1
|
Nowak A, Steglińska A, Gutarowska B, Kręgiel D. Cyto- and Genotoxicity of Selected Plant Extracts and Microbial Metabolites with Confirmed Activity Against Phytopathogens of Potato Seed ( Solanum tuberosum L.). Molecules 2025; 30:701. [PMID: 39942804 PMCID: PMC11821134 DOI: 10.3390/molecules30030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of this study was to evaluate the cytotoxicity and genotoxicity of potential biocontrol agents for use against phytopathogens of potato seed (Solanum tuberosum L.). Plant extracts from Allium sativum L., Syzygium aromaticum L. Merr. & Perry, Salvia officinalis L., and Curcuma longa L., as well as metabolites of bacteria Lactiplantibacillus plantarum KB2 LAB 03 and yeast Metschnikowia pulcherrima TK1, were investigated. The chemical characteristics of the plant extracts and the metabolic profiles of the tested microorganisms were evaluated by GC-MS. An insect cell line from Spodoptera frugiperda (Sf-9) and human cervix adenocarcinoma cells (HeLa) were used to evaluate cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The single-cell electrophoresis assay was used to estimate DNA damage. The cytotoxicity and genotoxicity of the microbial metabolites depended on their chemical profiles and pH. The plant extracts induced stronger DNA damage in the Sf-9 cell line than in HeLa cells. The garlic (Allium sativum L.) extract showed the highest cytotoxicity against Sf-9 insect cells (IC50 41.6 mg/mL). The sage (Salvia officinalis L.) extract showed the highest cytotoxicity against HeLa cells (IC50 49.6 mg/mL). This study is the first to investigate not only the potential of these novel biocontrol agents for plant disease control, but also their safety for humans and biodiversity within the context of sustainable agriculture.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.S.); (B.G.); (D.K.)
| | | | | | | |
Collapse
|
2
|
Yadav V, Fuentes JL, Krishnan A, Singh N, Vohora D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci 2024; 337:122341. [PMID: 38101613 DOI: 10.1016/j.lfs.2023.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Since DNA damage can occur spontaneously or be produced by the environmental genotoxins in living cells, it is important to investigate compounds that can reverse or protect DNA damage. An appropriate methodology is essential for the responsive identification of protection offered against DNA damage. This review includes information on the current state of knowledge on prokaryotic cell-based assays (SOS chromotest, umu test, vitotox assay) and cytogenetic techniques (micronucleus assay, chromosome aberration test and sister chromatid exchange assay) with an emphasis on the possibility to explore genoprotective compounds. Throughout the last decade, studies have extrapolated the scientific methodologies utilized for genotoxicity to assess genoprotective compounds. Therefore, shortcomings of genotoxicity studies are also mirrored in antigenotoxicity studies. While regulatory authorities around the world (OECD, US-EPA and ICH) continue to update diverse genotoxic assay strategies, there are still no clear guidelines/approaches for efficient experimental design to screen genoprotective compounds. As a consequence, non-synergetic and inconsistent implementation of the test method by the researchers to execute such simulations has been adopted, which inevitably results in unreliable findings. The review has made the first attempt to collect various facets of experimentally verified approaches for evaluating genoprotective compounds, as well as to acknowledge potential significance and constraints, and further focus on the assessment of end points which are required to validate such action. Henceforth, the review makes an incredible commitment by permitting readers to equate several components of their test arrangement with the provided simplified information, allowing the selection of convenient technique for the predefined compound from a central repository.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jorge L Fuentes
- School of Biology, Science Faculty, Industrial University of Santander, Bucaramanga 680002, Santander, Colombia
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
3
|
Phipps KR, Bali V, Kukadia D, Patel C, Muchhara J. Safety assessment of a solid lipid curcumin particle preparation: In vitro and in vivo genotoxicity studies. J Appl Toxicol 2023; 43:929-939. [PMID: 36609910 DOI: 10.1002/jat.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Curcumin, one of the three principal curcuminoids found within turmeric rhizomes, has long been associated with numerous physiologically beneficial effects; however, its efficacy is limited by its inherently low bioavailability. Several novel formulations of curcumin extracts have been prepared in recent years to increase the systemic availability of curcumin; Longvida®, a solid lipid curcumin particle preparation, is one such formulation that has shown enhanced bioavailability compared with standard curcuminoid extracts. As part of a safety assessment of Longvida® for use as a food ingredient, a bacterial reverse mutation test (OECD TG 471) and mammalian cell erythrocyte micronucleus test (OECD TG 474) were conducted to assess its genotoxic potential. In the bacterial reverse mutation test, Longvida® did not induce base-pair or frame-shift mutations at the histidine locus in the genome of Salmonella typhimurium strains TA98, TA100, TA102, TA1535, and TA1537, in the presence or absence of exogenous metabolic activation. Additionally, two gavage doses (24 h apart) of Longvida® to Swiss albino mice at 500, 1000, or 2000-mg/kg body weight/day did not cause structural or numerical chromosomal damage in somatic cells in the mammalian erythrocyte micronucleus test. It was therefore concluded that Longvida® is non-genotoxic.
Collapse
Affiliation(s)
- Kirt R Phipps
- Intertek Health Sciences Inc., Room 1036, Building A8, Cody Technology Park, Ively Road, Farnborough, Hampshire, GU14 0LX, UK
| | - Victoria Bali
- Intertek Health Sciences Inc., 2233 Argentia Road, Suite 201, Mississauga, Ontario, L5N 2X7, Canada
| | - Dhaval Kukadia
- Pre-Clinical Department, Cadila Pharmaceuticals Ltd., 1389 Trasad Road, Dholka, Ahmedabad, 382 225, India
| | - Chintan Patel
- Pre-Clinical Department, Cadila Pharmaceuticals Ltd., 1389 Trasad Road, Dholka, Ahmedabad, 382 225, India
| | - Jayesh Muchhara
- Pre-Clinical Department, Cadila Pharmaceuticals Ltd., 1389 Trasad Road, Dholka, Ahmedabad, 382 225, India
| |
Collapse
|
4
|
Anti-Genotoxicity Evaluation of Ellagic Acid and Curcumin—An In Vitro Study on Zebrafish Blood Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genotoxicity is the ability of specific substances to cause DNA damage, affecting development, physiology, and reproduction. This is often mediated by induction of oxidative stress. This in vitro study aims to test the ability of two antioxidants, ellagic acid (EA, 100 µM) and curcumin (Cur, 40 µM) to protect zebrafish blood cells from the genotoxic action of benzene (10 µL/mL). Cells were treated for 30, 60, and 90 min with EA or Cur alone and in combination with benzene. The antigenotoxic role of antioxidants was evaluated in terms of cytotoxicity by trypan blue dye, genome stability by RAPD-PCR technique, DNA fragmentation and percentage of apoptotic cells using Comet and Diffusion assay, respectively. The results did not show statistical differences in terms of cell viability, genome stability, DNA damage and apoptosis between cells treated with antioxidants. When zebrafish blood cells were co-incubated with individual antioxidants and benzene, a significant improvement of these parameters was observed in comparison with cells incubated in benzene. Our results suggested that EA and Cur are able to protect zebrafish blood cells against DNA damage and apoptosis caused by mutagenic substance, and laid the foundation for future studies investigating their antigenotoxic potential in DNA oxidative damage therapy.
Collapse
|
5
|
Uca M, Eksin E, Erac Y, Erdem A. Electrochemical Investigation of Curcumin-DNA Interaction by Using Hydroxyapatite Nanoparticles-Ionic Liquids Based Composite Electrodes. MATERIALS 2021; 14:ma14154344. [PMID: 34361538 PMCID: PMC8347690 DOI: 10.3390/ma14154344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite nanoparticles (HaP) and ionic liquid (IL) modified pencil graphite electrodes (PGEs) are newly developed in this assay. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and cyclic voltammetry (CV) were applied to examine the microscopic and electrochemical characterization of HaP and IL-modified biosensors. The interaction of curcumin with nucleic acids and polymerase chain reaction (PCR) samples was investigated by measuring the changes at the oxidation signals of both curcumin and guanine by differential pulse voltammetry (DPV) technique. The optimization of curcumin concentration, DNA concentration, and the interaction time was performed. The interaction of curcumin with PCR samples was also investigated by gel electrophoresis.
Collapse
Affiliation(s)
- Merve Uca
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Ece Eksin
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Yasemin Erac
- Pharmacology Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
| | - Arzum Erdem
- Biotechnology Department, Graduate School of Natural and Applied Sciences, Ege University, 35100 Izmir, Turkey;
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey;
- Correspondence: or
| |
Collapse
|
6
|
da Silva CQ, Fernandes ADS, Teixeira GF, França RJ, Marques MRDC, Felzenszwalb I, Falcão DQ, Ferraz ERA. Risk assessment of coffees of different qualities and degrees of roasting. Food Res Int 2021; 141:110089. [PMID: 33641967 DOI: 10.1016/j.foodres.2020.110089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/16/2023]
Abstract
During the coffee beans roasting process, occurs the formation of polycyclic aromatic hydrocarbons, which are associated with the incidence of cancer in humans. This study aimed to evaluate the influence of coffee bean quality and roasting degree regarding mutagenicity, cytotoxicity and genotoxicity. Six samples of coffee drink made with roasted and ground Coffea arabica beans from different qualities and roast degrees were used after freeze-drying. Both commercial and special quality grains suffered light, medium and dark roasting. According to the Salmonella/microsome assay, the highest concentration of commercial grain sample (dark roast) significantly increased the number of revertants of the TA98 strain in the absence of metabolization. All the samples induced cytotoxicity to HepG2 cells. These effects can be ranked in the following order from most to least toxic: medium roast - special grain > light roast - special grain > dark roast - commercial grain > dark roast - special grain > light roast - commercial grain > medium roast - commercial grain. None of the samples induced genotoxicity in HepG2 cells. Our findings show that the harmful effects of coffee depend not only on the degree of roasting but also on the grain quality.
Collapse
Affiliation(s)
- Carina Quintanilha da Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Andréia da Silva Fernandes
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Gabriela Félix Teixeira
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Rodrigo José França
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Mônica Regina da Costa Marques
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Deborah Quintanilha Falcão
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Elisa Raquel Anastácio Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| |
Collapse
|
7
|
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis V, Azimonti G, Bastos MDL, Christensen H, Kos Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Westendorf J, Gregoretti L, Manini P, Dusemund B. Safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome when used as sensory additives in feed for all animal species. EFSA J 2020; 18:e06146. [PMID: 32874324 PMCID: PMC7448085 DOI: 10.2903/j.efsa.2020.6146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture from Curcuma longa L. rhizome when used as sensory additives in feed and in water for drinking for all animal species. The FEEDAP Panel concludes that the additives under consideration are safe at the maximum proposed use levels: (i) turmeric extract at 15 mg/kg complete feed (or in water for drinking at comparable exposure) for all animal species; (ii) turmeric essential oil at 80 mg/kg feed for veal calves (milk replacer) and 20 mg/kg complete feed (or 20 mg/L) for all other species; (iii) turmeric oleoresin at 30 mg/kg complete feed (or 30 mg/L) for chickens for fattening and laying hens and 5 mg/kg complete feed (or 5 mg/L) for pigs, veal calves, cattle for fattening and dairy cows, sheep, goats, horses, rabbits and fish; (iv) turmeric tincture at 0.8 mL/L water for drinking for poultry, 6 mL per head and day for horses and 0.05 mL tincture/kg complete feed for dogs. No concerns for consumers were identified following the use of the additives at the proposed use level in animal nutrition. Turmeric extract, turmeric oil, turmeric oleoresin and turmeric tincture should be considered as irritants to skin and eyes and the respiratory tract and as skin sensitisers. The use of the additives in feed is not expected to pose a risk for the environment. Since turmeric and its preparations are recognised to flavour food and their function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary.
Collapse
|
8
|
Effects of Bilayer Nanofibrous Scaffolds Containing Curcumin/Lithospermi Radix Extract on Wound Healing in Streptozotocin-Induced Diabetic Rats. Polymers (Basel) 2019; 11:polym11111745. [PMID: 31653001 PMCID: PMC6918133 DOI: 10.3390/polym11111745] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Impaired growth factor production, angiogenic response, macrophage function, and collagen accumulation have been shown to delay wound healing. Delayed wound healing is a debilitating complication of diabetes that leads to significant morbidity. In this study, curcumin and Lithospermi radix (LR) extract, which are used in traditional Chinese herbal medicine, were added within nanofibrous membranes to improve wound healing in a streptozotocin (STZ)-induced diabetic rat model. Gelatin-based nanofibers, which were constructed with curcumin and LR extract at a flow rate of 0.1 mL/hour and an applied voltage of 20 kV, were electrospun onto chitosan scaffolds to produce bilayer nanofibrous scaffolds (GC/L/C). The wounds treated with GC/L/C exhibited a higher recovery rate and transforming growth factor-beta (TGF-β) expression in Western blot assays. The decreased levels of pro-inflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), provided evidence for the anti-inflammatory effects of GC/L/C treatment. Chronic wounds treated with GC/L/C achieved better performance with a 58 ± 7% increase in recovery rate on the seventh day. Based on its anti-inflammatory and wound-healing effects, the GC/L/C bilayer nanofibrous scaffolds can be potential materials for chronic wound treatment.
Collapse
|
9
|
Çal T, Bucurgat ÜÜ. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. Daru 2019; 27:203-218. [PMID: 30941633 PMCID: PMC6593132 DOI: 10.1007/s40199-019-00263-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKROUND Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines. OBJECTIVES In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties. METHODS The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively. RESULTS AND CONCLUSION Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development. Graphical abstract.
Collapse
Affiliation(s)
- Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey.
| |
Collapse
|
10
|
Urdaneta KE, Castillo MA, Montiel N, Semprún-Hernández N, Antonucci N, Siniscalco D. Autism Spectrum Disorders: Potential Neuro-Psychopharmacotherapeutic Plant-Based Drugs. Assay Drug Dev Technol 2018; 16:433-444. [PMID: 30427697 DOI: 10.1089/adt.2018.848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over the years, scientific researches have validated the healing benefits of many psychopharmacotherapeutic plant-based drugs to ameliorate psychiatric disorders. In contrast, the use of chemical procedures to isolate and purify specific compounds from plants that have been used to treat autism spectrum disorders (ASDs) and its clinical features may contribute to improve the quality of life of many patients. Also, herbal pharmacological treatments could improve the core symptoms of autism with fewer side effects. This review will focus on the uses and actions of phytopharmaceuticals in the behavioral conditions of ASDs. A large number of natural compound-based plant drugs have been tested in murine models of autism and in clinical trials with remarkable success in reversing the core and associated behaviors with autism such as flavonoids, cannabinoids, curcuminoids, piperine, resveratrol, and bacosides. This plant-based drug alternative is safer given that many psychiatric disorders and neurodegenerative pathologies do not often respond well to currently prescribed medications or have significant side effects. However, it is noteworthy to consider the need for large clinical trials to determine safety and efficacy. Many results are based on case reports or small size samples, and often the studies are open label. Standardization of procedures (i.e., purity and concentrations) and quality controls are strictly required to ensure the absence of side effects.
Collapse
Affiliation(s)
| | | | - Nola Montiel
- Cátedra Libre de Autismo, Vicerrectorado Académico, Universidad del Zulia, Maracaibo, Venezuela
| | | | - Nicola Antonucci
- Biomedical Centre for Autism Research and Treatment, Bari, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania, Naples, Italy.,Italian Group for Studying Autism-GISA, Brescia, Italy
| |
Collapse
|
11
|
Shariati M, Hajigholami S, Malekshahi ZV, Entezari M, Bodaghabadi N, Sadeghizadeh M. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells. IRANIAN BIOMEDICAL JOURNAL 2018; 22:171-179. [PMID: 28992682 PMCID: PMC5889502 DOI: 10.22034/ibj.22.3.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/09/2017] [Accepted: 09/10/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). METHODS MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. RESULTS MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. CONCLUSION The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.
Collapse
Affiliation(s)
- Molood Shariati
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Samira Hajigholami
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Department of Biology, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Narges Bodaghabadi
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| |
Collapse
|
12
|
A Toxicological Evaluation of a Standardized Hydrogenated Extract of Curcumin (CuroWhite™). J Toxicol 2018; 2018:5243617. [PMID: 29610573 PMCID: PMC5828043 DOI: 10.1155/2018/5243617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022] Open
Abstract
A series of toxicological investigations were conducted in order to evaluate the genotoxic potential and repeated-dose oral toxicity of CuroWhite, a proprietary extract of curcumin that has been hydrogenated and standardized to not less than 25% hydrogenated curcuminoid content. All tests were conducted in general accordance with internationally accepted standards. The test item was not mutagenic in the bacterial reverse mutation test or in vitro mammalian chromosomal aberration test, and no in vivo genotoxic activity was observed in rat bone marrow in the micronucleus test. A 90-day repeated-dose study was conducted in male and female Sprague-Dawley rats. Two mortalities occurred in the main and satellite high-dose groups and were determined due to gavage error. No organ specific or other toxic effects of the test item were observed up to the maximum dose of 800 mg/kg bw/day, administered by gavage. NOAEL was, therefore, estimated as 800 mg/kg bw/day.
Collapse
|
13
|
Yoon HJ, Zhang X, Kang MG, Kim GJ, Shin SY, Baek SH, Lee BN, Hong SJ, Kim JT, Hong K, Bae H. Cytotoxicity Evaluation of Turmeric Extract Incorporated Oil-in-Water Nanoemulsion. Int J Mol Sci 2018; 19:E280. [PMID: 29342111 PMCID: PMC5796226 DOI: 10.3390/ijms19010280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 02/02/2023] Open
Abstract
To overcome the drawbacks of conventional drug delivery system, nanoemulsion have been developed as an advanced form for improving the delivery of active ingredients. However, safety evaluation is crucial during the development stage before the commercialization. Therefore, the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions. Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6 and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3, H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL, however, the cell survival rate decreased in a concentration dependent manner in the case of primary cultured cells. These results from our study can be used as a basic data to confirm the cell type dependent toxicity of nanoemulsion.
Collapse
Affiliation(s)
- Hee Jeong Yoon
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Xiaowei Zhang
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Min Gyeong Kang
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Gyeong Jin Kim
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Sun Young Shin
- Laboratory of Cardiovascular Regeneration, Division of Cardiology, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul 02841, Korea.
| | - Sang Hong Baek
- Laboratory of Cardiovascular Regeneration, Division of Cardiology, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul 02841, Korea.
| | - Bom Nae Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Su Jung Hong
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Jun Tae Kim
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea.
| | - Kwonho Hong
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| | - Hojae Bae
- KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
14
|
Novak M, Žegura B, Modic B, Heath E, Filipič M. Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:293-300. [PMID: 28558277 DOI: 10.1016/j.scitotenv.2017.05.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 06/07/2023]
Abstract
Anticancer drugs enter aquatic environment predominantly via hospital and municipal wastewater effluents where they may, due to their genotoxic potential, cause adverse environmental effects even at very low doses. In this study we evaluated cytotoxic and genotoxic potential of two widely used anticancer drugs, cyclophosphamide (CP) and ifosfamide (IF) as individual compounds and in a complex mixture together with 5-fluorouracil (5-FU) and cisplatin (CDDP) because these four drugs have been frequently detected in an oncological ward effluents. As an experimental model we used zebrafish liver cell (ZFL) line. The cytotoxicity was determined with the MTS assay and genotoxicity with the comet assay and cytokinesis block micronucleus (CBMN) assay that measure the formation of DNA strand breaks and genomic instability, respectively. CP and IF exerted low cytotoxicity towards ZFL cells. Both compounds induced DNA strand breaks and genomic instability, however at relatively high concentrations that are not relevant for the contamination of aquatic environment. The mixture of CP, IF, 5-FU and CDDP was tested at maximal detected concentrations of each drug as determined in the effluents from the oncological ward. The mixture was not cytotoxic and did not induce genomic instability, but it induced significant increase in the formation of DNA strand breaks at concentrations of individual compounds that were several orders of magnitude lower from those that were effective when tested as individual compounds. The results indicate that such mixtures of anticancer drugs may pose a threat to aquatic organisms at environmentally relevant concentrations and contribute to the accumulating evidence that it is not always possible to predict adverse effects of complex mixtures based on the toxicological data for individual compounds.
Collapse
Affiliation(s)
- Matjaž Novak
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Ecological Engineering Institute, Ljubljanska ulica 9, 2000 Maribor, Slovenia; Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Barbara Modic
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Institute Jozef Stefan, Jadranska 29, 1000 Ljubljana, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Ahmadi F, Ghasemi-Kasman M, Ghasemi S, Gholamitabar Tabari M, Pourbagher R, Kazemi S, Alinejad-Mir A. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. Int J Nanomedicine 2017; 12:8545-8556. [PMID: 29238191 PMCID: PMC5716671 DOI: 10.2147/ijn.s146516] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Student Research Committee, Babol University of Medical Sciences
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center.,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | | | - Sohrab Kazemi
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Alinejad-Mir
- Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
16
|
Iriondo-DeHond A, Haza AI, Ávalos A, del Castillo MD, Morales P. Validation of coffee silverskin extract as a food ingredient by the analysis of cytotoxicity and genotoxicity. Food Res Int 2017; 100:791-797. [DOI: 10.1016/j.foodres.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
17
|
Damasceno JL, Oliveira PF, Miranda MA, Leandro LF, Acésio NO, Ozelin SD, Bastos JK, Tavares DC. Protective effects of Solanum cernuum extract against chromosomal and genomic damage induced by methyl methanesulfonate in Swiss mice. Biomed Pharmacother 2016; 83:1111-1115. [PMID: 27551757 DOI: 10.1016/j.biopha.2016.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Solanum cernuum Vell is a Brazilian shrub or small tree, restricted to Southeast states of the country. The leaves are commercialized as "panacéia" and indicated for the treatment of urinary disorders, gonorrhea, scabies, skin diseases and as desobstruent, diuretic and antiarrhythmic. The hydroalcholic extract is active in the treatment of gastric ulcer. The aim of this study was to evaluate the genotoxic and antigenotoxic potential of S. cernuum hydroalcoholic extract (SC) in Swiss mice by micronucleus and comet assays. The animals were treated by gavage with the doses of 500, 1000 and 2000mg/kg body weight (b.w.). For antigenotoxicity assessment, the doses of 15, 30, 60, 120 and 240mg/kg b.w SC were administered simultaneously with the mutagen methyl methanesulfonate (MMS, 40mg/kg b.w., i.p.). The results showed that the SC was not genotoxic in both micronucleus and comet assays. On the other hand, the treatment with the lowest dose of SC (15mg/kg b.w.) plus MMS showed a statistically significant reduction in the frequency of micronuclei compared to treatment only with MMS. For the comet assay, significant reduction in extensions of DNA damage was observed in all treatments with SC combined with MMS in comparison with only MMS. The antigenotoxic activity observed for the SC may be due to the antioxidant potential of the compounds present in the extract such as guanidine alkaloids and flavonoids.
Collapse
Affiliation(s)
- Jaqueline L Damasceno
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Pollyanna F Oliveira
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Mariza A Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, s/n-Monte Alegre, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Luis F Leandro
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Nathália O Acésio
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Saulo D Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil
| | - Jairo K Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, s/n-Monte Alegre, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Denise C Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201-Parque Universitário, 14404-600, Franca, São Paulo, Brazil.
| |
Collapse
|
18
|
Rieswijk L, Brauers KJJ, Coonen MLJ, Jennen DGJ, van Breda SGJ, Kleinjans JCS. Exploiting microRNA and mRNA profiles generated in vitro from carcinogen-exposed primary mouse hepatocytes for predicting in vivo genotoxicity and carcinogenicity. Mutagenesis 2016; 31:603-15. [PMID: 27338304 DOI: 10.1093/mutage/gew027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Collapse
Affiliation(s)
- Linda Rieswijk
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Karen J J Brauers
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Maarten L J Coonen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| | - Simone G J van Breda
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, Netherlands and Netherlands Toxicogenomics Centre (NTC), Universiteitssingel 40, 6229ER Maastricht, Netherlands
| |
Collapse
|
19
|
Dai C, Tang S, Li D, Zhao K, Xiao X. Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicol Mech Methods 2015; 25:340-6. [PMID: 25996037 DOI: 10.3109/15376516.2015.1045659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quinocetone (QCT), a new quinoxaline 1,4-dioxides, has been used as antimicrobial feed additive in China. Potential genotoxicity of QCT was concerned as a public health problem. This study aimed to investigate the protective effect of curcumin on QCT-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Cell viability and intracellular reactive oxygen species (ROS), biomarkers of oxidative stress including superoxide dismutase (SOD) activity and glutathione (GSH) level were measured. Meanwhile, comet assay and micronucleus assay were carried out to evaluate genotoxicity. The results showed that, compared to the control group, QCT at the concentration ranges of 2-16 μg/mL significantly decreased L02 cell viability, which was significantly attenuated with curcumin pretreatment (2.5 and 5 μM). In addition, QCT significantly increased cell oxidative stress, characterized by increases of intracellular ROS level, while decreased endogenous antioxidant biomarkers GSH level and SOD activity (all p < 0.05 or 0.01). Curcumin pretreatment significantly attenuated ROS formation, inhibited the decreases of SOD activity and GSH level. Furthermore, curcumin significantly reduced QCT-induced DNA fragments and micronuclei formation. These data suggest that curcumin could attenuate QCT-induced cytotoxicity and genotoxicity in L02 cells, which may be attributed to ROS scavenging and anti-oxidative ability of curcumin. Importantly, consumption of curcumin may be a plausible way to prevent quinoxaline 1,4-dioxides-mediated oxidative stress and genotoxicity in human or animals.
Collapse
Affiliation(s)
- Chongshan Dai
- a College of Veterinary Medicine, China Agricultural University , Beijing , PR China
| | | | | | | | | |
Collapse
|
20
|
Rajakrishna L, Krishnan Unni S, Subbiah M, Sadagopan S, Nair AR, Chandrappa R, Sambasivam G, Sukumaran SK. Validation of a human cell based high-throughput genotoxicity assay ‘Anthem’s Genotoxicity screen’ using ECVAM recommended lists of genotoxic and non-genotoxic chemicals. Toxicol In Vitro 2014; 28:46-53. [DOI: 10.1016/j.tiv.2013.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022]
|
21
|
Manju M, Vijayasree AS, Akbarsha MA, Oommen OV. Protective effect of dietary curcumin in Anabas testudineus (Bloch) with a special note on DNA fragmentation assay on hepatocytes and micronucleus assay on erythrocytes in vivo. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1323-1330. [PMID: 23515757 DOI: 10.1007/s10695-013-9786-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/09/2013] [Indexed: 06/01/2023]
Abstract
The present study was conducted to evaluate the safety of long-term dietary curcumin at doses 0.5 and 1% in Anabas testudineus employing hematological and cytological techniques. The fish were fed with curcumin-supplemented feed for 6 months. Fine blood smears were prepared and subjected to three different staining techniques. The erythrocyte micronucleus frequency (MN) and the cytometric measurements of erythrocytes were determined. Blood from the control and treated fish was subjected to the assessment of several hematological parameters. Also, DNA fragmentation assay on hepatocytes was conducted. The results showed that hemoglobin content, RBC count and hematocrit increased in the curcumin-fed fish compared to control, whereas WBC count, platelet count, mean corpuscular volume, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration were unaffected. WBC/RBC ratio was lower in the case of curcumin-treated fish. The cytometric measurements revealed no change in the erythrocytes and their nuclei after curcumin treatment. DNA fragmentation assay revealed intact DNA in curcumin-fed group, ruling out the possibility of curcumin-induced DNA damage. The positive control group showed a significant increase in MN frequency compared to negative control and curcumin-fed groups. In fact, the MN frequency decreased in 1% curcumin-fed group compared to the negative control and 0.5% curcumin groups. All these indicated a state of well-being of the curcumin-treated fish. Therefore, it is concluded that curcumin could be used as a safe feed ingredient to improve the growth of finfish in aquaculture.
Collapse
Affiliation(s)
- Maniyan Manju
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, 695 581, India,
| | | | | | | |
Collapse
|
22
|
Zhang BY, Shi YQ, Chen X, Dai J, Jiang ZF, Li N, Zhang ZB. Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines. J Appl Toxicol 2012; 33:1468-73. [PMID: 23059809 DOI: 10.1002/jat.2814] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 11/09/2022]
Abstract
Formaldehyde is ubiquitous in the environment. It is known to be a genotoxic substance. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell lines A549. To test this hypothesis, we investigated the effects of antioxidant on formaldehyde-induced genotoxicity in A549 Cell Lines. Formaldehyde exposure caused induction of DNA-protein cross-links (DPCs). Curcumin is an important antioxidant. Formaldehyde significantly increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, the activation of NF-κB and AP-1 were induced by formaldehyde treatment. Pretreatment with curcumin counteracted formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated activation of NF-κB and AP-1 in A549 Cell Lines. These results, taken together, suggest that formaldehyde induced genotoxicity through its ROS and lipid peroxidase activity and caused DPCs effects in A549 cells.
Collapse
Affiliation(s)
- Ben-Yan Zhang
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Sebastià N, Soriano JM, Barquinero JF, Villaescusa JI, Almonacid M, Cervera J, Such E, Silla MA, Montoro A. In vitro cytogenetic and genotoxic effects of curcumin on human peripheral blood lymphocytes. Food Chem Toxicol 2012; 50:3229-33. [PMID: 22713711 DOI: 10.1016/j.fct.2012.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 11/15/2022]
Abstract
Curcumin has shown a wide range of properties such as anti-inflammatory and anti-carcinogenic properties. Many of these effects, mainly the anti-carcinogenic effect, could be linked to its anti-oxidant effects. Nevertheless, some studies suggest that this natural compound possesses both pro- and anti-oxidative effects and that curcumin could be a genotoxic agent for some cell lines. We evaluated the genetic damage induced by curcumin to human lymphocytes exposed to increasing concentrations (0-50 μg/ml) of curcumin. Biomarkers such as chromosome aberrations (CAs) and sister chromatid exchange (SCE) were analyzed. In addition to the cytogenetic analysis, the effect of curcumin in the cell proliferation kinetics (CPK) by the proliferation index (PI) was also analyzed. The results indicated that high concentrations of curcumin induced CAs, mainly acentric fragments. SCEs rate was not statistically different from the control group in any curcumin treated cell group. The PI of cells treated with 2 and 5 μg/ml of curcumin were statistically significant from the control group and finally, the MI showed a tendency to increase in all the concentrations of curcumin tested. In conclusion, it can be assumed that the higher concentrations of curcumin evaluated have a cyto and genotoxic effect, in vitro, for human peripheral lymphocytes.
Collapse
Affiliation(s)
- Natividad Sebastià
- Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of València, 46100 Burjassot, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hariri AT, Moallem SA, Mahmoudi M, Hosseinzadeh H. The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:499-504. [PMID: 21036580 DOI: 10.1016/j.phymed.2010.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, the effect of crocin and safranal was studied against subacute toxicity of diazinon (DZN) on hematological and genotoxicity indices in rats. The rats were divided into 16 groups consisted of 6 rats in control, diazinon, vitamin E, vitamin E and DZN, crocin (3 doses), crocin (3 doses) and DZN, safranal (3 doses), safranal (3 doses) and DZN groups. Vitamin E (200 IU/kg), safranal at doses 0.025, 0.05 and 0.1 ml/kg and crocin at doses 50, 100 and 200 mg/kg were injected intraperitoneally to rats three times per week alone or with DZN (20 mg/kg/day, orally) for 4 weeks. Hematological parameters were evaluated at the end of 4 weeks. The evaluation of genotoxicity was done using the micronucleus assay. Vitamin E and, at lower doses, safranal (0.025 and 0.05 ml/kg) and crocin (50 mg/kg) restored the reduction of red blood cell, hemoglobin and hematocrit indices induced by DZN. These agents at some doses also prevented the reduction in platelets counts indices in diazinon treated group. A significant increase in reticulocyte was induced by diazinon. Vitamin E, safranal (0.025 or 0.05 ml/kg) and all doses of crocin decreased this effect of diazinon. In all doses vitamin E, crocin and safranal did not inhibit the effect of diazinon on RBC cholinesterase activity. A significant increase in micronucleus indices was seen with diazinon. Vitamin E, safranal and crocin could not prevent this genotoxicity. This study showed that vitamin E, safranal and crocin (without effects on cholinesterase) reduced diazinon hematological toxicity, but they did not prevent the genotoxicity induced by diazinon.
Collapse
Affiliation(s)
- Alireza Timcheh Hariri
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Islamic Republic of Iran
| | | | | | | |
Collapse
|
25
|
|
26
|
Genotoxic effect of 6-gingerol on human hepatoma G2 cells. Chem Biol Interact 2010; 185:12-7. [DOI: 10.1016/j.cbi.2010.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
|
27
|
Elder DP, Harvey JS. Is there a Real Case for Cumulative Control of Structurally Related Genotoxic Impurities? Org Process Res Dev 2010. [DOI: 10.1021/op900343g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David P. Elder
- Pre-Clinical Development, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire SG120DP, United Kingdom
| | - James S. Harvey
- Pre-Clinical Development, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire SG120DP, United Kingdom
| |
Collapse
|
28
|
Mendonça LM, dos Santos GC, dos Santos RA, Takahashi CS, Bianchi MDLP, Antunes LMG. Evaluation of curcumin and cisplatin-induced DNA damage in PC12 cells by the alkaline comet assay. Hum Exp Toxicol 2010; 29:635-43. [PMID: 20051457 DOI: 10.1177/0960327109358731] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A very appropriate method for antigenotoxicity evaluation of antioxidants is the comet assay, since this analytical method detects initial DNA lesions that are still subject to repair; in other words, lesions that are very associated to damages resulting from the generation and subsequent action of reactive species. However, a solid evaluation should be developed in order to avoid inexact interpretations. In our study, besides the association of curcumin with cisplatin, curcumin and cisplatin agents were also tested separately. Classical genotoxic compounds, when tested by the comet assay, present an increase in the nucleoid tail; however, the cisplatin treatment has resulted in a decrease of DNA migration. This was an expected effect, as the cross-links between cisplatin and DNA decrease the DNA electrophoretic mobility. A similar effect was observed with the curcumin treatment, which decreased the nucleoid tail. Such effect was not expected and reinforced the necessity of including in the study, separate treatment groups with potentially antigenotoxic substances. The comet assay results have been analyzed using specific software for image analysis, as well as the classical visual analysis, and we have observed that the effect of decrease in DNA electrophoretic mobility was more easily observed when the data were analyzed by the software.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Bisht K, Wagner KH, Bulmer AC. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 2009; 278:88-100. [PMID: 19903510 DOI: 10.1016/j.tox.2009.11.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/09/2022]
Abstract
Numerous dietary compounds, ubiquitous in fruits, vegetables and spices have been isolated and evaluated during recent years for their therapeutic potential. These compounds include flavonoid and non-flavonoid polyphenols, which describe beneficial effects against a variety of ailments. The notion that these plant products have health promoting effects emerged because their intake was related to a reduced incidence of cancer, cardiovascular, neurological, respiratory, and age-related diseases. Exposure of the body to a stressful environment challenges cell survival and increases the risk of chronic disease developing. The polyphenols afford protection against various stress-induced toxicities through modulating intercellular cascades which inhibit inflammatory molecule synthesis, the formation of free radicals, nuclear damage and induce antioxidant enzyme expression. These responses have the potential to increase life expectancy. The present review article focuses on curcumin, resveratrol, and flavonoids and seeks to summarize their anti-inflammatory, cytoprotective and DNA-protective properties.
Collapse
Affiliation(s)
- Kavita Bisht
- Heart Foundation Research Centre, Faculty of Health, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | | | | |
Collapse
|
30
|
Mendonça LM, Dos Santos GC, Antonucci GA, Dos Santos AC, Bianchi MDLP, Antunes LMG. Evaluation of the cytotoxicity and genotoxicity of curcumin in PC12 cells. Mutat Res 2009; 675:29-34. [PMID: 19386244 DOI: 10.1016/j.mrgentox.2009.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/23/2008] [Accepted: 02/04/2009] [Indexed: 05/27/2023]
Abstract
Neurotoxicity induced by reactive oxygen species can appear as an adverse effect of chemotherapy treatment with platinum compounds, such as cisplatin. The use of this drug in clinical practice is limited due to its adverse effects, including nephrotoxicity, ototoxicity, neurotoxicity and genotoxicity. Functional foods or nutraceuticals have demonstrated potential neuroprotective activity in several experiments and models. This study aimed to investigate the possible cytotoxicity and genotoxicity/antigenotoxic effects of curcumin in PC12 cells exposed to cisplatin. Cell viability and genotoxicity/antigenotoxicity were evaluated by the MTT assay and micronucleus test, respectively. PC12 cells were treated with different concentrations of cisplatin and curcumin (0.5 -- 128 microg/mL). Analysis of the results showed that high concentrations of curcumin were cytotoxic and increased micronuclei frequency compared to the control group. In the associated treatments, at all three concentrations evaluated, curcumin significantly reduced the total frequency of micronuclei induced by cisplatin. Determining the cytotoxic and genotoxic/antigenotoxic effects of this frequently used antioxidant in a neuronal model is important to assess possible hazards when combined with other chemical agents, including chemotherapy drugs used in cancer therapy.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Cao J, Liu Y, Jia L, Jiang LP, Geng CY, Yao XF, Kong Y, Jiang BN, Zhong LF. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:12059-12063. [PMID: 19012407 DOI: 10.1021/jf8026827] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Acrylamide (AA), a proven rodent carcinogen, has recently been discovered in foods heated at high temperatures. This finding raises public health concerns. In our previous study, we found that AA caused DNA fragments and increase of reactive oxygen species (ROS) formation and induced genotoxicity and weak cytotoxicity in HepG2 cells. Presently, curcumin, a natural antioxidant compound present in turmeric was evaluated for its protective effects. The results showed that curcumin at the concentration of 2.5 microg/mL significantly reduced AA-induced ROS production, DNA fragments, micronuclei formation, and cytotoxicity in HepG2 cells. The effect of PEG-catalase on protecting against AA-induced cytotoxicity suggests that AA-induced cytotoxicity is directly dependent on hydrogen peroxide production. These data suggest that curcumin could attenuate the cytotoxicity and genotoxicity induced by AA in HepG2 cells. The protection is probably mediated by an antioxidant protective mechanism. Consumption of curcumin may be a plausible way to prevent AA-mediated genotoxicity.
Collapse
Affiliation(s)
- Jun Cao
- Department of Toxicology, Dalian Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 2008; 46:2881-7. [DOI: 10.1016/j.fct.2008.05.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/21/2008] [Accepted: 05/29/2008] [Indexed: 11/21/2022]
|
33
|
Tasduq SA, Kaiser PJ, Gupta BD, Gupta VK, Johri RK. Negundoside, an iridiod glycoside from leaves of Vitex negundo, protects human liver cells against calcium-mediated toxicity induced by carbon tetrachloride. World J Gastroenterol 2008; 14:3693-709. [PMID: 18595136 PMCID: PMC2719232 DOI: 10.3748/wjg.14.3693] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the protective effect of 2'-p-hydroxybenzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HuH-7 cells.
METHODS: CCl4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HuH-7) were treated with CCl4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control.
RESULTS: NG protected HuH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2).
CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca2+-dependent proteases.
Collapse
|