1
|
Peng Z, Deng J, Xu ZJ, Niu QJ, Dessalegn L, Refaie A, Sun LH, Feng YP, Liu M. Hepatoprotective effects of dandelion against AFB 1-induced liver injury are associated with activation of bile acid-FXR signaling in chicks. Toxicon 2025; 263:108419. [PMID: 40404059 DOI: 10.1016/j.toxicon.2025.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
This study aimed to investigate the protective effects of dandelion against AFB1-induced hepatotoxicity through the regulation of the FXR signaling pathway in chicks. A total of 144 one-day-old male broilers were randomly assigned to three groups and received a basal diet (BD), and BD supplemented with 0.5 mg/kg of AFB1 or 0.5 mg/kg AFB1 with 0.4 % dandelion for 3 weeks. The results showed that the AFB1 treatment caused liver injury and decreased the concentrations of albumin and alkaline phosphatase in serum and increased the total bile acid concentration in serum and liver. Dietary AFB1 supplementation also induced hepatocyte swelling, necrosis, neutrophils infiltration and lipid deposition in the liver. Notably, dietary dandelion supplementation alleviated these alterations induced by AFB1. Additionally, dietary dandelion supplementation alleviated AFB1-induced changes in ileum microbiota and decreased the abundance of Lactobacillus, L. vaginalis, and L. acidophilus compared to the AFB1 treatment. Furthermore, AFB1 downregulated Baat, Ntcp, Acc, FXR, SHP, and SREBP-1c expression, and upregulated Cyp8b1, Bacs, Fas, Pparα, Lxrα and CYP7A1 expression in liver. Meanwhile, AFB1 also downregulated Fgf19, Ostα, Ostβ and FXR expression and upregulated SHP expression in the ileum. Conclusively, dietary dandelion supplementation protected broilers from AFB1-induced hepatotoxicity, potentially due to the activation of bile acid-FXR signaling pathway.
Collapse
Affiliation(s)
- Zhe Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiang Deng
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lamesgen Dessalegn
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Alainaa Refaie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yan-Ping Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Nielsen G, Gondim DD, Cave MC, Heiger-Bernays WJ, Webster TF, Schlezinger JJ. Perfluorooctanoic acid increases serum cholesterol in a PPARα-dependent manner in female mice. Arch Toxicol 2025; 99:2087-2105. [PMID: 40021516 DOI: 10.1007/s00204-025-03984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of persistent chemicals that are pervasive in the environment leading to widespread exposure for humans. Perfluorooctanoic acid (PFOA), one of the most commonly measured PFAS in people, disrupts liver and serum lipid homeostasis as shown in animal toxicity and human epidemiological studies. We tested the hypothesis that the effects of PFOA exposure in mice expressing mouse PPARα (mPPARα) are driven largely through PPARα-dependent mechanisms while non-PPARα dependent mechanisms will be more apparent in mice expressing human PPARα (hPPARα). Female and male mPPARα, hPPARα, and PPARα null mice were exposed to PFOA (0.5, 1.4 or 6.2 mg PFOA/L) via drinking water for 14 weeks. Concurrently, mice consumed an American diet containing human diet-relevant amounts of fat and cholesterol. Here, we focused on the effects in female mice, given the dearth of data reported on PFAS-induced effects in females. Increasing the duration of PFOA exposure reduced weight gain in all genotypes of female mice while end-of-study body fat was lower in PFOA exposed hPPARα and PPARα null mice. Serum cholesterol, but not triacylglyceride, concentrations were increased by PFOA exposure in a PPARα-dependent manner. Hepatic triacylglycerides were higher in vehicle-exposed mPPARα and PPARα null mice than hPPARα mice, and PFOA significantly reduced concentrations in mPPARα and PPARα null mice only. In contrast, PFOA increased hepatic cholesterol content in a PPARα-dependent manner. Changes in liver and serum cholesterol may be explained by a strong, PPARα-dependent downregulation of Cyp7a1 expression. PFOA significantly increased PPARα target gene expression in mPPARα mice. Other nuclear receptors were examined: CAR target gene expression was only induced by PFOA in hPPARα and PPARα null mice. PXR target gene expression was induced by PFOA in all genotypes. Results were similar in male mice with two exceptions: (1) vehicle-exposed male mice of all genotypes were equally susceptible to diet-induced hepatic steatosis; (2) male mice drank less water, resulting in lower serum PFOA levels, which may explain the less significant changes in lipid endpoints. Overall, our results show that PFOA modifies triacylglyceride and cholesterol homeostasis independently and that PPARα plays an important role in PFOA-induced increases in liver and serum cholesterol.
Collapse
Affiliation(s)
- G Nielsen
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - D D Gondim
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - M C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - W J Heiger-Bernays
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - T F Webster
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA
| | - J J Schlezinger
- Department of Environmental Health, School of Public Heath, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Sun L, He S, Chen J, Su A, Mao Q, Zhang W, Pan Y, Hu J, Feng D, Ouyang Y. Hepatic injury and metabolic perturbations in mice exposed to perfluorodecanoic acid revealed by metabolomics and lipidomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117475. [PMID: 39662454 DOI: 10.1016/j.ecoenv.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Perfluorodecanoic acid (PFDA) is a typical perfluoroalkyl substances frequently encountered in populations, posing significant risks to human health. However, research on the effects of PFDA exposure on organism metabolism and related pathogenic mechanisms is severely lacking. In this study, serum and liver samples of C57BL/6 J mice exposed to different doses of PFDA were analyzed by UPLC-HRMS-based metabolomics and lipidomics techniques. Both 1 mg/kg and 10 mg/kg PFDA exposure induced liver damage, while only 10 mg/kg PFDA exposure caused weight loss. Metabolomics analysis revealed that 330 and 515 metabolites were significantly altered in the serum and liver of mice after PFDA exposure, respectively. Most amino acids and peptides increased in the serum but decreased in the liver. Lipidomics analysis indicated that 281 and 408 lipids experienced significant alterations in the serum and liver after PFDA exposure, respectively. Most lipids, particularly multiple triacylglycerols, were downregulated in a dose-dependent manner in both serum and liver. Taken together, PFDA can induce changes in the amino acid metabolism pathway, disrupt fatty acid β-oxidation, and down-regulate glycolipid pathways in mice, resulting in disturbances in energy metabolism. These findings suggested that the liver is a critical target organ for PFDA exposure, and will also help inform future risk assessment.
Collapse
Affiliation(s)
- Lvyun Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Shuling He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiali Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Amei Su
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qiuyao Mao
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Wenyuan Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ying Pan
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jiaqian Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Disheng Feng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yang Ouyang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
4
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Wang X, Lv Y, Qiang X, Liang S, Li R, Zhan J, Liu J. Perfluorooctanoic acid (PFOA) and its alternative perfluorobutanoic acid (PFBA) alter hepatic bile acid profiles via different pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175312. [PMID: 39122034 DOI: 10.1016/j.scitotenv.2024.175312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The disruption of per- and polyfluoroalkyl substances (PFASs) on bile acid (BA) homeostasis has raised public concerns, making the evaluation of their effects and underlying mechanisms a high priority. Although the use of perfluorooctanoic acid (PFOA) has been restricted, it remains a widespread legacy PFAS in the environment. Concurrently, the use of its prevalent short-chain alternative, perfluorobutanoic acid (PFBA), is increasing, yet the toxicity assessment of PFBA remains inadequate. In this study, C57BL/6N mice were exposed to PFOA and PFBA (0.4 or 10 mg/kg body weight) by gavage for 28 days. The results showed that both PFOA and PFBA significantly increased hepatic weight, although PFBA exhibited lower bioaccumulation than PFOA in the liver. Targeted metabolomics revealed that PFOA significantly decreased total BA levels and altered their composition. Conversely, PFBA, without significantly altering total BA levels, notably changed their composition, such as increasing the proportion of cholic acid. Further investigations using in vivo and in vitro assays suggested that PFOA inhibited the expression of Cyp7A1, a key BA synthetase, potentially via PPARα activation, thereby reducing BA levels. In contrast, PFBA enhanced Cyp7A1 expression, associated with the inhibition of intestinal Farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) pathway. This study evaluated the differences in the BA-interfering effects of PFOA and PFBA and shed light on the potential mechanisms, which will provide new insights into the health risks of legacy PFASs and their alternatives.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ruosi Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| | - Jiaying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Guo YT, Huang JB, Xue JC, Qin SJ, Cai D, Wu QZ, Chu C, Tang CL, Xie YQ, Lin LZ, Dong GH, Zeng XW. Intrauterine exposure to long-chain perfluorocarboxylic acids (PFCAs) were associated with reduced primary bile acids in three-year-old children: Findings from a prospective birth cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124583. [PMID: 39038776 DOI: 10.1016/j.envpol.2024.124583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Bile acids (BAs) play a crucial role in lipid metabolism of children. However, the association between per- and polyfluoroalkyl substance (PFAS) exposure and BAs in children is scarce. To address this need, we selected 252 children from the Maoming Birth Cohort and measured 32 PFAS, encompassing short- and long-chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) in the cord blood. Additionally, we analyzed nine primary and eight secondary BAs in the serum of three-year-old children. Generalized linear models with FDR-adjusted and Bayesian kernel machine regression (BKMR) were used to explore the associations of individual and mixture effects of PFAS and BAs. We found negative associations between cord blood long-chain PFCAs exposure and serum primary BAs in three-year-old children. For example, one ln-unit (ng/mL) increase of perfluoro-n-tridecanoic acid (PFTrDA), perfluoro-n-undecanoic acid (PFUnDA) and perfluoro-n-decanoic acid (PFDA) were associated with decreased taurochenodeoxycholic acid, with estimated percentage change of -24.28% [95% confidence interval (CI): -36.75%, -9.35%], -25.84% (95% CI: -39.67%, -8.83%), and -22.97% (95% CI: -34.45%, -9.47%) respectively. Notably, the observed associations were more pronounced in children with lower vegetable intake. Additionally, the BKMR model also demonstrated a monotonical decline in primary BAs as the PFAS mixture increased. We provided the first evidence of the association between intrauterine exposure to PFAS and its mixture with BAs in children. Further large-sample-size studies are needed to verify this finding.
Collapse
Affiliation(s)
- Yu-Ting Guo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jin-Bo Huang
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Jing-Chuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Cardiovascular Institute, Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cui-Lan Tang
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Yan-Qi Xie
- Maoming Maternal and Child Health Hospital, Maoming, 525000, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
8
|
Cui Z, Liu Z, Yuan X, Lu K, Li M, Xu S, Chen K, Zheng F, Li Y, Héroux P, Wu Y, Xia D. PFDA promotes cancer metastasis through macrophage M2 polarization mediated by Wnt/β-catenin signaling. CHEMOSPHERE 2024; 362:142758. [PMID: 38969224 DOI: 10.1016/j.chemosphere.2024.142758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Perfluoroundecanoic acid (PFDA) is extensively utilized in the textile and food processing industries and may have a tumor-promoting effect by modulating the tumor microenvironment. Macrophages play crucial roles in tumor microenvironment as key regulators of tumor immunity. However, further investigation is needed to elucidate how PFDA interacts with macrophages and contributes to tumor progression. In this study, we treated the macrophage cell line RAW264.7 with various concentrations of PFDA and found that RAW264.7 transitioned into an M2 tumor-promoting phenotype. Through bioinformatic analysis and subsequent verification of molecular assays, we uncovered that PFDA could activate β-catenin and enhance its nuclear translocation. Additionally, it was also observed that inhibiting β-catenin nuclear translocation partly attenuated RAW264.7 M2 polarization induced by PFDA. The conditioned medium derived from PFDA-pretreated RAW264.7 cells significantly promoted the migration and invasion abilities of human ovarian cancer cells. Furthermore, in vivo studies corroborated that PFDA-pretreated RAW264.7 could promote tumor metastasis, which could be mitigated by pretreatment with the β-catenin inhibitor ICG001. In conclusion, our study demonstrated that PFDA could promote cancer metastasis through regulating macrophage M2 polarization in a Wnt/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Zhenyan Cui
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zekun Liu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kean Lu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyao Li
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sinan Xu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Li
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Yihua Wu
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Shi T, Li D, Li D, Sun J, Xie P, Wang T, Li R, Li Z, Zou Z, Ren X. Individual and joint associations of per- and polyfluoroalkyl substances (PFAS) with gallstone disease in adults: A cross-sectional study. CHEMOSPHERE 2024; 358:142168. [PMID: 38685323 DOI: 10.1016/j.chemosphere.2024.142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Disturbances in the enterohepatic circulation are important biological mechanisms for causing gallstones and also have important effects on the metabolism of Per- and polyfluoroalkyl substances (PFAS). Moreover, PFAS is associated with sex hormone disorder which is another important cause of gallstones. However, it remains unclear whether PFAS is associated with gallstones. In this study, we used logistic regression, restricted cubic spline (RCS), quantile g-computation (qg-comp), Bayesian kernel machine regression (BKMR), and subgroup analysis to assess the individual and joint associations of PFAS with gallstones and effect modifiers. We observed that the individual associations of perfluorodecanoic acid (PFDeA) (OR: 0.600, 95% CI: 0.444 to 0.811), perfluoroundecanoic acid (PFUA) (OR: 0.630, 95% CI: 0.453 to 0.877), n-perfluorooctane sulfonic acid (n-PFOS) (OR: 0.719, 95% CI: 0.571 to 0.906), and perfluoromethylheptane sulfonic acid isomers (Sm-PFOS) (OR: 0.768, 95% CI: 0.602 to 0.981) with gallstones were linearly negative. Qg-comp showed that the PFAS mixture (OR: 0.777, 95% CI: 0.514 to 1.175) was negatively associated with gallstones, but the difference was not statistically significant, and PFDeA had the highest negative association. Moreover, smoking modified the association of perfluorononanoic acid (PFNA) with gallstones. BKMR showed that PFDeA, PFNA, and PFUA had the highest groupPIP (groupPIP = 0.93); PFDeA (condPIP = 0.82), n-perfluorooctanoic acid (n-PFOA) (condPIP = 0.68), and n-PFOS (condPIP = 0.56) also had high condPIPs. Compared with the median level, the joint association of the PFAS mixture with gallstones showed a negative trend; when the PFAS mixture level was at the 70th percentile or higher, they were negatively associated with gallstones. Meanwhile, when other PFAS were fixed at the 25th, 50th, and 75th percentiles, PFDeA had negative associations with gallstones. Our evidence emphasizes that PFAS is negatively associated with gallstones, and more studies are needed in the future to definite the associations of PFAS with gallstones and explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tianshan Shi
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Di Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jin Sun
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingrong Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjuan Li
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zixuan Zou
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaowei Ren
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China; Institute for Health Statistics and Intelligent Analysis, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|