1
|
Zandona A, Jurić M, Jean L, Renard PY, Katalinić M. Assessment of cytotoxic properties of tetrahydroisoquinoline oximes in breast, prostate and glioblastoma cancer cells. Drug Chem Toxicol 2025:1-8. [PMID: 40226887 DOI: 10.1080/01480545.2025.2491534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Tetrahydroisoquinoline (THIQ) oximes have been investigated as antidotes for poisoning by toxic organophosphorus compounds. Recent studies have shown that some THIQ oximes induce cytotoxic effects and trigger apoptosis in various cell types. Since this pathway activation is desirable for anticancer drugs, we further explored the effects of three selected THIQ oximes on well-known cancer cell models: breast (MDA-MB-231 and MCF-7), prostate (PC-3) cancer and malignant glioblastoma (U251). The tested THIQ oximes were cytotoxic to breast cancer cells and, to a lesser extent, to glioblastoma cells, but not to PC-3 cells at concentrations up to 200 µM within a 24-h exposure period. The MCF-7 cells exhibited the highest sensitivity, with all three oximes affecting it in a time-dependent manner (IC50 from 7-74 µM). While the membrane integrity of affected cells was maintained after treatment with the tested THIQ oximes, they disrupted mitochondrial membrane potential and activated caspase 9 indicating triggering of the mitochondria-mediated apoptosis. Overall, these findings suggest that the THIQ oxime scaffold could be a foundation for developing targeted therapies, especially for breast cancer, and other derivatives may be worthier of exploration.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Matea Jurić
- Depatment of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ludovic Jean
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
- Université Paris Cité, CNRS, INSERM, CiTCoM, Paris, France
| | - Pierre-Yves Renard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, CARMen Institute UMR 6064, Rouen, France
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
2
|
Mlakić M, Čadež T, Šinko G, Škorić I, Kovarik Z. New Heterostilbene and Triazole Oximes as Potential CNS-Active and Cholinesterase-Targeted Therapeutics. Biomolecules 2024; 14:679. [PMID: 38927082 PMCID: PMC11201660 DOI: 10.3390/biom14060679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain-blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents-sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Tena Čadež
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Goran Šinko
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia;
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia; (T.Č.); (G.Š.)
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Žunec S, Vadlja D, Ramić A, Zandona A, Maraković N, Brekalo I, Primožič I, Katalinić M. Profiling Novel Quinuclidine-Based Derivatives as Potential Anticholinesterase Drugs: Enzyme Inhibition and Effects on Cell Viability. Int J Mol Sci 2023; 25:155. [PMID: 38203326 PMCID: PMC10778980 DOI: 10.3390/ijms25010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The cholinergic system, relying on the neurotransmitter acetylcholine (ACh), plays a significant role in muscle contraction, cognition, and autonomic nervous system regulation. The enzymes acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, responsible for hydrolyzing ACh, can fine-tune the cholinergic system's activity and are, therefore, excellent pharmacological targets to address a range of medical conditions. We designed, synthesized, and profiled 14 N-alkyl quaternary quinuclidines as inhibitors of human AChE and BChE and analyzed their impact on cell viability to assess their safety in the context of application as potential therapeutics. Our results showed that all of the 14 tested quinuclidines inhibited both AChE and BChE in the micromolar range (Ki = 0.26 - 156.2 μM). The highest inhibition potency was observed for two bisquaternary derivatives, 7 (1,1'-(decano)bis(3-hydroxyquinuclidinium bromide)) and 14 (1,1'-(decano)bis(3-hydroxyiminoquinuclidinium bromide)). The cytotoxic effect within 7-200 μM was observed only for monoquaternary quinuclidine derivatives, especially those with the C12-C16 alkyl chain. Further analysis revealed a time-independent mechanism of action, significant LDH release, and a decrease in the cells' mitochondrial membrane potential. Taking all results into consideration, we can confirm that a quinuclidine core presents a good scaffold for cholinesterase binding and that two bisquaternary quinuclidine derivatives could be considered as candidates worth further investigations as drugs acting in the cholinergic system. On the other hand, specific cell-related effects probably triggered by the free long alkyl chain in monoquaternary quinuclidine derivatives should not be neglected in future N-alkyl quaternary quinuclidine derivative structure refinements. Such an effect and their potential to interact with other specific targets, as indicated by a pharmacophore model, open up a new perspective for future investigations of these compounds' scaffold in the treatment of specific conditions and diseases other than cholinergic system-linked disorders.
Collapse
Affiliation(s)
- Suzana Žunec
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Donna Vadlja
- Armed Forces of the Republic of Croatia, Trg Kralja Petra Krešimira IV br. 1, 10000 Zagreb, Croatia;
| | - Alma Ramić
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Nikola Maraković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| | - Iva Brekalo
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Ines Primožič
- Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (A.R.); (I.B.); (I.P.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000 Zagreb, Croatia; (S.Ž.); (A.Z.); (N.M.)
| |
Collapse
|
4
|
Váňová N, Múčková L, Kalíšková T, Lochman L, Bzonek P, Švec F. In Vitro Evaluation of Oxidative Stress Induced by Oxime Reactivators of Acetylcholinesterase in HepG2 Cells. Chem Res Toxicol 2023; 36:1912-1920. [PMID: 37950699 PMCID: PMC10731658 DOI: 10.1021/acs.chemrestox.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.
Collapse
Affiliation(s)
- Nela Váňová
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - L’ubica Múčková
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - Tereza Kalíšková
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Lukáš Lochman
- Department
of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of
Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| | - Petr Bzonek
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, Hradec Králové 500 02, Czechia
| | - František Švec
- Department
of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, Hradec
Králové 500 05, Czechia
| |
Collapse
|