1
|
Costa-Beber LC, Dantas RM, Peres AM, Obelar Ramos JM, Farias HR, Santos Silva Bast RK, Custódio de Souza IC, Gioda A, de Oliveira J, Costa Rodrigues Guma FT. The effects of direct and macrophage-mediated exposure to aqueous fine particulate matter on vascular endothelial dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126407. [PMID: 40348271 DOI: 10.1016/j.envpol.2025.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/14/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fine particulate matter (PM2.5) is an independent risk factor for vascular diseases. In this context, activated macrophages release inflammatory molecules that can contribute to endothelial dysfunction. While the effects of PM2.5's solid fraction on vascular endothelial cells are well-documented, the effect of its polar compounds circulating in the bloodstream remains unclear. In this study, we examined the effects of direct and indirect (macrophage-mediated) exposure to aqueous PM2.5 on the endothelium. CF-1 mice received intranasal instillations of PM2.5 (30 μg in 10 μL) or saline, 5 days per week for two weeks. These animals exhibited considerable endothelial dysfunction linked to oxidative stress. Similarly, macrophages (RAW264.7 lineage) exposed to aqueous PM2.5 (10-fold dilution) exhibited oxidative stress and inflammation, indicating that their reactive phenotype may contribute to the outcomes observed in vivo. Interestingly, their conditioned medium (10 % v/v) enhanced endothelial cell function (EOMA lineage) by reducing reactive oxygen species (ROS) production and promoting an endothelial nitric oxide synthase (eNOS)-dependent increase in nitrite levels, with the exact opposite effect observed in cells directly exposed to aqueous PM2.5. These findings suggest that the macrophage secretome, rather than residual metals, may be responsible for these effects. Consistent with these findings, incubation with the animals' plasma (1 % v/v) also stimulated nitrite production. Additionally, caveolin-1, a key mediator of vesicle uptake, was overexpressed in endothelial cells exposed to conditioned medium, suggesting its involvement in monocyte-endothelium crosstalk. Finally, our results indicated that the macrophage secretome might serve as a mild stimulus, activating protective mechanisms in endothelial cells, whereas direct exposure to aqueous PM2.5 induces dysfunction.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ricardo Maia Dantas
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ariadni Mesquita Peres
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hémelin Resende Farias
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Adriana Gioda
- Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Department of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Jade de Oliveira
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
2
|
Jeong J, Kim J, Lee B, Park C, Kim M. Effects of Low and High Doses of Deoxynivalenol on Growth Performance, Blood Biochemistry, Histology, Metabolites, and Microbial Community in Adult Rats. BIOLOGY 2025; 14:429. [PMID: 40282294 PMCID: PMC12024641 DOI: 10.3390/biology14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Deoxynivalenol (DON) is a widespread mycotoxin which contaminates several crops, including maize, wheat, and barley. In this study, we investigated the effects of orally administered DON on growth performance, blood biochemistry, histology, the gut microbiome, and metabolism in rats. Six-week-old rats, acclimatized for one week, were subjected to different dietary treatments for 42 days, as follows: CON (control): 0.9% saline; T1: 0.5 ppm DON; T2: 50 ppm DON; and T3: 100 ppm DON. The T3 group had the lowest final body weight (298.5 ± 3.69 g) and average daily gain compared with the control group (338.9 ± 6.43 g, p < 0.05). The feed conversion ratio was highest in the T3 group (4.28 ± 0.28) compared with that in the control group (3.12 ± 0.13, p < 0.05). DON treatment significantly reduced serum levels of creatinine, amylase, urea nitrogen, and alkaline phosphatase, but not alanine aminotransferase. Fibrosis and apoptosis were exacerbated in various tissues with increasing DON concentration. The metabolite profiles of several tissues were significantly different in the DON-treated and control groups. In the cecum, DON treatment increased the abundance of Desulfobacteria, while decreasing that of Firmicutes. Our results indicate that DON levels above the maximum residue limit have serious health consequences for animals.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Junsik Kim
- Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Boram Lee
- Animal Biotechnology and Genomics Division, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minseok Kim
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Jeong J, Kim J, Kim M, Lee B, Park C, Kim M. Effects of Deoxynivalenol Contamination on Growth Performance, Blood Biochemistry, Histology, Metabolomics, and the Microbiota: A Subacute Dose Oral Toxicity Study in Rats. Int J Mol Sci 2025; 26:3086. [PMID: 40243812 PMCID: PMC11988895 DOI: 10.3390/ijms26073086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Deoxynivalenol (DON), one of the most common mycotoxins, is frequently found in foods. This study investigated the effects of orally administered DON on the blood biochemical parameters, growth performance, histology, microbial composition, and metabolism of rats. After a 1-week adaptation period, 4-week-old rats were administered 0.9% saline (control), 1 mg/L DON (T1), 10 mg/L DON (T2), or 50 mg/L DON (T3) by gavage for 49 days. The DON-treated groups had significantly lower body weights than the control group (p < 0.05). Blood alkaline phosphatase, phosphate, cholesterol, amylase, and creatinine levels differed significantly between the DON-treated and control groups (p < 0.05). With increasing DON doses, fibrosis and apoptosis were observed in several tissues. In terms of metabolites, the bile acid biosynthesis pathway emerged as a potential biomarker, while the tryptophan metabolism pathway was found to be the most affected. The fecal microbiota showed significant differences in both alpha and beta diversity between the DON-treated and control groups (p < 0.05). In the cecal and fecal microbiota, the relative abundance of Firmicutes increased in the control and T1 groups, whereas Bacteroidota and Campylobacterota were more abundant in the T2 and T3 groups. In conclusion, our results showed that high DON exposure induces several dose-dependent adverse effects on rats.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Boram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea;
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| | - Minseok Kim
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| |
Collapse
|
4
|
Xu Y, Zhang X, Li G, Guo R, Zhang H, Zhao B, Zhao X, Chen K, Huang X. New insights into DEHP-induced inflammatory injury in chicken spleen: ROS/TLR4/MyD88 pathway and apoptosis/necroptosis-M1 polarization crosstalk. Poult Sci 2025; 104:105074. [PMID: 40245538 PMCID: PMC12032333 DOI: 10.1016/j.psj.2025.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
The environmental endocrine disruptor di(2-ethylhexyl) phthalate (DEHP) is a plasticiser used in large quantities in plastics and is hazardous to the health of humans and various animals. DEHP can be immunotoxic to the spleen through oxidative stress. Still, the role of splenic macrophage polarization in lymphocyte apoptosis and necroptosis, whether they interact with each other, and the mechanism of the effect on splenic inflammatory injury are unknown. In this study, based on the construction of a time-and dose-dependent model of DEHP-exposed chicken spleen, chicken lymphoma cell (MSB-1) and chicken macrophage (HD11) models were established to investigate the mechanism of apoptosis/necroptosis-M1 polarization crosstalk in DEHP-induced toxicity in chicken spleen injury. The results showed that DEHP exposure activated the ROS/TLR4/MyD88 pathway, up-regulated the expression of chemokines, induced macrophage M1 polarization, caused apoptosis and necroptosis in lymphocytes and inflicted inflammatory damage to the spleen, however, these effects could be alleviated by NAC. DEHP exposure of the HD11/MSB-1 cell co-culture system showed that M1 polarization promoted apoptosis and necroptosis and vice versa. In conclusion, DEHP exposure is involved in mediating the crosstalk between apoptosis/necroptosis and M1 polarization through the activation of the ROS/TLR4/MyD88 pathway, which in turn exacerbates inflammatory injury in the chicken spleen.
Collapse
Affiliation(s)
- Yue Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiandan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rong Guo
- Shandong Vocational Animal Science and Veterinary College, PR China
| | - Hong Zhang
- Liaoning Petmate Biotechnology Co, PR China
| | - Bolin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoyu Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Chi F, Cheng C, Liu K, Sun T, Zhang M, Hou Y, Bai G. Baicalein disrupts the KEAP1-NRF2 interaction to alleviate oxidative stress injury by inhibiting M1 macrophage polarization. Free Radic Biol Med 2025; 227:557-569. [PMID: 39694117 DOI: 10.1016/j.freeradbiomed.2024.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Macrophages are key players in maintaining the balance of tissues and dealing with inflammation, carrying out vital functions specific to different tissues while safeguarding the body against infections. The intricate interplay between oxidative stress and macrophage polarization and how this contributes to pneumonia is not fully understood. Herein, a predominant accumulation of baicalein in lung macrophages of pathogen-infected mice was observed by an alkynyl-modified probe. Baicalein effectively reduces oxidative stress in vivo and in vitro by modulating the KEAP1-NRF2/ARE signaling pathway. Further investigation indicated that baicalein has inhibitory effects on M1 macrophage polarization and phagocytic capacity, reducing inflammatory cytokine expression. As a protein-protein interaction (PPI) inhibitor, baicalein disrupts the KEAP1-NRF2 interaction by competitively binding to the DGR/Kelch domain of KEAP1. This process helps NRF2 move to the nucleus, which activates the antioxidant transcriptional program, suppresses the production of reactive oxygen species (ROS), and mitigates oxidative stress damage. These findings suggest a different approach to developing treatments for oxidative stress that focuses on inhibiting the interaction between KEAP1-NRF2.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Tong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
6
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Yin Y, Wang J, Xu T, Liu M, Shi X, Xu S. New Insights into the Toxic Effects of Different Sizes of Nanosilica Particles in Food on the Mouse Bladder: Involving Epithelial-Mesenchymal Transition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25919-25930. [PMID: 39509682 DOI: 10.1021/acs.jafc.4c08353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Animals are widely exposed to nanosilica as a food additive. However, the negative effects of such nanosilica particles on animals' bladders are unclear. In the present study, we investigated the impact of MPs-SiO2 on mouse bladder and the underlying mechanisms. Mouse and MBEC cell models exposed to MPs-SiO2 with different particle sizes were established. At the same time, aminoguanidine hydrochloride (RNS inhibitor) and NF-κB activator were used to further explore its mechanism in vitro. We found that MPs-SiO2 of three sizes could induce RNS-induced pyroptosis causing EMT both in vitro and in vivo. After inhibiting RNS, the expression of related proteins in downstream pathways was decreased, and fibrosis was alleviated. The above situation was reversed by the addition of NF-κB activator. Furthermore, our data suggest that 300 nm MPs-SiO2 particles have a greater impact on the bladder than 50 nm particles. This study revealed the potential health risks of MPs-SiO2 and provided new insights into the toxicology of MPs-SiO2.
Collapse
Affiliation(s)
- Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiaqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Meichen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
8
|
Kim JY, Cho DW, Choi JY, Jeong S, Kang M, Kim WJ, Hong IS, Song H, Chang H, Yang SR, Lee SJ, Park M, Hong SH. CXCL11 reprograms M2-biased macrophage polarization to alleviate pulmonary fibrosis in mice. Cell Biosci 2024; 14:140. [PMID: 39548525 PMCID: PMC11566568 DOI: 10.1186/s13578-024-01320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In understanding the pathophysiology of pulmonary fibrosis (PF), macrophage plasticity has been implicated with a crucial role in the fibrogenic process. Growing evidence indicates that accumulation of M2 macrophages correlates with the progression of PF, suggesting that targeted modulation of molecules that influence M2 macrophage polarization could be a promising therapeutic approach for PF. Here, we demonstrated a decisive role of C-X-C motif chemokine ligand 11 (CXCL11) in driving M1 macrophage polarization to alleviate PF in the bleomycin-induced murine model. RESULTS We intravenously administered secretome derived from naïve (M0) and polarized macrophages (M1 and M2) into PF mice and found that lung fibrosis was effectively reversed in only the M1-treated group, with modulation of the M1/M2 ratio toward the ratio of the control group. These findings suggest that the factors secreted from M1 macrophages contribute to alleviating PF by targeting macrophages and reshaping the immunofibrotic environment in a paracrine manner. Secretome analysis of macrophages identified CXCL11 as an M1-specific chemokine, and administration of recombinant CXCL11 effectively improved fibrosis with the reduction of M2 macrophages in vivo. Furthermore, a mechanistic in vitro study revealed that CXCL11 reprogrammed macrophages from M2 to M1 through the activation of pERK, pAKT, and p65 signaling. CONCLUSIONS Collectively, we demonstrate an unprecedented role for M1 macrophage-derived CXCL11 as an inducer of M1 macrophage polarization to revert the fibrogenic process in mice with PF, which may provide a clinically meaningful benefit.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Dong-Wook Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Yun Choi
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Suji Jeong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea
| | | | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi, Republic of Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- KW-Bio Co., Ltd, Chuncheon, Republic of Korea.
| |
Collapse
|
9
|
Wang X, Ali W, Zhang K, Ma Y, Zou H, Tong X, Zhu J, Song R, Zhao H, Liu Z, Dong W. The attenuating effects of serine against cadmium induced immunotoxicity through regulating M1/M2 and Th1/Th2 balance in spleen of C57BL/6 mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117216. [PMID: 39437518 DOI: 10.1016/j.ecoenv.2024.117216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Cadmium (Cd) has adverse effects on organisms. Serine is an essential nutritional factor and its nutritional value is extremely high for body. To explore the effects of serine on spleen toxicity induced by Cd in mice, cadmium chloride (CdCl2, 50 mg/L) and serine (50 g/L) were individually administered or co-administrated in drinking water of mice for 18 weeks. Results demonstrated that Cd exposure induced splenic toxicity and serine against the toxicity damage caused by Cd in mice. Under Cd stress, trace element homeostasis was disturbed, the mice's body weight and spleen index were increased, and splenic morphology and ultrastructure were altered. Furthermore, Cd exposure led to the cell populations disorder, which in turn triggers cell death. Notably, Cd treatment induced oxidative stress and inflammation, increased M1/M2 (iNOS, CD68) and Th1/Th2 (T-bet, CD4) levels, decreased M1/M2 (Arg1) and Th1/Th2 (GATA3) levels, while disrupted the macrophages and lymphocytes homeostasis, which trigged apoptosis and pyroptosis in spleen. In contrast, serine supplementation changed the levels of Cd and other elements, weakened Cd-induced tissue damage and inflammation, enhanced antioxidant capacity, significantly restored cell homeostasis, and effectively inhibited Cd-induced apoptosis and pyroptosis in the spleen. Shortly, the results verified that serine had an ameliorating toxicity effect and restored the M1/M2 and Th1/Th2 balance, restrained apoptosis and pyroptosis induced by Cd.
Collapse
Affiliation(s)
- Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China), Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| | - Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, PR China.
| |
Collapse
|
10
|
Jeong JY, Kim J, Kim M, Park S. Efficacy of High-Dose Synbiotic Additives for Deoxynivalenol Detoxification: Effects on Blood Biochemistry, Histology, and Intestinal Microbiome in Weaned Piglets. BIOLOGY 2024; 13:889. [PMID: 39596844 PMCID: PMC11592083 DOI: 10.3390/biology13110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Deoxynivalenol (DON) is a common mycotoxin observed in cereal grains, and feed contamination poses health risks to pigs. Biological antidotes, such as synbiotics (SYNs), have garnered attention for mitigating DON toxicity. This study aimed to assess the efficacy of SYNs by comparing the blood biochemistry, histology, and gut microbiome of weaned piglets. A 4-week trial was conducted on 32 weaned piglets. After a week of diet and environmental adaptation, the pigs were divided into four groups: (1) control (CON, n = 8); (2) SYN (n = 8); (3) DON (n = 8); and (4) DON+SYN (n = 8). The SYN supplementation of weaned piglets increased the final body weight (21.71 ± 0.93 vs. 20.73 ± 0.84), average daily gain (0.38 ± 0.02 vs. 0.34 ± 0.02), and gain-to-feed ratio (0.49 ± 0.04 vs. 0.43 ± 0.02), and decreased the feed conversion ratio (2.14 ± 0.14 vs. 2.39 ± 0.13) compared to the DON group. A high dose of DON induced liver and colon fibrosis and liver and cecum apoptosis, which were alleviated by SYNs. Glucose in the DON group (84.9 ± 3.7) was significantly lower than in the control (101.3 ± 4.2). Additionally, both the DON and DON+SYN groups exhibited higher creatine (0.9 ± 0.0 and 0.9 ± 0.1) and lower cholesterol (88.3 ± 3.2 and 90.0 ± 4.8) levels (p < 0.05). In conclusion, SYNs alleviated DON toxicity, indicating its potential as an antidote for specific biomarkers.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
11
|
Jeong JY, Kim J, Kim M, Shim SH, Park C, Jung S, Jung H. Effects of Increasing Oral Deoxynivalenol Gavage on Growth Performance, Blood Biochemistry, Metabolism, Histology, and Microbiome in Rats. BIOLOGY 2024; 13:836. [PMID: 39452144 PMCID: PMC11505534 DOI: 10.3390/biology13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Mycotoxin-contaminated feed or food can affect physiological responses and cause illnesses in humans and animals. In this study, we evaluated the effects of deoxynivalenol (DON) toxicity on the growth performance, blood biochemistry, histology, microbiome, and metabolism of rats fed with different toxin concentrations. After 1 week of acclimatization, seven-week-old male rats received 0.9% saline as a control, 0.02 mg/kg DON as T1, and 0.2 mg/kg DON as T2 via oral gavage for 4 weeks. The final body weight of the T2 group was significantly lower than that of the control and T1; however, the average daily gain, feed intake, and feed conversion ratio did not differ. Fibrosis and apoptosis were observed in various tissues as DON concentration increased. Creatinine and alkaline phosphatase levels were significantly lower in the DON-treated group than in the control. Firmicutes and Desulfobacterota phyla dominated the cecum, whereas those in the feces were Proteobacteria and Bacteroidetes. Metabolomic profiling showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most prominent pathways. Overall, our results suggest that low-dose and short-term DON exposure can trigger several adverse effects in rats. Dietary toxicants in rats may explain the physiological effects associated with the metabolism commonly reported in animals.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Seong-Hoon Shim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (S.J.)
| | - Sungju Jung
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (S.J.)
| | - Hyunjung Jung
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.); (S.-H.S.); (H.J.)
| |
Collapse
|
12
|
Corrêa Costa-Beber L, Kazmirczak Moraes R, Marques Obelar Ramos J, Meira Martins LA, Toquetto AL, Fursel Pacheco J, Resende Farias H, Gioda A, Antunes de Oliveira V, de Oliveira J, Costa Rodrigues Guma FT. Aqueous PM 2.5 promotes lipid accumulation, classical macrophage polarisation and heat shock response. CHEMOSPHERE 2024; 363:142987. [PMID: 39094706 DOI: 10.1016/j.chemosphere.2024.142987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Fine particulate matter (PM2.5) is an air pollutant that enhances susceptibility to cardiovascular diseases. Macrophages are the first immune cells to encounter the inhaled particles and orchestrate an inflammatory response. Given their role in atherosclerosis development, we investigated whether aqueous PM2.5 could elicit atherogenic effects by polarising macrophages to a pro-oxidative and pro-inflammatory phenotype and enhancing foam cell formation. The RAW264.7 macrophage cell line was exposed to PM2.5 for 48 h, with PBS as the control. Aqueous PM2.5 induced apoptosis and reduced cell proliferation. In surviving cells, we observed morphological, phagocytic, oxidative, and inflammatory features (i.e. enhanced iNOS, Integrin-1β, IL-6 expression), indicative of classical macrophage activation. We also detected an increase in total and surface HSP70 levels, suggesting macrophage activation. Further, exposure of high-cholesterol diet-fed mice to PM2.5 resulted in aortic wall enlargement, indicating vascular lesions. Macrophages exposed to PM2.5 and non-modified low-density lipoprotein (LDL) showed exacerbated lipid accumulation. Given the non-oxidised LDL used and the evidence linking inflammation to disrupted cholesterol negative feedback, we hypothesise that PM2.5-induced inflammation in macrophages enhances their susceptibility to transforming into foam cells. Finally, our results indicate that exposure to aqueous PM2.5 promotes classical macrophage activation, marked by increased HSP70 expression and that it potentially contributes to atherosclerosis.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rafael Kazmirczak Moraes
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jéssica Marques Obelar Ramos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Laura Toquetto
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Júlia Fursel Pacheco
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Hémelin Resende Farias
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Química, Rio de Janeiro, RJ, Brazil
| | - Vitor Antunes de Oliveira
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUÍ), Research Group in Physiology, Postgraduate Program in Integral Health Care, Ijuí, Rio Grande do Sul State, Brazil
| | - Jade de Oliveira
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Annex, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Li H, Wang XR, Hu YF, Xiong YW, Zhu HL, Huang YC, Wang H. Advances in immunology of male reproductive toxicity induced by common environmental pollutants. ENVIRONMENT INTERNATIONAL 2024; 190:108898. [PMID: 39047547 DOI: 10.1016/j.envint.2024.108898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been identified as major risk factors for male reproductive health, even associated with male infertility. Male infertility is usually due to the reproductive system damage, which may be influenced by the exposure to contaminants such as heavy metals, plasticizers, along with genetics and lifestyle. Testicular immune microenvironment (TIM) is important in maintaining normal physiological functions of the testis, whether disturbed TIM after exposure to environmental toxicants could induce reproductive toxicity remains to be explored. Therefore, the current review aims to contribute to the further understanding of exposure and male infertility by characterizing environmental exposures and the effect on TIM. We first summarized the male reproductive toxicity phenotypes induced by common environmental pollutants. Contaminants including heavy metals and plastic additives and fine particulate matter (PM2.5), have been repetitively associated with male infertility, whereas emerging contaminants such as perfluoroalkyl substances and micro(nano)plastics have also been found to disrupt TIM and lead to male reproductive toxicity. We further reviewed the importance of TIM and its homeostasis in maintaining the normal physiological functions of the testis. Most importantly, we discussed the advances in immunology of male reproductive toxicity induced by metals and metalloids, plastic additives, persistent organic pollutants (POPs), micro(nano)plastic and PM2.5 to suggest the importance of reproductive immunotoxicology in the future study of environmental toxicants, but also contribute to the development of effective prevention and treatment strategies for mitigating adverse effects of environmental pollutants on human health.
Collapse
Affiliation(s)
- Hao Li
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Xin-Run Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Fan Hu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yong-Wei Xiong
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Hua-Long Zhu
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China
| | - Yi-Chao Huang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| | - Hua Wang
- Department of Toxicology, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230000, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, 230000, China.
| |
Collapse
|
14
|
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171706. [PMID: 38490420 DOI: 10.1016/j.scitotenv.2024.171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Jagan Kannan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
15
|
Yang Y, Xiao Z, Yang W, Sun Y, Sui X, Lin X, Yang X, Bao Z, Cui Z, Ma Y, Li W, Wang S, Yang J, Wang Y, Luo Y. Role of transient receptor potential ankyrin 1 in idiopathic pulmonary fibrosis: modulation of M2 macrophage polarization. Cell Mol Life Sci 2024; 81:187. [PMID: 38635081 PMCID: PMC11026287 DOI: 10.1007/s00018-024-05219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-β1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shengran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
16
|
Wang J, Yin Y, Zhang Q, Deng X, Miao Z, Xu S. HgCl 2 exposure mediates pyroptosis of HD11 cells and promotes M1 polarization and the release of inflammatory factors through ROS/Nrf2/NLRP3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115779. [PMID: 38056124 DOI: 10.1016/j.ecoenv.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Mercury (Hg) is a serious metal environmental pollutant. HgCl2 exposure causes pyroptosis. When macrophages are severely stimulated, they often undergo M1 polarization and release inflammatory factors. However, the mechanisms by which mercuric chloride exposure induces macrophage apoptosis, M1 polarization, and inflammatory factors remain unclear. HD11 cells were exposed to different concentrations of Hg chloride (180, 210 and 240 nM HgCl2). The results showed that mercury chloride exposure up-regulated ROS, C-Nrf2 and its downstream factors (NQO1 and HO-1), and down-regulated N-Nrf2. In addition, the expressions of focal death-related indicators (Caspase-1, NLRP3, GSDMD, etc.), M1 polarization marker CD86 and inflammatory factors (TNF-α, IL-1β) increased, and the above changes were related to mercury. Oxidative stress inhibitor (NAC) can block ROS/ NrF2-mediated oxidative stress, inhibit mercury-induced pyroptosis and M1 polarization, and effectively reduce the release of inflammatory factors. The addition of Vx-765 to inhibit pyroptosis can effectively alleviate M1 polarization of HD11 cells and reduce the expression of inflammatory factors. HgCl2 mediates pyroptosis of HD11 cells by regulating ROS/Nrf2/NLRP3, promoting M1 polarization and the release of inflammatory factors.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinrui Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Li J, Feng S, Pi Y, Jiang X, Li X, Zhou Z, Liu X, Wei H, Tao S. Limosilactobacillus johnsoni and Limosilactobacillus mucosae and Their Extracellular Vesicles Alleviate Gut Inflammatory Injury by Mediating Macrophage Polarization in a Lipopolysaccharide-Challenged Piglet Model. J Nutr 2023; 153:2497-2511. [PMID: 37343627 DOI: 10.1016/j.tjnut.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Limosilactobacillus johnsoni (L. j) and Limosilactobacillus mucosae (L. m) can alleviate the inflammatory response. OBJECTIVES This study aimed to elucidate the underlying mechanisms by which L. j- and L. m-derived extracellular vesicles (EVs) mitigate lipopolysaccharide (LPS)-induced intestinal injury. METHODS Piglets were assigned to 4 groups: oral phosphate-buffered saline inoculation for 2 wk prior to intraperitoneal injection of physiological saline or LPS, and oral L. j/L. m inoculation for 2 wk prior to intraperitoneal injection of LPS. The intestinal integrity, macrophage markers, cytokine levels, and microbiota were determined. The cytokine levels and macrophage phenotype were detected after L. j/L. m and their EVs were coincubated with macrophages. The levels of cytokines, tight junction proteins, and apoptosis were measured after intestinal epithelial cells were cocultured with macrophages. RESULTS LPS challenge decreased jejunal villus length; expression levels of zonula occludens-1 (ZO-1), occludin, arginase-1 (Arg1), and interleukin (IL)-10; and number of CD163+ cells and increased the expression levels of inducible nitric oxide synthase (iNOS), IL-1β, IL-6, and tumor necrosis factor (TNF)-α compared with that in the control. L. j and L. m pretreatment rescued the aforementioned indicators compared with LPS challenge. Pretreatment of L. j and L. m and their EVs reversed the levels of IL-1β, IL-6, TNF-α, and IL-10 and the gene expression of iNOS and Arg1 in the LPS group in macrophages. Pretreatment with L. j and L. m-derived EVs increased ZO-1 and occludin mRNA expression and reduced IL-1β, caspase-3, and bax gene expression in intestinal epithelial cells of the coculture system. Enzyme-treated EVs were less effective than native EVs. CONCLUSIONS This study suggests that EVs secreted by L. j and L. m control inflammation by modulating macrophage polarization, thereby improving intestinal barrier function.
Collapse
Affiliation(s)
- Jingjing Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengkai Feng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zutao Zhou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangdong Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
18
|
Zhu Y, Chai XX, Zhao Y, Feng Q, Dong R, Shi MJ, Zhou J, Zhao Y, Peng J, Tian Y, Chen G, Luo C, Sheng J. Saturated fatty acids synergizes cadmium to induce macrophages M1 polarization and hepatic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115040. [PMID: 37235898 DOI: 10.1016/j.ecoenv.2023.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.
Collapse
Affiliation(s)
- Yi Zhu
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Xin Chai
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiao Feng
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| | - Meng-Jie Shi
- MD-PhD Program, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhou
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yurong Zhao
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Youjia Tian
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine of Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China; Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Wen X, Xi K, Tang Y, Bian J, Qin Y, Xiao W, Pan T, Cheng X, Ge Z, Cui W. Immunized Microspheres Engineered Hydrogel Membrane for Reprogramming Macrophage and Mucosal Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207030. [PMID: 36604983 DOI: 10.1002/smll.202207030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The "double-edged sword" effect of macrophages under the influence of different microenvironments determines the outcome and prognosis of tissue injury. Accurate and stable reprogramming macrophages (Mφ) are the key to rapid wound healing. In this study, an immunized microsphere-engineered GelMA hydrogel membrane is constructed for oral mucosa treatment. The nanoporous poly(lactide-co-glycolide) (PLGA) microsphere drug delivery system combined with the photo-cross-linkable hydrogel is used to release the soybean lecithin (SL)and IL-4 complexes (SL/IL-4) sustainedly. In this way, it is realized effective wound fit, improvement of drug encapsulation, and stable triphasic release of interleukin-4 (IL-4). In both in vivo and in vitro experiments, it is demonstrated that the hydrogel membrane can reprogram macrophages in the microenvironment into M2Mφ anti-inflammatory types, thereby inhibiting the local excessive inflammatory response. Meanwhile, high levels of platelet-derived growth factor (PDGF) secreted by M2Mφ macrophages enhanced neovascular maturation by 5.7-fold, which assisted in achieving rapid healing of oral mucosa. These findings suggest that the immuno-engineered hydrogel membrane system can re-modulating the biological effects of Mφ, and potentiating the maturation of neovascularization, ultimately achieving the rapid repair of mucosal tissue. This new strategy is expected to be a safe and promising immunomodulatory biomimetic material for clinical translation.
Collapse
Affiliation(s)
- Xiao Wen
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Kun Xi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jie Bian
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yu Qin
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wanshu Xiao
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Tingzheng Pan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Xiaoming Cheng
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zili Ge
- Department of Stomatology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
20
|
Wan Y, Mo L, Huang H, Mo L, Zhu W, Li W, Yang G, Chen L, Wu Y, Song J, Yang X. Cadmium contributes to atherosclerosis by affecting macrophage polarization. Food Chem Toxicol 2023; 173:113603. [PMID: 36639048 DOI: 10.1016/j.fct.2023.113603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Chronic cadmium (Cd) exposure contributes to the progression of atherosclerosis, but the direct role of Cd and its mechanisms in atherosclerosis remains incompletely understood. Atherosclerosis is a chronic inflammatory disease promoting macrophage polarization to M1 phenotype and producing pro-inflammations that are vital in regulating the inflammatory response. Herein, through a case-control study, we found that Cd exposure may promote the occurrence of carotid plaque via inflammation, where interleukin-6 (IL-6) may play an important role. We also combined in vivo and in vitro experiments to explore the underlying mechanism of Cd-promoted plaque formation and the production of IL-6. With or without cadmium chloride (CdCl2) fed ApoE-/- mouse and treated RAW264.7 cells, we found Cd accumulated in the aortas which significantly increased the plaque area in atherosclerotic mice, macrophage accumulation, and lipid accumulation, and Cd promoted M1 phenotype macrophage polarization reflected by the increased expression of CD86 which produced tumor necrosis factor-α (TNF-α) and IL-6. However, the influences on M2 phenotype and anti-inflammatory cytokines interleukin-4 (IL-4) and interferon-γ (IFN-γ) were non-significant. Moreover, we found that JAK2/STAT3 pathway was greatly activated in the plaques and CdCl2-treated macrophages. The inhibition of JAK2/STAT3 substantially reversed the Cd-stimulated macrophage M1 phenotype macrophage polarization and the expression of pro-inflammatory cytokines including TNF-α and IL-6. Altogether, Cd intensifies atherosclerosis by modulating macrophage polarization via JAK2/STAT3 to up-regulated the expression of IL-6.
Collapse
Affiliation(s)
- Yu Wan
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lijun Mo
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haibin Huang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lifen Mo
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Guangyu Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, 510440, China
| | - Linquan Chen
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014 Food Safety), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Jia Song
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xingfen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
21
|
Zhang W, Sun X, Shi X, Qi X, Shang S, Lin H. Subacute Cadmium Exposure Induces Necroptosis in Swine Lung via Influencing Th1/Th2 Balance. Biol Trace Elem Res 2023; 201:220-228. [PMID: 35118606 DOI: 10.1007/s12011-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) is a type of toxic substance, which widely exists in nature. However, the effect of Cd exposure on the toxicity of swine lungs and its underlying mechanism involved have not yet been reported. In our study, we divided swine into two groups, including a control group (C group) and Cd-exposed group. Swine in the C group were fed a basic diet, whereas swine in the Cd group were fed a 20 mg Cd/kg diet. Immunofluorescence, qRT-PCR, western blot analysis, and H&E staining were performed to detect necroptosis-related indicators. Our results found that after Cd exposure, Th1/Th2 imbalance occurred, miR-181-5p was down-regulated, TNF-α expression was increased, and the NF-κB/NLRP3 and JAK/STAT pathways and RIPK1/RIPK3/MLKL axis were activated. Furthermore, histopathological examination showed necrosis in swine lung after Cd exposure. Together, the above-mentioned results indicate that subacute Cd exposure is closely linked with necroptosis in swine lung. Our study provided evidence that Cd may act through miR-181-5p/TNF-α to induce necroptosis in swine lung. The findings of this study supplement the toxicological study of Cd and provide a reference for comparative medicine.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shaoqian Shang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
22
|
Huang G, Luo J, Guo H, Wang X, Hu Z, Pu W, Chu X, Zhang C. Molybdenum and cadmium co-exposure promotes M1 macrophage polarization through oxidative stress-mediated inflammatory response and induces pulmonary fibrosis in Shaoxing ducks (Anas platyrhyncha). ENVIRONMENTAL TOXICOLOGY 2022; 37:2844-2854. [PMID: 36017731 DOI: 10.1002/tox.23641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
High molybdenum (Mo) and cadmium (Cd) are harmful to the body, but pulmonary toxicity induced by Mo and Cd co-exposure is unknown. To assess the combined impacts of Mo and Cd on fibrosis through M1 polarization in the lung of ducks, 80 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were randomly assigned to 4 groups and fed with containing unequal doses of Mo or/and Cd diet. Lung tissues were collected on the 16th week. Results indicated that Mo or/and Cd significantly increased their contents in the lungs, and led to trace elements disorder and histological abnormality, and oxidative stress accompanied by promoting contents of H2 O2 and MDA and decreasing activities of T-SOD, GSH-Px, and CAT, then activated the TLR4/NF-κB/NLRP3 pathway accompanied by upregulating Caspase-1, ASC, IL-18, IL-1β, TLR4, NF-κB, and NLRP3 expression levels, and disrupted M1/M2 balance to divert toward M1, which evoked the TGF-β/Smad2/3-mediated fibrosis by elevating TGF-β1, Smad2, Smad3, COL1A1, α-SMA, and MMP2 expression levels, and decreasing Smad7 and TIMP2 expression levels. The changes of the combined group were most obvious. To sum up, the research demonstrated that Mo or/and Cd may cause macrophages to polarize toward M1 by oxidative stress-mediated the TLR4/NF-κB/NLRP3 pathway, then result in fibrosis through the TGF-β1/Smad2/3 pathway in duck lungs. Mo and Cd may worsen lung damage.
Collapse
Affiliation(s)
- Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Qi X, Ren Z, Cui Y, Zhang J, Zhang Y, Wang S, Lin H. Cadmium induces apoptosis by miR-9-5p targeting PTEN and regulates the PI3K/AKT pathway in the piglet adrenal gland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73001-73010. [PMID: 35616841 DOI: 10.1007/s11356-022-20734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that can cause endocrine organ damage. To explore the effect of subacute CdCl2 exposure on piglet adrenal gland tissue and its mechanism based on the establishment of this model, bioinformatics, TUNEL assay, western blot (WB), and qRT-PCR methods were used to detect related indicators. The results showed that after Cd exposure, antioxidant enzymes decreased, heat shock protein increased, and miR-9-5p-gene of phosphatase and tensin homolog (PTEN) upregulates the phosphatidylinositol-3-kinase (PI3K/AKT) pathway. After this pathway was activated, the expression of the apoptosis-related factors cysteinyl aspartate-specific proteinase 3 and 9 (caspase 3 and 9), B-cell lymphoma-2-associated X (BAX) was increased sharply, and the expression of B-cell lymphoma-2 (BCL2) was significantly decreased. The changes in these indicators indicate that Cd exposure induces apoptosis and causes tissue damage in the adrenal gland of piglets. This study aims to reveal the toxic effects of CdCl2 in animals and will provide new ideas for the toxicology of Cd.
Collapse
Affiliation(s)
- Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zeheng Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
24
|
Chen D, Yao Y, Shi X, Li X, Cui W, Xu S. Cadmium exposure causes mitochondrial fission and fusion disorder in the pig hypothalamus via the PI3K/AKT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113880. [PMID: 35872487 DOI: 10.1016/j.ecoenv.2022.113880] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is the main environmental pollutant causing endocrine and nervous system dysfunction in animals. High doses of Cd cause cytotoxicity, including programmed necrosis and apoptosis, which has aroused widespread concern. Mitochondrial dynamics plays a key role in programmed necrosis and apoptosis of endocrine organs. Nevertheless, there is a lack of information on the relationship between Cd-induced programmed necrosis/apoptosis of the hypothalamus and the mitochondrial fusion-fission balance. Therefore, a hypothalamic injury model of Cd exposure was established by adding 20 mg/kg CdCl2 to the basic pig diet for 40 days. Analysis of the Cd toxicity mechanism was conducted by inductively coupled plasma mass spectrometry, hematoxylin and eosin staining, the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and quantitative reverse transcription-polymerase chain reaction, as well as western blot analyses. The results suggested that exposure to Cd inhibited the expression of PI3K and AKT, interfered with the balance of mitochondrial fusion and division, downregulated the expression of Mfn2, Mfn1, and OPA1, and upregulated the expression of Drp1 and Mff, which led to cell apoptosis and programmed necrosis in the pig hypothalamus. This study finds that cadmium exposure leads to mitochondrial fission and fusion dysfunction in porcine hypothalamus via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Dan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China
| | - Xiaohang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, PR China.
| |
Collapse
|
25
|
Robinson C, Lockey RF, Kolliputi N. Can PPAR γ Keep Cadmium in Check? Biomolecules 2022; 12:biom12081094. [PMID: 36008989 PMCID: PMC9405879 DOI: 10.3390/biom12081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cd, a naturally occurring endocrine toxin found in tobacco leaves, originates in the environment and enters the body through inhalation, targeting the lungs and kidneys. A study published by Larsen-Carey et al. revealed that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury. The research discovered a novel role for PPAR γ as an effective regulator for the alternative activation of macrophages in response to Cd and Cd-induced lung injury.
Collapse
|
26
|
Liu X, Zhang Y, Sun X, Zhang W, Shi X, Xu S. Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology 2022; 474:153226. [PMID: 35659966 DOI: 10.1016/j.tox.2022.153226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 01/18/2023]
Abstract
The plastic decomposition product microplastics (MPs) and the plastic additive Di (2-ethylhexyl) phthalate (DEHP) in the environment can damage various organs of the organism by inducing oxidative stress. The PI3K/AKT/mTOR signaling pathway participate in toxin-induced apoptosis and necroptosis. However, the effects of DEHP/MPs alone and combined exposure on skeletal muscle cell injury in mice and the role of PI3K/AKT/mTOR axis remain unclear. To investigate the effect of DEHP or/and MPs on skeletal muscle in mice and its possible toxicological mechanism, 60 mice were randomly divided into control group, DEHP group (DEHP 200 mg/kg dissolved in 50 mL corn oil mixed with 2.5 kg diet), MPs group (10 mg/L MPs in drinking water) and combined exposure group. In vitro, C2C12 cells were exposed to DEHP 600 μM/MPs 800 μM alone or in combination for 24 h. The results showed that DEHP/MPs exposure alone or in combination increased MDA content, decreased activities of CAT, T-AOC, SOD and GSH-Px, increased mRNA and protein expressions of Caspase-3, BAX, RIPK1, RIPK3 and MLKL, and decreased BCL-2 expression. The expression of PI3K/AKT/mTOR signaling pathway was significantly down-regulated. All the above results showed that the combined exposure group was more toxic, and similar experimental results were obtained by DEHP/MPs exposure test of C2C12 cells in vitro. It is suggested that DEHP/MPs can induce apoptosis and necroptosis by activating oxidative stress and down-regulating PI3K/AKT/mTOR pathway. This study provides new evidence for clarifying the possible mechanism of toxicity of DEHP and MPs to skeletal muscle of mice.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
27
|
Feng J, Yang F, Wu H, Xing C, Xue H, Zhang L, Zhang C, Hu G, Cao H. Selenium protects against cadmium-induced cardiac injury by attenuating programmed cell death via PI3K/AKT/PTEN signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:1185-1197. [PMID: 35099092 DOI: 10.1002/tox.23475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that has an enormous influence on agricultural production, but selenium (Se) can alleviate its toxicity. The present study aimed to illustrate the effects of Se on Cd-induced heart injury. All 40 rabbits were randomly divided into four groups: control group, Se [0.5 mg kg-1 ·body weight (BW)] group, Cd (1 mg kg-1 ·BW) group, and Se + Cd group. After 30 days of feeding, morphological changes, the levels of oxidative stress and myocardial enzyme, the content of cardiac troponin T, programmed cell death (pyroptosis, autophagy and apoptosis), and PI3K/AKT/PTEN transduction capacity were observed. The results showed that Cd destroyed the physiological balance of trace elements and caused myocardial damage, increased the cardiac oxidative damage and led to programmed cell death. Coadministration of Se prominently ameliorated histological lesions and improved cardiac function of hearts in Cd-induced rabbits. Furthermore, Se exerted detoxification and oxidation resistance, maintained trace element homeostasis, and alleviated the changes of mRNA and protein levels of pyroptosis-, autophagy- and apoptosis-controlling factors and PI3K/AKT/PTEN signal molecules caused by Cd. In conclusion, Se might protect against Cd-induced pyroptosis, autophagy and apoptosis by interfering with PI3K/AKT/PTEN signaling in heart.
Collapse
Affiliation(s)
- Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Huansheng Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
28
|
Liu J, Sun Q, Sun M, Lin L, Ren X, Li T, Xu Q, Sun Z, Duan J. Melatonin alleviates PM 2.5-triggered macrophage M1 polarization and atherosclerosis via regulating NOX2-mediated oxidative stress homeostasis. Free Radic Biol Med 2022; 181:166-179. [PMID: 35149217 DOI: 10.1016/j.freeradbiomed.2022.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
It is reported that oxidative stress homeostasis was involved in PM2.5-induced foam cell formation and progression of atherosclerosis, but the exact molecular mechanism is still unclear. Melatonin is an effective antioxidant that could reverse the cardiopulmonary injury. The main purpose of this study is to investigate the latent mechanism of PM2.5-triggered atherosclerosis development and the protective role of melatonin administration. Vascular Doppler ultrasound showed that PM2.5 exposure reduced aortic elasticity in ApoE-/- mice. Meanwhile, blood biochemical and pathological analysis demonstrated that PM2.5 exposure caused dyslipidemia, elicited oxidative damage of aorta and was accompanied by an increase in atherosclerotic plaque area; while the melatonin administration could effectively alleviate PM2.5-induced macrophage M1 polarization and atherosclerosis in mice. Further investigation verified that NADPH oxidase 2 (NOX2) and mitochondria are two prominent sources of PM2.5-induced ROS production in vascular macrophages. Whereas, the combined use of two ROS-specific inhibitors and adopted with melatonin markedly rescued PM2.5-triggered macrophage M1 polarization and foam cell formation by inhibiting NOX2-mediated crosstalk of Keap1/Nrf2/NF-κB and TLR4/TRAF6/NF-κB signaling pathways. Our results demonstrated that NOX2-mediated oxidative stress homeostasis is critical for PM2.5-induced atherosclerosis and melatonin might be a potential treatment for air pollution-related cardiovascular diseases.
Collapse
Affiliation(s)
- Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qing Xu
- Core Facilities for Electrophysiology, Core Facilities Center, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
29
|
Liu XJ, Wang YQ, Shang SQ, Xu S, Guo M. TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113167. [PMID: 34995909 DOI: 10.1016/j.ecoenv.2022.113167] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Trimethyltin chloride (TMT) is an organotin heat stabilizer that is widely used in the production of plastics, and has strong toxicity. Here, the effect of trimethyltin chloride on mouse kidneys and its related mechanism were studied by taking TMT mouse with drinking water as a model. Histological examination and TUNEL results showed that the trimethyltin chloride group had typical apoptosis and necroptosis characteristics. Therefore, the level of oxidative stress was detected,and the expression of related genes was verified by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot methods. The results showed that oxidative stress was activated (MDA,SOD,CAT,T-AOC), released ROS, activated NF-κB pathway,activated inflammasome (NLRP3,Caspase-1,ASC), and inflammasome-secreted inflammatory factors (IL-1β). The expression of apoptosis (BCL-2, BAX, Caspase-3, Caspase-9) and necroptosis (RIPK1, RIPK33, MLKL, Caspase-8) increased.In addition, HEK293T human embryonic kidney cells were treated with trimethyltin chloride, and the results were similar to the tissue. In conclusion, TMT can induce oxidative stress, activate NF-κB pathway, and induce apoptosis and necroptosis through inflammasomes.
Collapse
Affiliation(s)
- Xiao-Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shao-Qian Shang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
30
|
Refaie MMM, Rifaai RA, Fawzy MA, Shehata S. Dapagliflozin Guards Against Cadmium-Induced Cardiotoxicity via Modulation of IL6/STAT3 and TLR2/TNFα Signaling Pathways. Cardiovasc Toxicol 2022; 22:916-928. [PMID: 36242756 PMCID: PMC9606062 DOI: 10.1007/s12012-022-09768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant that leads to severe cardiotoxic hazards. Several studies were carried out to protect the myocardium against Cd-induced cardiotoxicity. Up till now, no researches evaluated the protective effect of dapagliflozin (DAP) against Cd induced cardiotoxicity. Thus, we aimed to explore the role of DAP in such model with deep studying of the involved mechanisms. 40 male Wistar albino rats were included in current study. Cd (5 mg/kg/day) was administered orally for 7 days to induce cardiotoxicity with or without co-administration of DAP in three different doses (2.5, 5, 10 mg/kg/day) orally for 7 days. Our data revealed that Cd could induce cardiotoxicity with significant increase in serum cardiac enzymes, heart weight, tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), nuclear factor kappa B (NFκB), toll like receptor2 (TLR2), interleukin 6 (IL6) and caspase3 immunoexpression with abnormal histopathological changes. In addition, Cd significantly decreased the level of heme oxygenase1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), signal transducer and activator of transcription (STAT3), reduced glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC). Co-administration of DAP could ameliorate Cd cardiotoxicity with significant improvement of the biochemical and histopathological changes. We found that DAP had protective properties against Cd induced cardiotoxicity and this may be due to its anti-oxidant, anti-inflammatory, anti-apoptotic properties and modulation of IL6/STAT3 and TLR2/TNFα-signaling pathways.
Collapse
Affiliation(s)
- Marwa M. M. Refaie
- grid.411806.a0000 0000 8999 4945Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Rehab Ahmed Rifaai
- grid.411806.a0000 0000 8999 4945Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Michael Atef Fawzy
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Sayed Shehata
- grid.411806.a0000 0000 8999 4945Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| |
Collapse
|
31
|
Zhang J, Feng W, Li M, Chen P, Ning X, Ou C, Chen M. Receptor-Interacting Protein Kinase 3 Inhibition Prevents Cadmium-Mediated Macrophage Polarization and Subsequent Atherosclerosis via Maintaining Mitochondrial Homeostasis. Front Cardiovasc Med 2021; 8:737652. [PMID: 34820428 PMCID: PMC8606644 DOI: 10.3389/fcvm.2021.737652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic cadmium (Cd) exposure contributes to the progression of cardiovascular disease (CVD), especially atherosclerosis (AS), but the underlying mechanism is unclear. Since mitochondrial homeostasis is emerging as a core player in the development of CVD, it might serve as a potential mechanism linking Cd exposure and AS. In this study, we aimed to investigate Cd-mediated AS through macrophage polarization and know the mechanisms of Cd-caused mitochondrial homeostasis imbalance. In vitro, flow cytometry shows that Cd exposure promotes M1-type polarization of macrophages, manifested as the increasing expressions of nuclear Factor kappa-light-chain-enhancer of activated B (NF-kB) and NLR family pyrin domain containing 3 (NLRP3). Mitochondrial homeostasis tests revealed that decreasing mitochondrial membrane potential and mitophage, increasing the mitochondrial superoxide (mROS), and mitochondrial fission are involved in the Cd-induced macrophage polarization. The upregulated expressions of receptor-interacting protein kinase 3 (RIPK3) and pseudokinase-mixed lineage kinase domain-like protein (p-MLKL) were observed. Knocking out RIPK3, followed by decreasing the expression of p-MLKL, improves the mitochondrial homeostasis imbalance which effectively reverses macrophage polarization. In vivo, the oil red O staining showed that Cd with higher blood significantly aggravates AS. Besides, M1-type polarization of macrophages and mitochondrial homeostasis imbalance were observed in the aortic roots of the mice through immunofluorescence and western blot. Knocking out RIPK3 restored the changes above. Finally, the administered N-acetyl cysteine (NAC) or mitochondrial division inhibitor-1 (Mdivi-1), which decreased the mROS or mitochondrial fission, inhibited the expressions of RIPK3 and p-MLKL, attenuating AS and macrophage M1-type polarization in the Cd-treated group. Consequently, the Cd exposure activated the RIPK3 pathway and impaired the mitochondrial homeostasis, resulting in pro-inflammatory macrophage polarization and subsequent AS. Knocking out RIPK3 provided a potential therapeutic target for Cd-caused macrophage polarization and subsequent AS.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Weijing Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China.,Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Peier Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Xiaodong Ning
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangzhou, China
| |
Collapse
|
32
|
Cui W, Zhou S, Wang Y, Shi X, Liu H. Cadmium exposure activates the PI3K/AKT signaling pathway through miRNA-21, induces an increase in M1 polarization of macrophages, and leads to fibrosis of pig liver tissue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113015. [PMID: 34823215 DOI: 10.1016/j.ecoenv.2021.113015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic substance that pollutes the environment with multiple organs. Long-term exposure to Cd can cause fibrosis in the lungs and other organs of animal body. This article explored the effects of subacute Cd exposure on pig liver fibrosis, as well as the polarization of microRNA (miRNA) and M1/M2 macrophages during this process. Based on the establishment of the pig subacute CdCl2 exposure model, we used immunofluorescence staining, Masson staining, qRT-PCR and western blotting to conduct further research. The results showed that Cd exposure can increase the expression of miRNA-21, decrease the expression of TGF-β and SMAD7, increase the expression of PI3K/AKT signaling pathway, cause the M1/M2 imbalance and the increase of M1 polarization. Meantime, it causes the secretion of inflammatory cytokines (TNF-α, IL-1β, and IL-6), and causes an imbalance in the expression of TIMP1, MMP2, and MMP9, which are related to the degree of fibrosis. And the expression of α-SMA, COL1 and COL3 were up-regulated. In the pig, these results indicate that liver fibrosis caused by subacute CdCl2 exposure is induced by the M1 polarization of macrophages through the PI3K/AKT signaling pathway activated by miRNA-21 signaling pathway. These research results not only enrich the theoretical basis and reference value of Cd toxicology research, but also provide new references and new research ideas for comparative medicine.
Collapse
Affiliation(s)
- Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - YuLin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|