1
|
Tasima LJ, Lima EOVD, Hatakeyama DM, Vidueiros JP, Stuginski DR, Grego KF, Tanaka-Azevedo AM. Seasonality in Crotalus durissus venom. Toxicon 2024; 244:107748. [PMID: 38710309 DOI: 10.1016/j.toxicon.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.
Collapse
Affiliation(s)
- Lidia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Eduardo Oliveira Venâncio de Lima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
2
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
3
|
Gopalan SS, Perry BW, Schield DR, Smith CF, Mackessy SP, Castoe TA. Origins, genomic structure and copy number variation of snake venom myotoxins. Toxicon 2022; 216:92-106. [PMID: 35820472 DOI: 10.1016/j.toxicon.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Crotamine, myotoxin a and homologs are short peptides that often comprise major fractions of rattlesnake venoms and have been extensively studied for their bioactive properties. These toxins are thought to be important for rapidly immobilizing mammalian prey and are implicated in serious, and sometimes fatal, responses to envenomation in humans. While high quality reference genomes for multiple venomous snakes are available, the loci that encode myotoxins have not been successfully assembled in any existing genome assembly. Here, we integrate new and existing genomic and transcriptomic data from the Prairie Rattlesnake (Crotalus viridis viridis) to reconstruct, characterize, and infer the chromosomal locations of myotoxin-encoding loci. We integrate long-read transcriptomics (Pacific Bioscience's Iso-Seq) and short-read RNA-seq to infer gene sequence diversity and characterize patterns of myotoxin and paralogous β-defensin expression across multiple tissues. We also identify two long non-coding RNA sequences which both encode functional myotoxins, demonstrating a newly discovered source of venom coding sequence diversity. We also integrate long-range mate-pair chromatin contact data and linked-read sequencing to infer the structure and chromosomal locations of the three myotoxin-like loci. Further, we conclude that the venom-associated myotoxin is located on chromosome 1 and is adjacent to non-venom paralogs. Consistent with this locus contributing to venom composition, we find evidence that the promoter of this gene is selectively open in venom gland tissue and contains transcription factor binding sites implicated in broad trans-regulatory pathways that regulate snake venoms. This study provides the best genomic reconstruction of myotoxin loci to date and raises questions about the physiological roles and interplay between myotoxin and related genes, as well as the genomic origins of snake venom variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Cara F Smith
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA; Department of Biochemistry and Molecular Biology, 12801 East 17th Avenue, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Stephen P Mackessy
- School of Biological Sciences, 501 20th Street, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Todd A Castoe
- Department of Biology, 501 S. Nedderman Dr., The University of Texas Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
4
|
Salazar E, Rodriguez-Acosta A, Lucena S, Gonzalez R, McLarty MC, Sanchez O, Suntravat M, Garcia E, Finol HJ, Giron ME, Fernandez I, Deba F, Bessac BF, Sánchez EE. Biological activities of a new crotamine-like peptide from Crotalus oreganus helleri on C2C12 and CHO cell lines, and ultrastructural changes on motor endplate and striated muscle. Toxicon 2020; 188:95-107. [PMID: 33065200 PMCID: PMC7720416 DOI: 10.1016/j.toxicon.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/05/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Crotamine and crotamine-like peptides are non-enzymatic polypeptides, belonging to the family of myotoxins, which are found in high concentration in the venom of the Crotalus genus. Helleramine was isolated and purified from the venom of the Southern Pacific rattlesnake, Crotalus oreganus helleri. This peptide had a similar, but unique, identity to crotamine and crotamine-like proteins isolated from other rattlesnakes species. The variability of crotamine-like protein amino acid sequences may allow different toxic effects on biological targets or optimize the action against the same target of different prey. Helleramine was capable of increasing intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line. It inhibited cell migration as well as cell viability (IC50 = 11.44 μM) of C2C12, immortalized skeletal myoblasts, in a concentration dependent manner, and promoted early apoptosis and cell death under our experimental conditions. Skeletal muscle harvested from mice 24 h after helleramine injection showed contracted myofibrils and profound vacuolization that enlarged the subsarcolemmal space, along with loss of plasmatic and basal membrane integrity. The effects of helleramine provide further insights and evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenomings.
Collapse
Affiliation(s)
- Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Alexis Rodriguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Roschman Gonzalez
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Morgan C McLarty
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Oscar Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Estefanie Garcia
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hector J Finol
- Centro de Microscopía Electrónica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria E Giron
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Irma Fernandez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico, Universidad Central de Venezuela, Caracas, Venezuela
| | - Farah Deba
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA
| | - Bret F Bessac
- Texas A&M Rangel College of Pharmacy, Kingsville, TX, USA; Jerry H. Hodge School of Pharmacy, Texas Tech University HSC, Amarillo, TX, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA; Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA.
| |
Collapse
|
5
|
Tasima LJ, Hatakeyama DM, Serino-Silva C, Rodrigues CFB, de Lima EOV, Sant'Anna SS, Grego KF, de Morais-Zani K, Sanz L, Calvete JJ, Tanaka-Azevedo AM. Comparative proteomic profiling and functional characterization of venom pooled from captive Crotalus durissus terrificus specimens and the Brazilian crotalic reference venom. Toxicon 2020; 185:26-35. [PMID: 32634448 DOI: 10.1016/j.toxicon.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
The South American rattlesnake Crotalus durissus spp has a wide geographic distribution in Brazil. Although responsible for only a low proportion of ophidian accidents, it is considered one of the most medically important species of venomous snakes due to the high mortality rate (1.87%). Snake venom is a complex phenotype commonly subjected to individual intraspecific, ontogenetic and geographic variability. Compositional differences in pooled venom used in the immunization process may impact the efficacy of the antivenom. In order to assure standardized high-quality antivenom, the potency of each Brazilian crotalic antivenom batch is determined against the 'Brazilian Crotalic Reference Venom' (BCRV). BCRV is produced by Instituto Butantan using venom obtained from the first milking of recently wild-caught C. d. terrificus specimens brought to the Institute. The decrease in the number of snake donations experienced in recent years can become a threat to the production of future batches of BCRV. To evaluate the feasibility of using venom from long-term captive animals in the formulation of BCRV, we have compared the proteomic, biochemical and biological profiles of C. d. terrificus venom pooled from captive specimens (CVP- captive venom pool) and BCRV. Electrophoretic and venomics analyses revealed a very similar venom composition profile, but also certain differences in toxins abundance, with some low abundant protein families found only in BCRV. Enzymatic (L-amino acid oxidase, phospholipase A2 and proteolytic) and biological (myotoxic and coagulant) activities showed higher values in CVP than in BCRV. CVP also possessed slightly higher lethal effect, although the Instituto Butantan crotalic antivenom showed equivalent potency neutralizing BCRV and CVP. Our results strongly suggest that venom from long-term captive C. d. terrificus might be a valid alternative to generate an immunization mixture of equivalent quality to the currently in use reference venom.
Collapse
Affiliation(s)
- Lidia J Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil
| | - Daniela M Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil
| | - Caroline F B Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil
| | - Eduardo O V de Lima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain.
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, 05503-000, Brazil; Interunidades em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, 05503-000, Brazil.
| |
Collapse
|
6
|
Beta-defensin genes of the Colubridae snakes Phalotris mertensi , Thamnodynastes hypoconia , and T. strigatus. Toxicon 2018; 146:124-128. [DOI: 10.1016/j.toxicon.2018.02.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/16/2023]
|
7
|
Batista da Cunha D, Pupo Silvestrini AV, Gomes da Silva AC, Maria de Paula Estevam D, Pollettini FL, de Oliveira Navarro J, Alves AA, Remédio Zeni Beretta AL, Annichino Bizzacchi JM, Pereira LC, Mazzi MV. Mechanistic insights into functional characteristics of native crotamine. Toxicon 2018; 146:1-12. [PMID: 29574214 DOI: 10.1016/j.toxicon.2018.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/06/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
The chemical composition of snake venoms is a complex mixture of proteins and peptides that can be pharmacologically active. Crotamine, a cell-penetrating peptide, has been described to have antimicrobial properties and it exerts its effects by interacting selectively with different structures, inducing changes in the ion flow pattern and cellular responses. However, its real therapeutic potential is not yet fully known. Bearing in mind that crotamine is a promising molecule in therapeutics, this study investigated the action of purified molecule in three aspects: I) antibacterial action on different species of clinical interest, II) the effect of two different concentrations of the molecule on platelet aggregation, and III) its effects on isolated mitochondria. Crotamine was purified to homogeneity in a single step procedure using Heparin Sepharose. The molecular mass of the purified enzyme was 4881.4 Da, as determined by mass spectrometry. To assess antibacterial action, changes in the parameters of bacterial oxidative stress were determined. The peptide showed antibacterial activity on Escherichia coli (MIC: 2.0 μg/μL), Staphylococcus aureus (MIC: 8-16 μg/μL) and methicillin-resistant Staphylococcus aureus (MIC: 4.0-8.0 μg/μL), inducing bacterial death by lipid peroxidation and oxidation of target proteins, determined by thiobarbituric acid reactive substances and sulfhydryl groups, respectively. Crotamine induced increased platelet aggregation (IPA) at the two concentrations analyzed (0.1 and 1.4 μg/μL) compared to ADP-induced aggregation of PRP. Mitochondrial respiratory parameters and organelle structure assays were used to elucidate the action of the compound in this organelle. The exposure of mitochondria to crotamine caused a decrease in oxidative phosphorylation and changes in mitochondrial permeability, without causing damage in the mitochondrial redox state. Together, these results support the hypothesis that, besides the antimicrobial potential, crotamine acts on different molecular targets, inducing platelet aggregation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Daniel Batista da Cunha
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Vitória Pupo Silvestrini
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Carolina Gomes da Silva
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Deborah Maria de Paula Estevam
- Graduate Program in Agrarian and Veterinary Sciences, State University Paulista Júlio de Mesquita Filho-UNESP, Jaboticabal, SP, Brazil
| | - Flávia Lino Pollettini
- Graduate Program in Agrarian and Veterinary Sciences, State University Paulista Júlio de Mesquita Filho-UNESP, Jaboticabal, SP, Brazil
| | - Juliana de Oliveira Navarro
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Armindo Antônio Alves
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Ana Laura Remédio Zeni Beretta
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil
| | - Joyce M Annichino Bizzacchi
- Blood Hemostasis Laboratory, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Lilian Cristina Pereira
- Department of Bioprocesses and Biotechnology, Faculty of Agronomic Sciences, State University Paulista Júlio Mesquita Filho-UNESP, Botucatu, SP, Brazil
| | - Maurício Ventura Mazzi
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP, Brazil.
| |
Collapse
|
8
|
Yu H, Wang H, Liu X, Feng L, Qiao X, Cai S, Shi N, Wang Y. Identification, eukaryotic expression and structure & function characterizations of β-defensin like homologues from Pelodiscus sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:108-117. [PMID: 27890597 DOI: 10.1016/j.dci.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Defensins are a group of host defense peptides that play a central role in host innate immune responses. Here, 26 genes encoding β-defensin-like peptides have been identified for the first time in Pelodiscus sinensis using database mining approach. Phylogenetic study confirmed that β-defensins are fast evolving genes with high rates of sequence substitutions. The expression level of several selected genes in different tissues was examined by RT-PCR. Ps-BDs mainly adopt β-strands and/or α-helix conformations homology modeled by Rosetta program. Further, Ps-BD2 was expressed in Pichia pastoris and purified using Ni-NTA column and RT-HPLC. As expected, the rPs-BD2 showed strong antimicrobial activity, but displayed a negligible hemolytic and cytotoxic activity on human erythrocytes and Raw 264.7 murine macrophage cells, respectively. Our results suggested that the Ps-BD2 was produced efficiently in P. pastoris expression system, which makes the large-scale use of rPs-BDs possible in the future clinical practice.
Collapse
Affiliation(s)
- Haining Yu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Hui Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xuelian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lan Feng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xue Qiao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shasha Cai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nannan Shi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123 China.
| |
Collapse
|
9
|
Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014; 92:140-56. [PMID: 25449103 DOI: 10.1016/j.toxicon.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.
Collapse
Affiliation(s)
- Adam D Hargreaves
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom.
| | - John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| |
Collapse
|
10
|
Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR, Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Mol Biol Evol 2014; 32:173-83. [PMID: 25338510 DOI: 10.1093/molbev/msu294] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression.
Collapse
Affiliation(s)
| | - Daren C Card
- Department of Biology, University of Texas at Arlington
| | | | - Kyle J Shaney
- Department of Biology, University of Texas at Arlington
| | | | | | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Todd A Castoe
- Department of Biology, University of Texas at Arlington
| |
Collapse
|
11
|
Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol 2014; 6:2088-95. [PMID: 25079342 PMCID: PMC4231632 DOI: 10.1093/gbe/evu166] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/23/2022] Open
Abstract
Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive "just-so story" in evolutionary biology.
Collapse
Affiliation(s)
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Matthew J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, United Kingdom
| |
Collapse
|
12
|
Kerkis I, Hayashi MAF, Prieto da Silva ARB, Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A, Yamane T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BIOMED RESEARCH INTERNATIONAL 2014; 2014:675985. [PMID: 24551848 PMCID: PMC3914522 DOI: 10.1155/2014/675985] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/05/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022]
Abstract
Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources) has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom. Crotamine is the first venom peptide classified as a natural cell penetrating and antimicrobial peptide (CPP and AMP) with a more pronounced antifungal activity. In contrast to other known natural CPPs and AMPs, crotamine demonstrates a wide spectrum of biological activities with potential biotechnological and therapeutic values. More recent studies have demonstrated the selective in vitro anticancer activity of crotamine. In vivo, using a murine melanoma model, it was shown that crotamine delays tumor implantation, inhibits tumor cells proliferation, and also increases the survival of mice engrafted with subcutaneous melanoma. The structural and functional properties and also the possible biotechnological applications of minimized molecules derived from crotamine are also discussed.
Collapse
Affiliation(s)
- Irina Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Mirian A. F. Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Alexandre Pereira
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Paulo Luiz De Sá Júnior
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Andre J. Zaharenko
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Gandhi Rádis-Baptista
- Labomar-Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Alexandre Kerkis
- Laboratório de Genética, Instituto Butantan, Av. Vital Brasil, 1500 05503-900 São Paulo, SP, Brazil
| | - Tetsuo Yamane
- Universidade Estadual da Amazônia (UEA) e Laboratório de Bioquímica e Biologia Molecular, Centro de Biotecnologia da Amazônia (CBA), Manaus, AM, Brazil
| |
Collapse
|
13
|
Wu Y, Wang L, Zhou M, You Y, Zhu X, Qiang Y, Qin M, Luo S, Ren Z, Xu A. Molecular evolution and diversity of Conus peptide toxins, as revealed by gene structure and intron sequence analyses. PLoS One 2013; 8:e82495. [PMID: 24349297 PMCID: PMC3862624 DOI: 10.1371/journal.pone.0082495] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
Abstract
Cone snails, which are predatory marine gastropods, produce a cocktail of venoms used for predation, defense and competition. The major venom component, conotoxin, has received significant attention because it is useful in neuroscience research, drug development and molecular diversity studies. In this study, we report the genomic characterization of nine conotoxin gene superfamilies from 18 Conus species and investigate the relationships among conotoxin gene structure, molecular evolution and diversity. The I1, I2, M, O2, O3, P, S, and T superfamily precursors all contain three exons and two introns, while A superfamily members contain two exons and one intron. The introns are conserved within a certain gene superfamily, and also conserved across different Conus species, but divergent among different superfamilies. The intronic sequences contain many simple repeat sequences and regulatory elements that may influence conotoxin gene expression. Furthermore, due to the unique gene structure of conotoxins, the base substitution rates and the number of positively selected sites vary greatly among exons. Many more point mutations and trinucleotide indels were observed in the mature peptide exon than in the other exons. In addition, the first example of alternative splicing in conotoxin genes was found. These results suggest that the diversity of conotoxin genes has been shaped by point mutations and indels, as well as rare gene recombination or alternative splicing events, and that the unique gene structures could have made a contribution to the evolution of conotoxin genes.
Collapse
Affiliation(s)
- Yun Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Lei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Maojun Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Yuwen You
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Zhu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Qiang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengying Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaonan Luo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenghua Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Zhou M, Wang L, Wu Y, Zhu X, Feng Y, Chen Z, Li Y, Sun D, Ren Z, Xu A. Characterizing the evolution and functions of the M-superfamily conotoxins. Toxicon 2013; 76:150-9. [PMID: 24080356 DOI: 10.1016/j.toxicon.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/28/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Conotoxins from cone snails are valuable in physiology research and therapeutic applications. Evolutionary mechanisms of conotoxins have been investigated in several superfamilies, but there is no phylogenetic analysis on M-superfamily conotoxins. In this study, we characterized identical sequences, gene structure, novel cysteine frameworks, functions and evolutionary mechanisms of M-superfamily conotoxins. Identical M-superfamily conotoxins can be found in different Conus species from the analysis of novel 467 M-superfamily conotoxin sequences and other published M-superfamily conotoxins sequences. M-superfamily conotoxin genes consist of two introns and three exons from the results of genome walking. Eighteen cysteine frameworks were identified from the M-superfamily conotoxins, and 10 of the 18 may be generated from framework III. An analysis between diet types and phylogeny of the M-superfamily conotoxins indicate that M-superfamily conotoxins might not evolve in a concerted manner but were subject to birth-and-death evolution. Codon usage analysis shows that position-specific codon conservation is not restricted to cysteines, but also to other conserved residues. By analysing primary structures and physiological functions of M-superfamily conotoxins, we proposed a hypothesis that insertions and deletions, especially insertions in the third cysteine loop, are involved in the creation of new functions and structures of the M-superfamily conotoxins.
Collapse
Affiliation(s)
- Maojun Zhou
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Correa PG, Oguiura N. Phylogenetic analysis of β-defensin-like genes of Bothrops, Crotalus and Lachesis snakes. Toxicon 2013; 69:65-74. [DOI: 10.1016/j.toxicon.2013.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022]
|
16
|
Wong ES, Belov K. Venom evolution through gene duplications. Gene 2012; 496:1-7. [DOI: 10.1016/j.gene.2012.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/30/2022]
|
17
|
Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L. Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:222-229. [PMID: 21663758 DOI: 10.1016/j.dci.2011.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 05/30/2023]
Abstract
The high resistance of lizards to infections indicates that anti-microbial peptides may be involved. Through the analysis of the green lizard (Anolis carolinensis) genome and the expressed sequence tag (EST) libraries 32 beta-defensin-like-peptides have been identified. The level of expression of some of these genes in different tissues has been determined by semi-quantitative RT-PCR. Gene expression and structure analysis suggest the presence of alternative splicing mechanisms, with a number of exons ranging from two to four, similar to that for beta-defensins genes in mammals. Lizard beta-defensin-like peptides present the characteristic cysteine-motif identified in mammalian and avian beta-defensins. Phylogenetic analysis indicates that some lizard beta-defensins-like peptides are related to crotamine and crotamin-like peptides of snakes and lizards suggesting that beta-defensins and venomous peptides have a common ancestor gene.
Collapse
Affiliation(s)
- Luisa Dalla Valle
- Department of Biology, via U. Bassi 58/B, University of Padova, 25131 Padova, Italy.
| | | | | | | | | |
Collapse
|
18
|
Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. J Proteomics 2010; 73:1758-76. [DOI: 10.1016/j.jprot.2010.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/03/2010] [Indexed: 01/14/2023]
|
19
|
Oguiura N, Collares MA, Furtado MFD, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 2009; 446:35-40. [PMID: 19523505 DOI: 10.1016/j.gene.2009.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/12/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Crotamine is a small basic myotoxin peptide of Crotalus durissus venom, with beta-defensin scafold and variable concentration in individual venoms. The crotamine gene was mapped to the end of chromosome 2 and the signal intensity differed significantly between the two homologues. In contrast to crotamine, the paralogous crotasin gene is scarcely expressed in the venom glands. In this study, we analyzed the crotamine concentrations in the venoms of a total of 23 rattlesnakes from diverse Brazilian localities by ELISA as well as the copy number of both crotamine and crotasin genes by real-time PCR. Crotamine was found to constitute 5-29% of venom proteins varying greatly among individual animals. The crotamine gene exists from 1 to 32 copies per haploid genome, whereas the crotasin gene is present from 1 to 7 copies. Furthermore, we observed that the crotamine concentration and crotamine gene copy number are positively correlated (r(2)=0.68), implying the variation of crotamine in venom results from the variation of the gene copy number. Sequencing of 50 independent copies of crotamine and crotasin genes from four different rattlesnakes revealed the presence of six crotasin isoforms with a single amino acid difference from the original crotasin sequence, whereas only two additional crotamine isoforms were observed. Taken together, our results suggested that after duplication from a common ancestor gene, crotamine and crotasin may have diverged in such a way that the crotamine gene underwent repetitive duplication to increase its copy number, whereas the crotasin gene diversified its sequence.
Collapse
Affiliation(s)
- Nancy Oguiura
- Laboratório Especial de Ecologia e Evolução, Instituto Butantan, Av. Dr. Vital Brasil, 1500, CEP 05503-900, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Oguiura N, Boni-Mitake M, Rádis-Baptista G. New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon 2005; 46:363-70. [PMID: 16115660 DOI: 10.1016/j.toxicon.2005.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/10/2005] [Accepted: 06/08/2005] [Indexed: 11/21/2022]
Abstract
Crotamine is a toxin from the Crotalus durissus terrificus venom, composed of 42 amino acid residues and three disulfide bridges. It belongs to a toxin family previously called Small Basic Polypeptide Myotoxins (SBPM) whose members are widely distributed through the Crotalus snake venoms. Comparison of SBPM amino acid sequences shows high similarities. Crotamine induces skeletal muscle spasms, leading to spastic paralysis of the hind limbs of mice, by interacting with sodium channels on muscle cells. The crotamine gene with 1.8 kbp is organized into three exons, which are separated by a long phase-1 and short phase-2 introns and mapped to chromosome 2. The three-dimensional structure of crotamine was recently solved and shares a structural topology with other three disulfide bond-containing peptide similar to human beta-defensins and scorpion Na+ channel toxin. Novel biological activities have been reported, such as the capacity to penetrate undifferentiated cells, to localize in the nucleus, and to serve as a marker of actively proliferating living cells.
Collapse
Affiliation(s)
- N Oguiura
- Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo 05503-900, SP-Brazil.
| | | | | |
Collapse
|
21
|
Fry BG. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res 2005; 15:403-20. [PMID: 15741511 PMCID: PMC551567 DOI: 10.1101/gr.3228405] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study analyzed the origin and evolution of snake venom proteome by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. The snake toxins were shown to have arisen from recruitment events of genes from within the following protein families: acetylcholinesterase, ADAM (disintegrin/metalloproteinase), AVIT, complement C3, crotasin/beta defensin, cystatin, endothelin, factor V, factor X, kallikrein, kunitz-type proteinase inhibitor, LYNX/SLUR, L-amino oxidase, lectin, natriuretic peptide, betanerve growth factor, phospholipase A(2), SPla/Ryanodine, vascular endothelial growth factor, and whey acidic protein/secretory leukoproteinase inhibitor. Toxin recruitment events were found to have occurred at least 24 times in the evolution of snake venom. Two of these toxin derivations (CRISP and kallikrein toxins) appear to have been actually the result of modifications of existing salivary proteins rather than gene recruitment events. One snake toxin type, the waglerin peptides from Tropidolaemus wagleri (Wagler's Viper), did not have a match with known proteins and may be derived from a uniquely reptilian peptide. All of the snake toxin types still possess the bioactivity of the ancestral proteins in at least some of the toxin isoforms. However, this study revealed that the toxin types, where the ancestral protein was extensively cysteine cross-linked, were the ones that flourished into functionally diverse, novel toxin multigene families.
Collapse
Affiliation(s)
- Bryan G Fry
- Australian Venom Research Unit, Level 8, School of Medicine, University of Melbourne, Parkville, Victoria 3010 Australia.
| |
Collapse
|
22
|
Rádis-Baptista G, Kubo T, Oguiura N, Prieto da Silva ARB, Hayashi MAF, Oliveira EB, Yamane T. Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus. Toxicon 2004; 43:751-9. [PMID: 15284009 DOI: 10.1016/j.toxicon.2004.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 02/25/2004] [Indexed: 11/16/2022]
Abstract
Crotamine is a cationic peptide (4.9 kDa, pI 9.5) of South American rattlesnake, Crotalus durissus terrificus' venom. Its presence varies according to the subspecies or the geographical locality of a given species. At the genomic level, we observed the presence of 1.8 kb gene, Crt-p1, in crotamine-positive specimens and its absence in crotamine-negative ones. In this work, we described a crotamine-related 2.5 kb gene, crotasin (Cts-p2), isolated from crotamine-negative specimens. Reverse transcription coupled to polymerase chain reaction indicates that Cts-p2 is abundantly expressed in several snake tissues, but scarcely expressed in the venom gland. The genome of crotamine-positive specimen contains both Crt-p1 and Cts-p2 genes. The present data suggest that both crotamine and crotasin have evolved by duplication of a common ancestor gene, and the conservation of their three disulfide bonds indicates that they might adopt the same fold as beta-defensin. The physiological function of the crotasin is not yet known.
Collapse
Affiliation(s)
- G Rádis-Baptista
- Molecular Toxinology Laboratory, Butantan Institute, Av. Vital Brazil 1500, São Paulo 05503-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|