1
|
Korchevskiy AA, Wylie AG. The empirical metric of mesothelial carcinogenicity for carbon nanotubes and elongate mineral particles. Inhal Toxicol 2025:1-26. [PMID: 40270366 DOI: 10.1080/08958378.2025.2486087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Carcinogenic potential of elongate particles depends on many characteristics, with dimensional parameters playing an important role at all stages of disease origination and progression. It is important to develop quantitative metrics of mesothelial carcinogenicity for particles in order to predict their behavior within biological systems. It would be especially valuable if such metrics could be developed for both carbon nanotubes (CNTs) and elongate mineral particles (EMPs) to demonstrate similarities and differences in the estimations of mesothelioma risk. METHODS The database is organized with dimensional characteristics of EMPs, containing 570,950 records for 246 asbestiform, non-asbestiform, and mixed datasets. A database on carbon nanotubes (CNTs) with various toxicological outcomes of animal experiments, including mesothelioma, was also created. Mathematical modeling was used to determine the best metric of mesotheliomagenicity that would work for CNTs and EMPs. RESULTS The dimensional coefficient of carcinogenicity (DCC) was introduced with the formula DCC = 1-exp(-AxSA/(BxWidth3+C)), where SA - surface area of the elongate particle, Width - particle width, A, B, C - coefficients. It was demonstrated that DCC can efficiently determine mesotheliomagenic varieties of CNTs and EMPs, with a threshold for carcinogenic potential of 0.05 with A = 0.11, B = 1000, C = 1. DISCUSSION The new quantitative metric of carcinogenicity can be used for the purposes of mineralogical evaluation and toxicological analysis. It was confirmed that DCC-based models predict negligible mesothelioma potency for non-asbestiform amphiboles.
Collapse
Affiliation(s)
| | - Ann G Wylie
- University of Maryland, College Park, MD, USA
| |
Collapse
|
2
|
Wylie AG, Korchevskiy AA. Critical values for dimensional parameters of mesotheliomagenic mineral fibers: evidence from the dimensions and rigidity of MWCNT. FRONTIERS IN TOXICOLOGY 2025; 7:1568513. [PMID: 40330553 PMCID: PMC12052570 DOI: 10.3389/ftox.2025.1568513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
MWCNT (multi-walled carbon nanotubes) used in 72 animal instillation or inhalation studies were classified by average length, average width, Young's modulus, Rigidity Index (RI), and potency for mesothelioma in animals. The RI is based on the Euler buckling theory. MWCNT that induce mesothelioma have average lengths >2 µm and widths >37 nm, and average RI > 0.05 (µm2 x GPa x 104). Many noncarcinogenic MWCNT materials have RI < 0.05 and lack biological rigidity. In comparison, Elongate Mineral Particle (EMP) populations with one exception have RI > 0.05. Mineral particles likely to have RI < 0.05 include chrysotile fibrils with lengths >5 μm, amosite and crocidolite fibers with widths <60 nm, and sheet silicate fibers with widths <200 nm. The product of percent EMPA, average RI, and biosolubility among silicates correlates with known mesothelioma potency. The derived models reproduce published values of RM with high statistical significance (P < 0.05). Average RI, length, and width are critical parameters for mesotheliomagenicity for both MWCNT and EMPA mineral fiber.
Collapse
Affiliation(s)
- Ann G. Wylie
- Department of Geology, University of Maryland, College Park, MD, United States
| | | |
Collapse
|
3
|
Fujita K, Obara S, Maru J, Kawai Y, Endoh S. Pulmonary inflammatory responses and retention dynamics of cellulose nanofibrils. Toxicology 2025; 511:154038. [PMID: 39716514 DOI: 10.1016/j.tox.2024.154038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Cellulose nanofibrils (CNFs) are advanced biomaterials valued for their strength, lightweight nature, and low thermal expansion, making them suitable for diverse industrial applications. However, their potential inhalation risks necessitate thorough safety evaluations. This study investigates the pulmonary inflammatory effects and retention of CNFs following intratracheal instillation in rats. TEMPO-oxidized CNF (CNF1; 11.5 nm × 1.8 μm), mechanically fibrillated CNF (CNF2; 23.9 nm × 2.4 μm), and shorter-fibrillated CNF (CNF3; 21.6 nm × 1.2 μm) were administered at 2.0 mg/kg body weight. Endotoxin contamination was assessed using lipopolysaccharide (LPS) controls. Pulmonary inflammation was evaluated 28 days post-instillation, and lung retention of chemically stained CNFs was tracked for 90 days. Results indicated: (1) CNFs were taken up by alveolar macrophages, but no significant acute inflammation was observed; (2) CNF characteristics, particularly fiber diameter and length, play a key role in influencing lung inflammation responses and determining inflammation sites; (3) endotoxin levels in the CNF dispersions may have limited effects on inflammatory responses; and (4) CNFs persist in lung tissue for extended periods, indicating slow clearance. While immediate inflammatory responses were minimal, the prolonged retention of CNFs in the lungs could contribute to chronic low-grade inflammation. Given the variability in CNF properties influenced by raw materials and manufacturing processes, it is essential to test each CNF type individually, including toxicological endpoints beyond inflammation, to accurately assess their potential health risks.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan.
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Yuka Kawai
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
4
|
Morimoto Y, Izumi H, Tomonaga T, Nishida C, Higashi H. Adverse effects of nanoparticles on humans. J Occup Health 2025; 67:uiaf002. [PMID: 39890621 PMCID: PMC11849340 DOI: 10.1093/joccuh/uiaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 02/03/2025] Open
Abstract
It was previously thought that the particles inhaled by humans and having adverse effects were micron-sized; particles with a particularly high content of crystalline silica were thought to have harmful effects. In recent years, manufactured materials have been further refined to nano-level particles, and it has been reported that these ultrafine particles have different adverse effects, making it necessary to perform occupational health management for chemicals that differ from micron-sized particles. Here we report the adverse effects of carbon nanotubes, welding fumes, and organic substances as examples of nanoparticles.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Iseigaoka 1-1, Kitakyushu City, Fukuoka Prefecture, 807-8555, Japan
| |
Collapse
|
5
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
6
|
Fatkhutdinova LM, Gabidinova GF, Daminova AG, Dimiev AM, Khamidullin TL, Valeeva EV, Cokou AEE, Validov SZ, Timerbulatova GA. Mechanisms related to carbon nanotubes genotoxicity in human cell lines of respiratory origin. Toxicol Appl Pharmacol 2024; 482:116784. [PMID: 38070752 DOI: 10.1016/j.taap.2023.116784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 μg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 μg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.
Collapse
Affiliation(s)
| | | | | | - Ayrat M Dimiev
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Timur L Khamidullin
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Elena V Valeeva
- Kazan State Medical University, Kazan 420012, Russian Federation
| | | | | | | |
Collapse
|
7
|
Dhangar K, Kumar M, Aouad M, Mahlknecht J, Raval NP. Aggregation behaviour of black carbon in aquatic solution: Effect of ionic strength and coexisting metals. CHEMOSPHERE 2023; 311:137088. [PMID: 36332736 DOI: 10.1016/j.chemosphere.2022.137088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Black Carbon (BC) is an important constituent of both aquatic and terrestrial environment, but also has several adverse effects on human health, aquatic life, and contributes to the global climate change. Thus, to understand the fate and transport of BC nanoparticles (NPs) in the environment, it's important to understand the colloidal stability or aggregation behaviour and factors affecting it, under various environmental conditions, including both aquatic and atmospheric. This study investigated the individual influence of ionic strengths, valence (Na+, Ca2+ and Mg2+), metals (Zn2+, Cu2+, Ni2+ and Cd2+), and organic substances (PO43- and Humic Acid: HA) on the effective diameter or hydrodynamic diameter and zeta potential of BC-NPs in aquatic systems. A dynamic light scattering (DLS) principle-based 90 Plus Particle Size Analyzer was used for measurements of BC particle size and zeta potential at varying ionic chemistry. The results showed that strong ionic strength promotes aggregation of BC-NPs till the repulsion forces become dominant due to more negative zeta potential. The Aggregation of BC-NPs was observed to be significantly dependent on the ionic valence, where divalent ions caused more aggregation than monovalent ions. Metal ions at higher concentration (around 1 mM) promoted the aggregation rate of BC-NPs, and Cu+2 dominated among all selected metals. Conversely, organic matter (PO43- and HA) tends to promote stabilisation of BC-NPs instead of aggregation. Though this study investigated individual effect of substances, influence of possible environmental combination of substances will help to get more clear idea.
Collapse
Affiliation(s)
- Kiran Dhangar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382-355, India
| | - Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat, 382-355, India; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| | - Marwan Aouad
- College of Engineering, Applied Science University, Bahrain
| | - Jurgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Nirav P Raval
- Laboratoire Environnement Dynamiques Territoires Montagnes, Université Savoie Mont Blanc, Campus Scientifique - Savoie Technolac, Le Bourget-du-Lac, 73376, Cedex, France
| |
Collapse
|
8
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
9
|
Di Ianni E, Jacobsen NR, Vogel U, Møller P. Predicting nanomaterials pulmonary toxicity in animals by cell culture models: Achievements and perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1794. [PMID: 36416018 PMCID: PMC9786239 DOI: 10.1002/wnan.1794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Animal experiments are highly relevant models for the assessment of toxicological effects of engineered nanomaterials (ENMs), due to lack of biomonitoring and epidemiological studies. However, the expanding number of ENMs with different physico-chemical properties strains this approach, as there are ethical concerns and economical challenges with the use of animals in toxicology. There is an urgent need for cell culture models that predict the level of toxicological responses in vivo, consequently reducing or replacing the use of animals in nanotoxicology. However, there is still a limited number of studies on in vitro-in vivo correlation of toxicological responses following ENMs exposure. In this review, we collected studies that have compared in vitro and in vivo toxic effects caused by ENMs. We discuss the influence of cell culture models and exposure systems on the predictability of in vitro models to equivalent toxic effects in animal lungs after pulmonary exposure to ENMs. In addition, we discuss approaches to qualitatively or quantitatively compare the effects in vitro and in vivo. The magnitude of toxicological responses in cells that are exposed in submerged condition is not systematically different from the response in cells exposed in air-liquid interface systems, and there appears to be similar ENMs hazard ranking between the two exposure systems. Overall, we show that simple in vitro models with cells exposed to ENMs in submerged condition can be used to predict toxic effects in vivo, and identify future strategies to improve the associations between in vitro and in vivo ENMs-induced pulmonary toxicity. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working EnvironmentCopenhagenDenmark
| | | | - Ulla Vogel
- National Research Centre for the Working EnvironmentCopenhagenDenmark
- National Food InstituteTechnical University of DenmarkKongens LyngbyDenmark
| | - Peter Møller
- Department of Public Health, Section of Environmental HealthUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Suh T, Twiddy J, Mahmood N, Ali KM, Lubna MM, Bradford PD, Daniele MA, Gluck JM. Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications. ACS OMEGA 2022; 7:20006-20019. [PMID: 35721944 PMCID: PMC9202252 DOI: 10.1021/acsomega.2c01807] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes (CNTs) are known for their excellent conductive properties. Here, we present two novel methods, "sandwich" (sCNT) and dual deposition (DD CNT), for incorporating CNTs into electrospun polycaprolactone (PCL) and gelatin scaffolds to increase their conductance. Based on CNT percentage, the DD CNT scaffolds contain significantly higher quantities of CNTs than the sCNT scaffolds. The inclusion of CNTs increased the electrical conductance of scaffolds from 0.0 ± 0.00 kS (non-CNT) to 0.54 ± 0.10 kS (sCNT) and 5.22 ± 0.49 kS (DD CNT) when measured parallel to CNT arrays and to 0.25 ± 0.003 kS (sCNT) and 2.85 ± 1.12 (DD CNT) when measured orthogonally to CNT arrays. The inclusion of CNTs increased fiber diameter and pore size, promoting cellular migration into the scaffolds. CNT inclusion also decreased the degradation rate and increased hydrophobicity of scaffolds. Additionally, CNT inclusion increased Young's modulus and failure load of scaffolds, increasing their mechanical robustness. Murine fibroblasts were maintained on the scaffolds for 30 days, demonstrating high cytocompatibility. The increased conductivity and high cytocompatibility of the CNT-incorporated scaffolds make them appropriate candidates for future use in cardiac and neural tissue engineering.
Collapse
Affiliation(s)
- Taylor
C. Suh
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jack Twiddy
- Joint
Department of Biomedical Engineering, North
Carolina State University and The University of North Carolina at
Chapel Hill, Raleigh, North Carolina 27606, United States
| | - Nasif Mahmood
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kiran M. Ali
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Mostakima M. Lubna
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Philip D. Bradford
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Michael A. Daniele
- Joint
Department of Biomedical Engineering, North
Carolina State University and The University of North Carolina at
Chapel Hill, Raleigh, North Carolina 27606, United States
- Department
of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jessica M. Gluck
- Department
of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|