS)-dependent m-TOR signaling pathway. Thus, the aim of this study was to examine the effects of 2,5-HD on ER and the associated activation of stress (ERS)-dependent m-TOR signaling pathway resulting in consequent apoptosis of ovarian GCs. Data demonstrated that after intraperitoneal treatment with 100, 200, or 400 mg/kg 2,5-HD for 6 consecutive weeks, 5 times per week, a decrease in body weight, ovarian weight, and relative ovary weight was found. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed that 2,5-HD promoted apoptosis of ovarian GCs, which involved enhanced relative protein expression levels of m-TOR/p-mTOR. Our findings demonstrated that 2,5-HD (1) elevated expression levels of pro-apoptosis-related genes Bax and Caspase 3, (2) decreased expression levels of the anti-apoptosis gene Bcl-2, and (3) activated the protein expression of glucose-regulatory protein 78 (GRP78), inositol-requiring enzyme-1 (IRE1), and c-Jun terminal kinase (JNK) associated with increased apoptosis. Evidence indicates that chronic exposure to 2,5-HD induced apoptosis of ovarian GCs, and the possible mechanism underlying this effect involves the ERS-dependent m-TOR signaling pathway.
Collapse
Affiliation(s)
- Lemei Zhu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yue Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingsi Tan
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Yibo Lin
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Jiaqi Qing
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Xin Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
| | - Lingfeng Zeng
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations & School of Public Health, Changsha Medical University, Changsha, China
- Department of Pharmacology and Toxicology, Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| |
Collapse
|
2
|
Wang Y, Zhuang Z, He G, Zalán Z, Shi H, Du M, Kan J, Cai T, Chen K. A preliminary study of combined toxicity and underlying mechanisms of imidacloprid and cadmium coexposure using a multiomics integration approach. Toxicology 2025; 511:154063. [PMID: 39842396 DOI: 10.1016/j.tox.2025.154063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Imidacloprid (IMI) and cadmium (Cd) have been shown to be harmful to mammals separately, but their combined toxicity to mammals remains largely unknown. In this study, biochemical analysis (oxidative stress and serum indicators of liver and kidney function), pathological sections and multiomics (metabolomics and transcriptomics) methods were used to investigate the changes and mechanisms of liver and kidney in mice coexposed to IMI and Cd. Biochemical analysis and pathological section results showed that oxidative stress, organ function, and cell damage were aggravated after the combination of the two methods. Omics results revealed the following mechanism: When mouse liver and kidney cells were threatened by the external environment, mitochondrial DNA was inhibited, which leads to changes in energy metabolism. In this process, lipid metabolism and amino acid metabolism were disordered, resulting in the inhibition of substances related to lipid metabolism and amino acid metabolism that protect the body from oxidative damage, and then showed more serious liver and kidney oxidative stress and liver and kidney function and cell damage. This research offers novel insights for the assessment of the safety profile associated with the concurrent exposure of the two chemicals in mammalian species.
Collapse
Affiliation(s)
- Yuankai Wang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ziyue Zhuang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Zsolt Zalán
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest 1118, Hungary
| | - Hui Shi
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2025; 203:608-623. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
4
|
Wang Y, Li Y, Wu Y, Wu A, Xiao B, Liu X, Zhang Q, Feng Y, Yuan Z, Yi J, Wu J, Yang C. Endoplasmic reticulum stress promotes oxidative stress, inflammation, and apoptosis: A novel mechanism of citrinin-induced renal injury and dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116946. [PMID: 39208586 DOI: 10.1016/j.ecoenv.2024.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Citrinin (CTN) has been reported to induce renal failure and structural damage, but its nephrotoxic effects and mechanisms are not fully understood. Therefore, we established a model by orally administering CTN (0, 1.25, 5, or 20 mg/kg) to mice for 21 consecutive days. Histological and biochemical analyses revealed that CTN caused structural damage to renal tubules, increased inflammatory cell infiltration, and elevated levels of serum markers of renal function (creatinine, urea, and uric acid). Moreover, mRNA transcript levels of the inflammatory factors TNF-α, IL-1β, and IL-6 were increased, indicating the occurrence of an inflammatory response. Furthermore, exposure to CTN induced renal oxidative stress by decreasing antioxidant GSH levels, antioxidant enzyme (SOD, CAT) activities, and increasing oxidative products (ROS, MDA). In addition, CTN increased the expression of proteins associated with endoplasmic reticulum (ER)stress and apoptotic pathways. ER stress has been shown to be involved in regulating various models of kidney disease, but its role in CTN-induced renal injury has not been reported. We found that pretreatment with the ER stress inhibitor 4-PBA (240 mg/kg, ip) alleviated CTN-induced oxidative stress, NF-κB pathway mediated inflammatory response, and apoptosis. Interestingly, 4-PBA also partially alleviated renal structural damage and dysfunction. Thus, ER stress may be a novel target for the prevention and treatment of CTN-induced renal injury.
Collapse
Affiliation(s)
- Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Bo Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaofang Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Qike Zhang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yiya Feng
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China.
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China; Institute of Yunnan Circular Agricultural Industry, Puer 665000, PR China.
| |
Collapse
|
5
|
Guo YY, Liang NN, Zhang XY, Ren YH, Wu WZ, Liu ZB, He YZ, Zhang YH, Huang YC, Zhang T, Xu DX, Xu S. Mitochondrial GPX4 acetylation is involved in cadmium-induced renal cell ferroptosis. Redox Biol 2024; 73:103179. [PMID: 38733909 PMCID: PMC11103486 DOI: 10.1016/j.redox.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Increasing evidences demonstrate that environmental stressors are important inducers of acute kidney injury (AKI). This study aimed to investigate the impact of exposure to Cd, an environmental stressor, on renal cell ferroptosis. Transcriptomics analyses showed that arachidonic acid (ARA) metabolic pathway was disrupted in Cd-exposed mouse kidneys. Targeted metabolomics showed that renal oxidized ARA metabolites were increased in Cd-exposed mice. Renal 4-HNE, MDA, and ACSL4, were upregulated in Cd-exposed mouse kidneys. Consistent with animal experiments, the in vitro experiments showed that mitochondrial oxidized lipids were elevated in Cd-exposed HK-2 cells. Ultrastructure showed mitochondrial membrane rupture in Cd-exposed mouse kidneys. Mitochondrial cristae were accordingly reduced in Cd-exposed mouse kidneys. Mitochondrial SIRT3, an NAD+-dependent deacetylase that regulates mitochondrial protein stability, was reduced in Cd-exposed mouse kidneys. Subsequently, mitochondrial GPX4 acetylation was elevated and mitochondrial GPX4 protein was reduced in Cd-exposed mouse kidneys. Interestingly, Cd-induced mitochondrial GPX4 acetylation and renal cell ferroptosis were exacerbated in Sirt3-/- mice. Conversely, Cd-induced mitochondrial oxidized lipids were attenuated in nicotinamide mononucleotide (NMN)-pretreated HK-2 cells. Moreover, Cd-evoked mitochondrial GPX4 acetylation and renal cell ferroptosis were alleviated in NMN-pretreated mouse kidneys. These results suggest that mitochondrial GPX4 acetylation, probably caused by SIRT3 downregulation, is involved in Cd-evoked renal cell ferroptosis.
Collapse
Affiliation(s)
- Yue-Yue Guo
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Nan-Nan Liang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Ya-Hui Ren
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wen-Zheng Wu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Bing Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yi-Zhang He
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yi-Hao Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China.
| | - Shen Xu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Chou X, Li X, Ma K, Shen Y, Min Z, Xiao W, Zhang J, Wu Q, Sun D. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166955. [PMID: 37704144 DOI: 10.1016/j.scitotenv.2023.166955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Cadmium (Cd) is a commonly found environmental pollutant and is known to damage multiple organs with kidneys being the most common one. N-methyl-d-aspartate receptor 1 (NMDAR1) is a ligand-gated ion channel that is highly permeable to calcium ion (Ca2+). Because Cd2+ and Ca2+ have structural and physicochemical similarities, whether and how Cd could interfere NMDAR1 function to cause renal epithelial cells dysfunction remains unknown. In this study, we investigated the role of NMDAR1 in Cd-induced renal damage and found that Cd treatment upregulated NMDAR1 expression and promoted epithelial-mesenchymal transition (EMT) in mouse kidneys in vivo and human proximal tubular epithelial HK-2 cells in vitro, which were accompanied with activation of the inositol-requiring enzyme 1 (IRE-1α) / spliced X box binding protein-1 (XBP-1s) pathway, an indicative of endoplasmic reticulum (ER) stress. Mechanistically, NMDAR1 upregulation by Cd promoted Ca2+ channel opening and Ca2+ influx, resulting in ER stress and subsequently EMT in HK-2 cells. Inhibition of NMDAR1 by pharmacological antagonist MK-801 significantly attenuated Cd-induced Ca2+ influx, ER stress, and EMT. Pretreatment with the IRE-1α/XBP-1s pathway inhibitor STF-083010 also restored the epithelial phenotype of Cd-treated HK-2 cells. Therefore, our findings suggest that NMDAR1 activation mediates Cd-induced EMT in proximal epithelial cells likely through the IRE-1α/XBP-1s pathway, supporting the idea that NMDAR1 could be a potential therapeutic target for Cd-induced renal damage.
Collapse
Affiliation(s)
- Xin Chou
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Xiaohu Li
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China
| | - Kunpeng Ma
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Yue Shen
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Zhen Min
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jingbo Zhang
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China
| | - Qing Wu
- Department of Toxicology, School of Public Health, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Daoyuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital affiliated to Tongji University, Shanghai 200433, China.
| |
Collapse
|
7
|
Yu TJ, Shiau JP, Tang JY, Farooqi AA, Cheng YB, Hou MF, Yen CH, Chang HW. Physapruin A Exerts Endoplasmic Reticulum Stress to Trigger Breast Cancer Cell Apoptosis via Oxidative Stress. Int J Mol Sci 2023; 24:ijms24108853. [PMID: 37240198 DOI: 10.3390/ijms24108853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Physalis plants are commonly used traditional medicinal herbs, and most of their extracts containing withanolides show anticancer effects. Physapruin A (PHA), a withanolide isolated from P. peruviana, shows antiproliferative effects on breast cancer cells involving oxidative stress, apoptosis, and autophagy. However, the other oxidative stress-associated response, such as endoplasmic reticulum (ER) stress, and its participation in regulating apoptosis in PHA-treated breast cancer cells remain unclear. This study aims to explore the function of oxidative stress and ER stress in modulating the proliferation and apoptosis of breast cancer cells treated with PHA. PHA induced a more significant ER expansion and aggresome formation of breast cancer cells (MCF7 and MDA-MB-231). The mRNA and protein levels of ER stress-responsive genes (IRE1α and BIP) were upregulated by PHA in breast cancer cells. The co-treatment of PHA with the ER stress-inducer (thapsigargin, TG), i.e., TG/PHA, demonstrated synergistic antiproliferation, reactive oxygen species generation, subG1 accumulation, and apoptosis (annexin V and caspases 3/8 activation) as examined by ATP assay, flow cytometry, and western blotting. These ER stress responses, their associated antiproliferation, and apoptosis changes were partly alleviated by the N-acetylcysteine, an oxidative stress inhibitor. Taken together, PHA exhibits ER stress-inducing function to promote antiproliferation and apoptosis of breast cancer cells involving oxidative stress.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
8
|
Xie H, Shi Y, Zhou Y, Liu H. TMBIM6 promotes diabetic tubular epithelial cell survival and albumin endocytosis by inhibiting the endoplasmic reticulum stress sensor, IRE1α. Mol Biol Rep 2022; 49:9181-9194. [PMID: 35857174 DOI: 10.1007/s11033-022-07744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
AIM Reduced albumin reabsorption in proximal tubular epithelial cells (PTECs), resulting from decreased megalin plasma membrane (PM) localization due to prolonged endoplasmic reticulum (ER) stress, potentially contributes to albuminuria in early diabetic kidney disease (DKD). To examine this possibility, we investigated the cytoprotective effect of TMBIM6 in promoting diabetic PTEC survival and albumin endocytosis by attenuating ER stress with an IRE1α inhibitor, KIRA6. METHODS AND RESULTS Renal TMBIM6 distribution and expression were determined by immunohistochemistry, western blotting, and qPCR, whereas tubular injury was evaluated in db/db mice. High-glucose (HG)-treated HK-2 cells were either treated with KIRA6 or transduced with a lentiviral vector for TMBIM6 overexpression. ER stress was measured by western blotting and ER-Tracker Red staining, whereas apoptosis was determined by performing TUNEL assays. Megalin expression was measured by immunofluorescence, and albumin endocytosis was evaluated after incubating cells with FITC-labeled albumin. Tubular injury and TMBIM6 downregulation occurred in db/db mouse renal cortical tissues. Both KIRA6 treatment and TMBIM6 overexpression inhibited ER stress by decreasing the levels of phosphorylated IRE1α, XBP1s, GRP78, and CHOP, and stabilizing ER expansion in HG-treated HK-2 cells. TUNEL assays performed with KIRA6-treated or TMBIM6-overexpressing cells showed a significant decrease in apoptosis, consistent with the significant downregulation of BAX and upregulation of BCL-2, as measured by immunoblotting. Both KIRA6 and TMBIM6 overexpression promoted megalin PM localization and restored albumin endocytosis in HG-treated HK-2 cells. CONCLUSION TMBIM6 promoted diabetic PTEC survival and albumin endocytosis by negatively regulating the IRE1α branch of ER stress.
Collapse
Affiliation(s)
- Huidi Xie
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Shi
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhou
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongfang Liu
- Department of Nephrology and Endocrinology (A), Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
- Dongzhimen Hospital, Renal Research Institute of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, No. 5, Haiyuncang Alley, Dongcheng District, 100700, Beijing, China.
| |
Collapse
|
9
|
Ni Y, Deng J, Bai H, Liu C, Liu X, Wang X. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways. J Cell Mol Med 2021; 26:312-325. [PMID: 34845819 PMCID: PMC8743652 DOI: 10.1111/jcmm.17081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/30/2022] Open
Abstract
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.
Collapse
Affiliation(s)
- Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofang Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|