1
|
Picone M, Marangoni S, Silan G, Volpi Ghirardini A, Piazza R, Bonato T. Hair analysis as a non-invasive method for assessing the exposure of wildlife to per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126443. [PMID: 40373857 DOI: 10.1016/j.envpol.2025.126443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
In mammals, exposure to PFAS is usually assessed by measuring burdens in internal organs (i.e., liver and brain) or plasma, while less emphasis is devoted to non-invasive and non-destructive methods. We assess the suitability of hair as a non-invasive matrix for monitoring the exposure of mammals to 33 PFAS, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), perfluoroalkylether carboxylic acids (PFECAs), perfluoroalkylether sulfonic acids (PFESAs), perfluoroalkane sulfonyl fluoride-based substances (PASFs), and fluorotelomers (FTs). The Red fox is chosen as the target species due to its apical position in the terrestrial food web of the study area, the Cavallino-Treporti peninsula in North-East Italy. All analysed samples (n = 24) are positive for PFAS, with eight compounds quantified in all samples, including PFHxA, PFOA, PFDA, PFUnDA, PFDoDA, PFTriDA, PFTeDA, and PFOS. The highest mean concentration in hair samples is measured for PFOS (1.40 ± 0.48 ng g-1 dw) followed by PFDoDA (0.31 ± 0.05 ng g-1 dw), and PFOA (0.31 ± 0.19 ng g-1 dw), while the mean ∑33PFAS was 3.41 ± 0.93 ng g-1 dw. The dominance of PFOS and long-chain PFAS in the PFAS profile and the occurrence of compounds with even-numbered carbon chains at higher concentrations than the odd-numbered compounds with a one-carbon longer chain (i.e., PFOA > PFNA, PFDA > PFUnDA, PFDoDA > PFTriDA) suggest the trophic transfer along the terrestrial food web as the primary exposure pathway in the study area. The data suggest hair analysis as a reliable, non-invasive method for assessing the possible exposure of mammals to PFAS and suggested that the Red fox can be used as a sentinel of the environment, embracing the One Health perspective.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy.
| | - Simone Marangoni
- Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy
| | - Giulia Silan
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172, Venezia, Mestre, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
2
|
Giorgetti A, Fornasari A, Bonasoni MP, Ferretti A, Seidenari A, Sech M, Piva E, Pascali JP, Fais P. Per- and polyfluoroalkyl substances (PFAS) in placental compartments: Histopathological and toxicological data integration in an Italian cohort. ENVIRONMENTAL RESEARCH 2025; 279:121846. [PMID: 40383424 DOI: 10.1016/j.envres.2025.121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic environmental contaminants with widespread industrial and consumer applications, characterized by strong chemical stability and environmental persistence. Recent studies have highlighted placental permeability to PFAS, though evidence of direct histopathological impairment remains limited. This study aimed to investigate potential associations between PFAS exposure and histopathological abnormalities in placental samples. A total of 23 at-term pregnant women were recruited from two hospitals in Italy as part of a multicenter study. Placental samples, divided into maternal (decidua) and fetal (villi) compartments, were analyzed for PFAS concentration and histopathological alterations. PFAS were detected in 95.7 % of samples. The most frequently detected PFAS were PFOS (88 %), followed by PFHxS (83 %), PFOA (83 %), PFBS (54 %) and PFHxA (54 %). Preliminary findings suggest variable PFAS concentrations among subjects, with histopathological examination revealing placental alterations of potential clinical relevance. The observed histopathological alterations, particularly in cases of malperfusion and angiogenesis changes, suggest that PFAS may contribute to placental dysfunction, potentially affecting pregnancy outcomes. In particular, it could be hypothesized that PFHxA could exert an adverse influence on placental angiogenesis, due to pre-placental hypoxia stimulating the angiogenesis and resulting in increased ramification and number of branches. While direct causative links remain to be fully elucidated, these results underscore the need for further investigations into PFAS-related placental effects and their implications for fetal development.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Arianna Fornasari
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | | | - Alice Ferretti
- Obstetrics and Gynaecology Unit Azienda USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Seidenari
- Department of Medical and Surgical Sciences, Unit of Obstetrics and Gynaecology, University of Bologna, Bologna, Italy
| | - Maria Sech
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Elena Piva
- dtoLABS, Via Pozzuoli, 13C/13D, 30038, Spinea, VE, Italy
| | - Jennifer P Pascali
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Suman TY, Kwak IS. Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS). JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137249. [PMID: 39842114 DOI: 10.1016/j.jhazmat.2025.137249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant of global concern due to its environmental presence,bioaccumulative potential and toxicological impacts. This review synthesizes current knowledge regarding PFOS exposure, bioaccumulation patterns and adverse health outcomes in human population. Analysis of worldwide biomonitoring data, and epidemiological studies reveals PFOS systemic effects, including immunological dysfunction (decreased vaccine response), developmental toxicity (reduced birth weight), hepatic metabolic disruption, potential carcinogenogenicity, and reproductive abnormalities. At the molecular level, PFOS induces toxicity through multiple pathways, including PI3K/AKT/mTOR pathway inhibition, PPARα activation, NF-κB signaling modulation, and oxidative stress induction. Recent advances in analytical methodologies have enhanced our understanding of PFOS distribution and fate, while evolving egulatory frameworks attempts to address its risk. This review identifies critical research gaps and emphasized the need for coordinated multidisciplinary approaches to address this persistent environmental contaminant.
Collapse
Affiliation(s)
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
4
|
Yang Y, Wang J, Tang S, Qiu J, Luo Y, Yang C, Lai X, Wang Q, Cao H. Per- and Polyfluoroalkyl Substances (PFAS) in Consumer Products: An Overview of the Occurrence, Migration, and Exposure Assessment. Molecules 2025; 30:994. [PMID: 40076219 PMCID: PMC11901761 DOI: 10.3390/molecules30050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in the production of consumer products globally due to the excellent water and oil resistance and anti-fouling properties. The multiple toxic effects of some PFASs also pose a threat to human health and ecosystem, and the frequent use of certain consumer products increased the risk of human exposure to PFASs. More data on the occurrence, concentration, and migration of PFASs in consumer products is urgently needed to address the possible risks posed by exposure to consumer products. This paper reviews the PFAS concentrations found, the migration characteristics known, and the exposure risks of PFASs arising from several types of consumer products over the last five years. The types of consumer products considered here include food contact materials, textiles, and disposable personal hygiene products. The influence of different factors on the migration process of PFASs from these products are summarized and discussed. Additionally, the main approaches and models of exposure assessment are evaluated and summarized. Current challenges and future research prospects in this field are discussed with a view to providing guidance for the future assessment and regulation of PFASs in consumer products.
Collapse
Affiliation(s)
- Yang Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
- College of Environment & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jin Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Shali Tang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Jia Qiu
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Yan Luo
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Chun Yang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Xiaojing Lai
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Qian Wang
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| | - Hui Cao
- National Postdoctoral Research Station, Zhejiang Institute of Quality Sciences, Hangzhou 310018, China; (S.T.); (J.Q.); (Y.L.); (C.Y.); (X.L.); (Q.W.); (H.C.)
| |
Collapse
|
5
|
Nadal M, Domingo JL. Non-Invasive Matrices for the Human Biomonitoring of PFAS: An Updated Review of the Scientific Literature. TOXICS 2025; 13:134. [PMID: 39997949 PMCID: PMC11860639 DOI: 10.3390/toxics13020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in consumer and industrial products due to their unique physicochemical properties. However, their persistence and bioaccumulative potential pose significant environmental and human health risks. This review focuses on the use of non-invasive matrices-urine, hair, and nails-for the human biomonitoring of PFAS, highlighting key findings from scientific studies. While urine offers a non-invasive and practical option, its limited sensitivity for long-chain PFAS requires further analytical advances. Hair and nails have demonstrated potential for use in biomonitoring, with higher detection frequencies and concentrations for certain PFAS compared to urine. The variability in PFAS levels across studies reflects differences in population characteristics, exposure sources, and geographic regions. This review emphasizes the need for standardized analytical methods, expanded population studies, and the use of complementary matrices to enhance the accuracy and reliability of PFAS exposure assessment.
Collapse
Affiliation(s)
- Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, TecnATox, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain;
| | | |
Collapse
|
6
|
Picone M, Volpi Ghirardini A, Piazza R, Bonato T. First evidence of the suitability of hair for assessing wildlife exposure to anticoagulant rodenticides (ARs). ENVIRONMENTAL RESEARCH 2025; 264:120302. [PMID: 39510232 DOI: 10.1016/j.envres.2024.120302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Anticoagulant rodenticides (ARs) are potent pesticides acting as vitamin K epoxide reductase inhibitors causing haemorrhaging or external bleeding from orifices and/or skin lesions in intoxicated rodents. However, their non-selective mode of action makes them particularly harmful for non-target wildlife, which may be exposed to ARs via ingestion of AR-containing baits (primary exposure), feeding on AR-intoxicated rodents and carrions (secondary exposure), consuming AR-contaminated necrophagous species (tertiary exposure), and exposure to surface waters receiving baited sewer systems and ARs from outdoor-placed traps after heavy rain events. In the present study, we assessed the suitability of hairs as a non-invasive matrix for monitoring the possible exposure of mammals to ARs with a focus on the first-generation anticoagulant rodenticides (FGARs) warfarin, coumatetralyl, and chlorophacinone and the second-generation anticoagulant rodenticides (SGARs) brodifacoum, bromadiolone, difenacoum, flocoumafen, and difethialone. The Red fox (n = 24) was selected as the species representing the potentially exposed non-target wildlife in a littoral area of Northern Italy along the Adriatic coast (Cavallino-Treporti municipality). Half (n = 12) of the analysed hair samples were positive for at least one of the targeted ARs, with a higher prevalence of SGARs (n = 11; 46%) compared to FGARs (n = 1; 4%). The most frequently quantified ARs were brodifacoum (25%), difethialone (13%), and flocoumafen (13%), with concentrations ranging from 0.08 ng g-1 (difethialone) to 0.96 ng g-1 (brodifacoum). These data documented that a relevant part of the Red foxes living in the study area were exposed to ARs and, most importantly, provided the first evidence that hair residues can be used as a non-invasive matrix for assessing the possible exposure of mammals to ARs.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy
| | - Tiziano Bonato
- Department of Environmental Sciences, Informatic, And Statistics, Ca' Foscari university Venice, Via Torino 155, 30172 Venezia-Mestre, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042 EsteItaly
| |
Collapse
|
7
|
Xu L, Li Y, Chen L, Wang S, Ding X, Zhu P, Jiao J. Transplacental transfer of perfluorinated and poly-fluorinated substances in maternal-cord serum and association with birth weight: A birth cohort study, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124943. [PMID: 39260555 DOI: 10.1016/j.envpol.2024.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Although the effects of traditional perfluorinated and polyfluorinated substances (PFASs) exposure have been extensively explored, research on novel PFASs remains limited, and there is a lack of data regarding their placental transfer and fetal impact. Herein, we aimed to examine maternal and fetal PFASs exposure levels, placental transfer efficiency (TTE), and the consequences of prenatal exposure on birth weight. The study included 214 mother-child pairs recruited in Wuxi birth cohort from 2019 to 2021. Twenty-three PFASs were quantified in maternal serum during the second trimester and umbilical serum during delivery. Median concentrations of ∑23PFASs in maternal and cord sera were 9.34 and 6.88 ng/mL, respectively. The novel alternatives exhibited elevated levels of maternal and fetal exposure, such as perfluorovaleric acid (PFPeA, 2.00 ng/mL and 1.66 ng/mL, respectively) and perfluorohexane sulfonate (PFHxS, 1.77 and 1.14 ng/mL, respectively). With increasing carbon chain length, the TTE of perfluorocarbonic acid (PFCAs) displayed a pattern of initially decreasing before subsequently increasing, with novel alternatives exhibiting a relatively high TTE. Multiple linear regression showed that exposure to perfluorobutane sulfonate (PFBS) and PFPeA in cord serum positively correlated with the birth weight of female infants (β = 231.04 g, 95% confidence interval [CI]: 21.73-440.36; β = 121.26 g, 95% CI: 29.51-213.00). No nonlinear relationship was observed between cord serum PFASs and birth weight. The weighted quantile sum (WQS) regression analysis has reaffirmed that PFPeA and PFBS were predominant contributors to the positive correlation observed between the mixture of PFASs and birth weight. Our findings suggest that novel PFASs may exhibit a heightened susceptibility for transplacental transfer and that exposure to PFBS and PFPeA during pregnancy could be linked to increased birth weight.
Collapse
Affiliation(s)
- Lingling Xu
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Limei Chen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Shunan Wang
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Pengfei Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China
| | - Jiandong Jiao
- The School of Public Health, Nanjing Medical University, Nanjing, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, China.
| |
Collapse
|
8
|
Gonkowski S, Ochoa-Herrera V. Poly- and perfluoroalkyl substances (PFASs) in amphibians and reptiles - exposure and health effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106907. [PMID: 38564994 DOI: 10.1016/j.aquatox.2024.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are commonly used in various industries and everyday products, including clothing, electronics, furniture, paints, and many others. PFASs are primarily found in aquatic environments, but also present in soil, air and plants, making them one of the most important and dangerous pollutants of the natural environment. PFASs bioaccumulate in living organisms and are especially dangerous to aquatic and semi-aquatic animals. As endocrine disruptors, PFASs affect many internal organs and systems, including reproductive, endocrine, nervous, cardiovascular, and immune systems. This manuscript represents the first comprehensive review exclusively focusing on PFASs in amphibians and reptiles. Both groups of animals are highly vulnerable to PFASs in the natural habitats. Amphibians and reptiles, renowned for their sensitivity to environmental changes, are often used as crucial bioindicators to monitor ecosystem health and environmental pollution levels. Furthermore, the decline in amphibian and reptile populations worldwide may be related to increasing environmental pollution. Therefore, studies investigating the exposure of amphibians and reptiles to PFASs, as well as their impacts on these organisms are essential in modern toxicology. Summarizing the current knowledge on PFASs in amphibians and reptiles in a single manuscript will facilitate the exploration of new research topics in this field. Such a comprehensive review will aid researchers in understanding the implications of PFASs exposure on amphibians and reptiles, guiding future investigations to mitigate their adverse effects of these vital components of ecosystems.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito (USFQ), Quito, 170901, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
10
|
Comito R, Porru E, Violante FS. Analytical methods employed in the identification and quantification of per- and polyfluoroalkyl substances in human matrices - A scoping review. CHEMOSPHERE 2023; 345:140433. [PMID: 37832886 DOI: 10.1016/j.chemosphere.2023.140433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Persistent organic pollutants (POPs) represent a possible hazard for the ecosystems, with adverse outcomes on wildlife and humans. POPs have always received interest from the scientific community, and they have also been subject to legal restrictions worldwide on their application and commercialization. Among the broad spectrum of POPs, per- and polyfluoroalkyl substances (PFASs) are considered emerging contaminants due to their potential effect on the ecosystem and human health. These contaminants are widely employed in countless applications, from surfactants and building materials to food packaging. On the other hand, their chemical structure gives them the ability to interact with the environment, causing possible toxic effects for humans and environment. Human biomonitoring is a necessary instrument to indagate the impact of PFASs on human health: in recent years several studies have found detectable levels of PFASs in several biological matrices in humans (blood, hair, nails, and urine). Here, we review the most recent scientific literature concerning analytical methods employed in the identification and quantification of PFASs focusing on biological matrices. It has been noted that liquid chromatography coupled with mass spectrometry is the main analytical instrumentation employed, while blood and/or serum samples are the main employed human matrices whereas the use of non-invasive matrices is still at the beginning. Various issues directly related to human metabolism of PFASs and the effective amount of PFAS absorbed from the environment still need to be investigated.
Collapse
Affiliation(s)
- Rossana Comito
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy
| | - Francesco Saverio Violante
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, Bologna, 40138, Italy; Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy.
| |
Collapse
|
11
|
Beccacece L, Costa F, Pascali JP, Giorgi FM. Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances. TOXICS 2023; 11:567. [PMID: 37505532 PMCID: PMC10385990 DOI: 10.3390/toxics11070567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.
Collapse
Affiliation(s)
- Livia Beccacece
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Filippo Costa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy
| | | |
Collapse
|
12
|
Zhou Y, Li Q, Wang P, Li J, Zhao W, Zhang L, Wang H, Cheng Y, Shi H, Li J, Zhang Y. Associations of prenatal PFAS exposure and early childhood neurodevelopment: Evidence from the Shanghai Maternal-Child Pairs Cohort. ENVIRONMENT INTERNATIONAL 2023; 173:107850. [PMID: 36857906 DOI: 10.1016/j.envint.2023.107850] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Collapse
Affiliation(s)
- Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenxuan Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yukai Cheng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Jiufeng Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|