1
|
Cui Y, Guan H, Okyere SK, Hua Z, Deng Y, Deng H, Ren Z, Deng J. Microbial Guardians or Foes? Metagenomics Reveal Association of Gut Microbiota in Intestinal Toxicity Caused by DON in Mice. Int J Mol Sci 2025; 26:1712. [PMID: 40004174 PMCID: PMC11855166 DOI: 10.3390/ijms26041712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The role of gut microbiota has become a research hotspot in recent years; however, whether the gut microbiota are involved in the alleviation or exacerbation of Deoxynivalenol (DON) toxicity has not been fully studied. Therefore, the objective of this study was to investigate whether the gut microbiota are involved in reducing or aggravating the intestinal damage induced by DON in mice. Mice that received or did not receive antibiotic-induced intestinal flora clearance were orally given DON (5 mg kg/bw/day) for 14 days. At the end of the experiment, serum, intestinal tissue samples and colon contents were collected for further analysis. DON caused development of severe histopathological damage, such as necrosis and inflammation of the jejunum and colon in mice without gut microbiota clearance. The levels of tight junction proteins ZO-1 and occludin were reduced in the jejunum and colon of mice without gut microbiota clearance. In addition, the mRNA and protein levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were increased in mice without gut microbiota clearance. The presence of microbiota exacerbate the intestinal damage induced by DON via changes in gut microbiota abundance and production of gut damaging metabolites.
Collapse
Affiliation(s)
- Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Haoyue Guan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
- Department of Pharmaceutical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Zixuan Hua
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Youtian Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Huidan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| | - Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultual University, Chengdu 611130, China; (Y.C.); (H.G.); (S.K.O.); (Z.H.); (Y.D.); (H.D.)
| |
Collapse
|
2
|
Li L, Zhi M, Wang S, Deng J, Cai Q, Feng D. The effect of workplace environment on coal miners' gut microbiota in a mouse model. Front Microbiol 2024; 15:1453798. [PMID: 39723143 PMCID: PMC11668784 DOI: 10.3389/fmicb.2024.1453798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The coal mine workplace environment is a significant factor in inducing occupational health issues, such as intestinal dysfunction in coal miners. However, the mechanism by which the coal mine workplace environment induces intestinal dysfunction is still unclear. Therefore, we applied the Coal Mine Workplace Environment Biological Simulation (CEBS) model which was previously constructed to detect the intestinal pathological manifestations and changes in the gut microbiota of mice from the perspectives of intestinal function, tissue morphology, and cell molecules. CEBS mice showed increased fecal water content, shortened colon length, significant activation of MPO+ and CD11b+ numbers, and significant changes in IL-1b, IL-6, and IL-12 expression levels. In addition, we also found an imbalance in the proportions of Firmicutes, Bacteroidetes, Lactobacillus, and Parabacteroides in CEBS mice, resulting in significant changes in gut microbial diversity. After intervention with compound probiotics, the intestinal function of CEBS + Mix mice was improved and inflammation levels were reduced. Results indicated that stress in the coal mine workplace environment can lead to intestinal dysfunction and inflammatory damage of the colon and use of compound probiotics can improve intestinal dysfunction in CBES mice. In our study, we revealed that there is a correlation between coal mine workplace environment and diversity disorders of gut microbiota. This discovery has enhanced the relevant theories on the causes of intestinal dysfunction in coal miners and has suggested a new approach to intervention.
Collapse
Affiliation(s)
- Lei Li
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Mei Zhi
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Siwei Wang
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
- Safety Supervision Department, Nanhai Department of Transportation, Foshan, China
| | - Jun Deng
- School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China
- Key Laboratory for Prevention and Control of Coal Fires in Shaanxi Province, Xi'an, China
| | - Qing Cai
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Li P, Han X, Li J, Wang Y, Cao Y, Wu W, Liu X. Aerobic exercise training engages the canonical wnt pathway to improve pulmonary function and inflammation in COPD. BMC Pulm Med 2024; 24:236. [PMID: 38745304 PMCID: PMC11095004 DOI: 10.1186/s12890-024-03048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/β-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/β-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/β-catenin agonist) and XAV939 (Wnt/β-catenin antagonist) to investigate whether Wnt/β-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, β-catenin and PPARγ proteins in the lung tissue. RESULTS Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased β-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/β-catenin-PPARγ pathway.
Collapse
Affiliation(s)
- Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Jian Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, P.R. China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, P.R. China.
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, P.R. China.
| |
Collapse
|
4
|
Chen Q, Jiang C, Li H. Indole-3-Carbinol Promotes Apoptosis and Inhibits the Metastasis of Esophageal Squamous Cell Carcinoma by Downregulating the Wnt/β-Catenin Signaling Pathway. Nutr Cancer 2024; 76:543-551. [PMID: 38588526 DOI: 10.1080/01635581.2024.2337159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have been significantly increasing in China. Indole-3-carbinol (I3C), a naturally occurring component in cruciferous vegetables, is an effective cancer therapy. Yet, its effect and action mechanism in ESCC are still not fully understood. This study explored the role of I3C in ESCC in vitro and in vivo by focusing on the Wnt/β-catenin signaling pathway. MTT and flow cytometry were used to assess cell viability and apoptosis in EC18 and TE1 cells, while wound healing and transwell assays were used to investigate cell migration and invasion in vitro. Expression of β-catenin, c-myc, and cyclin D1 was determined by Western blot; LiCl (an agonist of the canonical Wnt signaling that inhibits GSK3β activity) was used to assess the role of I3C on the Wnt/β-catenin signaling pathway. For in vivo experiments, nude BALB/c mice bearing EC18 xenografts were treated with I3C and/or LiCl. I3C promoted ESCC apoptosis and inhibited cell migration and invasion by downregulating β-catenin, c-myc, and cyclin D1 in vitro and decreased the tumor growth in vivo; this process was reversed by LiCl treatment. In summary, I3C inhibits ESCC malignant behavior by suppressing the Wnt/β-catenin signaling pathway, thus deeming it a promising drug for ESCC treatment.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Congbo Jiang
- Beiqing Road Outpatient Department, Jingbei Medical District of PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Xiang Y, Jiang Y, Lu L. Low-Dose Trypsin Accelerates Wound Healing via Protease-Activated Receptor 2. ACS Pharmacol Transl Sci 2024; 7:274-284. [PMID: 38230283 PMCID: PMC10789143 DOI: 10.1021/acsptsci.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
The management of wounds remains a significant healthcare challenge, highlighting the need for effective wound healing strategies. To address this, it is crucial to explore the molecular mechanisms underlying tissue repair as well as explore potential therapeutic approaches. Trypsin, as a serine protease, has been clinically utilized for wound healing for decades; however, it still lacks systemic investigation on its role and related mechanism. This study aimed to investigate the effects of low-dose trypsin on wound healing both in vitro and in vivo. While trypsin is an endogenous stimulus for protease-activated receptor 2 (PAR2), we discovered that both low-dose trypsin and synthesized PAR2 agonists significantly enhanced the migration, adhesion, and proliferation of fibroblasts and macrophages, similar to the natural repair mechanism mediated by mast cell tryptase. Moreover, such cell functions induced by trypsin were largely inhibited by PAR2 blockade, indicating the participation of trypsin via PAR2 activation. Additionally, low-dose trypsin notably expedited healing and regeneration while enhancing collagen deposition in skin wounds in vivo. Importantly, upon stimulation of trypsin or PAR2 agonists, there were significant upregulations of genes including claudin-7 (Cldn7), occludin (Ocln), and interleukin-17A (IL-17A) associated with proliferation and migration, extracellular matrix (ECM), tight junction, and focal adhesion, which contributed to wound healing. In summary, our study suggested that a low-dose trypsin could be a promising strategy for wound healing, and its function was highly dependent on PAR2 activation.
Collapse
Affiliation(s)
- Yuxin Xiang
- Sichuan
Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
- School
& Hospital of Stomatology, Wenzhou Medical
University, Wenzhou 325027, Zhejiang China
| | - Yuhong Jiang
- Sichuan
Engineering Research Center for Biomimetic Synthesis of Natural Drugs,
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China
| | - Lei Lu
- School
& Hospital of Stomatology, Wenzhou Medical
University, Wenzhou 325027, Zhejiang China
| |
Collapse
|
6
|
Liu Y, Zhao Y, Wu J, Liu T, Tang M, Yao Y, Xue P, He M, Xu Y, Zhang P, Gu M, Qu W, Zhang Y. Lithium impacts the function of hematopoietic stem cells via disturbing the endoplasmic reticulum stress and Hsp90 signaling. Food Chem Toxicol 2023; 181:114081. [PMID: 37783420 DOI: 10.1016/j.fct.2023.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Lithium (Li) has been widely used in clinical therapy and new Li-ion battery industry. To date, the impact of Li on the development of immune cells is largely unknown. The aim of this study was to investigate the impact of Li on hematopoiesis. C57BL/6 (B6) mice were treated with 50 ppm LiCl, 200 ppm LiCl, or the control via drinking water for 3 months, and thereafter the hematopoiesis was evaluated. Treatment with Li increased the number of mature lymphoid cells while suppressing the number of mature myeloid cells in mice. In addition, a direct action of Li on hematopoietic stem cells (HSC) suppressed endoplasmic reticulum (ER) stress to reduce the proliferation of HSC in the bone marrow (BM), thus leading to fewer HSC in mice. On the other hand, the suppression of ER stress by Li exposure increased the expression of Hsp90, which promoted the potential of lymphopoiesis but did not impact that for myelopoiesis in HSC in the BM of mice. Moreover, in vitro treatment with Li also likely disturbed the ER stress-Hsp90 signaling, suppressed the proliferation, and increased the potential for lymphopoiesis in human HSC. Our study reveals a previously unrecognized toxicity of Li on HSC and may advance our understanding for the immunotoxicology of Li.
Collapse
Affiliation(s)
- Yalin Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jiaojiao Wu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Ting Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - MengKe Tang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanyi Xu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Zhejiang, 313000, China.
| | - Minghua Gu
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, 200336, China.
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
8
|
Sun M, Ren Z, Wei T, Huang Y, Zhang X, Zheng Q, Qin T. Preparation, characterization and immune activity of Codonopsis pilosula polysaccharide loaded in chitosan-graphene oxide. Int J Biol Macromol 2022; 221:1466-1475. [PMID: 36070821 DOI: 10.1016/j.ijbiomac.2022.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the effects of chitosan graphene oxide Codonopsis pilosula polysaccharide (CS-GO-CPP) complex on the immune function of macrophage cells (RAW264.7). In this experiment, chitosan (CS) was combined with graphene oxide (GO) by electrostatic action to prepare CS-GO nanocomposites, and it was used as a carrier to load Codonopsis pilosula polysaccharide (CPP) onto CS-GO to prepare CS-GO-CPP. Using infrared spectroscopy detection, zeta potential detection, and thermogravimetric analysis, we conduct a preliminary analysis of the structure of CS-GO-CPP. Macrophages were employed to evaluate CS-GO-CPP immunomodulatory activity and the possible mechanism responsible for the activation of macrophages in vitro. The results showed that compared with CPP, CS-GO-CPP did not change the basic structure of polysaccharide, and its thermal stability was improved. 0.78- 12.5 μg·mL-1 of CS-GO-CPP could significantly promote the phagocytic activity of RAW264.7 cells (P < 0.05) and significantly increase NO content, IL-4 and IFN-γ secretion, the expression of CD40, CD86, and F4/80 (P < 0.05). CS-GO-CPP might activate the NF-κB signaling pathway and induce the nuclear translocation of NF-κB p65. In conclusion, CS-GO-CPP has a capacity to activate RAW264.7 cells for an improvement of immunomodulation activities, which might be through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mengke Sun
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhe Ren
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tiantian Wei
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongyuan Huang
- Fujian Key Laboratory of Chinese Traditional and Western Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xueli Zhang
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qiang Zheng
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tao Qin
- Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
9
|
Xu L, Liu B, Huang L, Li Z, Cheng Y, Tian Y, Pan G, Li H, Xu Y, Wu W, Cui Z, Xie L. Probiotic Consortia and Their Metabolites Ameliorate the Symptoms of Inflammatory Bowel Diseases in a Colitis Mouse Model. Microbiol Spectr 2022; 10:e0065722. [PMID: 35730951 PMCID: PMC9430814 DOI: 10.1128/spectrum.00657-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) has become a global public health problem. Although the pathogenesis of the disease is unknown, a potential association between the gut microbiota and inflammatory signatures has been established. Probiotics, especially Lactobacillus or Bifidobacterium, are orally taken as food supplements or microbial drugs by patients with IBD or gastrointestinal disorders due to their safety, efficacy, and power to restore the gut microenvironment. In the current study, we investigated the comprehensive effects of probiotic bacterial consortia consisting of Lactobacillus reuteri, Lactobacillus gasseri, Lactobacillus acidophilus (Lactobacillus spp.), and Bifidobacterium lactis (Bifidobacterium spp.) or their metabolites in a dextran sodium sulfate (DSS)-induced colitis mouse model. Our data demonstrate that probiotic consortia not only ameliorate the disease phenotype but also restore the composition and structure of the gut microbiota. Moreover, the effect of probiotic consortia is better than that of any single probiotic strain. The results also demonstrate that mixed fermentation metabolites are capable of ameliorating the symptoms of gut inflammation. However, the administration of metabolites is not as effective as probiotic consortia with respect to phenotypic characteristics, such as body weight, disease activity index (DAI), and histological score. In addition, mixed metabolites led only to changes in intestinal flora composition. In summary, probiotic consortia and metabolites could exert protective roles in the DSS-induced colitis mouse model by reducing inflammation and regulating microbial dysbiosis. These findings from the current study provide support for the development of probiotic-based microbial products as an alternative therapeutic strategy for IBD. IMPORTANCE IBD is a chronic nonspecific inflammatory disease. IBD is characterized by a wide range of lesions, often involving the entire colon, and is characterized mainly by ulcers and erosions of the colonic mucosa. In the present study, we investigated the efficacy of probiotics on the recovery of gut inflammation and the restoration of gut microecology. We demonstrate that probiotic consortia have a superior effect in inhibiting inflammation and accelerating recovery compared with the effects observed in the control group or groups administered with a single strain. These results support the utilization of probiotic consortia as an alternative therapeutic approach to treat IBD.
Collapse
Affiliation(s)
- Limin Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liujing Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanbo Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ye Tian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zongbin Cui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liwei Xie
- School of Public Health, Xinxiang Medical University, Xinxiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|