1
|
Bala AA, Oukkache N, Sanchez EE, Suntravat M, Galan JA. Venoms and Extracellular Vesicles: A New Frontier in Venom Biology. Toxins (Basel) 2025; 17:36. [PMID: 39852989 PMCID: PMC11769160 DOI: 10.3390/toxins17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are nanoparticle-sized vesicles secreted by nearly all cell types under normal physiological conditions. In toxicological research, EVs have emerged as a crucial link between public health and multi-omics approaches, offering insights into cellular responses to disease-causing injury agents such as environmental and biological toxins, contaminants, and drugs. Notably, EVs present a unique opportunity to deepen our understanding of the pathophysiology of envenomation by natural toxins. Recent advancements in isolating and purifying EV cargo, mass spectrometry techniques, and bioinformatics have positioned EVs as potential biomarkers that could elucidate biological signaling pathways and provide valuable information on the relationship between venomous toxins, their mechanisms of action, and the effectiveness of antivenoms. Additionally, EVs hold promise as proxies for various aspects of envenomation, including the toxin dosage, biological characterization, injury progression, and prognosis during therapeutic interventions. These aspects can be explored through multi-omics technology applied to EV contents from the plasma, saliva, or urine samples of envenomated individuals, offering a comprehensive integrative approach to understanding and managing envenomation cases.
Collapse
Affiliation(s)
- Auwal A. Bala
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco;
| | - Elda E. Sanchez
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Montamas Suntravat
- Department of Chemistry and National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (E.E.S.); (M.S.)
| | - Jacob A. Galan
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| |
Collapse
|
2
|
K N, Bakkannavar SM, Bhat VR, Sirur FM. A review on snake venom extracellular vesicles: Past to present. Toxicon 2024; 244:107772. [PMID: 38768828 DOI: 10.1016/j.toxicon.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Around 95% of snake venom is protein. Along with the soluble proteins, snake venom also contains proteins encapsulated in vesicles known as Snake Venom Extracellular Vesicles (SVEV). SVEVs are nano-sized membrane-bound vesicles released from the snake venom gland cells. The available published research works on SVEVs are minimal. Extracellular vesicles in the Snake Venom gland were initially discovered during the histopathological analysis of the Crotalus durissus terrificus snakes' venom gland. Later, various techniques were employed to isolate and characterize the SVEVs. The cargo of SVEV consists of a variety of proteins like Phospholipase A-2, C-type Lectins, L-Amino Acid Oxidase, Cysteine-Rich Secretory Proteins, Serine Proteinases, Dipeptidyl Peptidase-IV, Aminopeptidase-A, Ecto-5'-nucleotidases, Disintegrins. Proteomic data revealed the presence of some exclusive proteins in the SVEVs, and the other proteins are in varying concentrations in the SVEVs compared to their whole Venom. Interaction of SVEVs with mammalian cell lines showed the disruption of primary physiological functions leads to host immune modulation, and long-term effects of envenoming. Snakebite victim's blood showed variations in the specific Extracellular vesicle concentration. It has been hypothesized that SVEVs are responsible for long-term toxicity. The current review focuses on the various techniques adopted to isolate and characterize SVEVs and discusses the exclusiveness and variations of SVEV proteins and their role in snakebites.
Collapse
Affiliation(s)
- Nagendra K
- Research Scholar, Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Shankar M Bakkannavar
- Associate Professor, Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Vinutha R Bhat
- Associate Professor, Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Freston Marc Sirur
- Associate Professor, Department of Emergency Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
3
|
A current perspective on snake venom composition and constituent protein families. Arch Toxicol 2023; 97:133-153. [PMID: 36437303 DOI: 10.1007/s00204-022-03420-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.
Collapse
|
4
|
Gonçalves-Machado L, Verçoza BRF, Nogueira FCS, Melani RD, Domont GB, Rodrigues SP, Rodrigues JCF, Zingali RB. Extracellular Vesicles from Bothrops jararaca Venom Are Diverse in Structure and Protein Composition and Interact with Mammalian Cells. Toxins (Basel) 2022; 14:toxins14110806. [PMID: 36422980 PMCID: PMC9698812 DOI: 10.3390/toxins14110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Snake venoms are complex cocktails of non-toxic and toxic molecules that work synergistically for the envenoming outcome. Alongside the immediate consequences, chronic manifestations and long-term sequelae can occur. Recently, extracellular vesicles (EVs) were found in snake venom. EVs mediate cellular communication through long distances, delivering proteins and nucleic acids that modulate the recipient cell's function. However, the biological roles of snake venom EVs, including possible cross-organism communication, are still unknown. This knowledge may expand the understanding of envenoming mechanisms. In the present study, we isolated and characterized the EVs from Bothrops jararaca venom (Bj-EVs), giving insights into their biological roles. Fresh venom was submitted to differential centrifugation, resulting in two EV populations with typical morphology and size range. Several conserved EV markers and a subset of venom related EV markers, represented mainly by processing enzymes, were identified by proteomic analysis. The most abundant protein family observed in Bj-EVs was 5'-nucleotidase, known to be immunosuppressive and a low abundant and ubiquitous toxin in snake venoms. Additionally, we demonstrated that mammalian cells efficiently internalize Bj-EVs. The commercial antibothropic antivenom partially recognizes Bj-EVs and inhibits cellular EV uptake. Based on the proteomic results and the in vitro interaction assays using macrophages and muscle cells, we propose that Bj-EVs may be involved not only in venom production and processing but also in host immune modulation and long-term effects of envenoming.
Collapse
Affiliation(s)
- Larissa Gonçalves-Machado
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Vital Brazil, Gerência de Desenvolvimento Tecnológico, Niterói 24230-410, Brazil
| | - Brunno Renato Farias Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Fábio César Sousa Nogueira
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratório de Proteômica (LabProt)—LADETEC, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Rafael Donadélli Melani
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Gilberto Barbosa Domont
- Laboratório de Química de Proteínas, Unidade Proteômica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Silas Pessini Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Juliany Cola Fernandes Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus UFRJ Duque de Caxias, Duque de Caxias, Rio de Janeiro 25240-005, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-2139386782
| |
Collapse
|
5
|
Willard NK, Salazar E, Oyervides FA, Wiebe CS, Ocheltree JS, Cortez M, Perez RP, Markowitz H, Iliuk A, Sanchez EE, Suntravat M, Galan JA. Proteomic Identification and Quantification of Snake Venom Biomarkers in Venom and Plasma Extracellular Vesicles. Toxins (Basel) 2021; 13:toxins13090654. [PMID: 34564658 PMCID: PMC8473211 DOI: 10.3390/toxins13090654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
The global exploration of snakebites requires the use of quantitative omics approaches to characterize snake venom as it enters into the systemic circulation. These omics approaches give insights into the venom proteome, but a further exploration is warranted to analyze the venom-reactome for the identification of snake venom biomarkers. The recent discovery of extracellular vesicles (EVs), and their critical cellular functions, has presented them as intriguing sources for biomarker discovery and disease diagnosis. Herein, we purified EV’s from the snake venom (svEVs) of Crotalus atrox and C. oreganus helleri, and from plasma of BALB/c mice injected with venom from each snake using EVtrap in conjunction with quantitative mass spectrometry for the proteomic identification and quantification of svEVs and plasma biomarkers. Snake venom EVs from C. atrox and C. o. helleri were highly enriched in 5′ nucleosidase, L-amino acid oxidase, and metalloproteinases. In mouse plasma EVs, a bioinformatic analysis for revealed upregulated responses involved with cytochrome P450, lipid metabolism, acute phase inflammation immune, and heat shock responses, while downregulated proteins were associated with mitochondrial electron transport, NADH, TCA, cortical cytoskeleton, reticulum stress, and oxidative reduction. Altogether, this analysis will provide direct evidence for svEVs composition and observation of the physiological changes of an envenomated organism.
Collapse
Affiliation(s)
- Nicholas Kevin Willard
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
| | - Fabiola Alejandra Oyervides
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Cierra Siobhrie Wiebe
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Jack Sutton Ocheltree
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Mario Cortez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | | | - Harry Markowitz
- Tymora Analytical Operations, West Lafayette, IN 47906, USA; (H.M.); (A.I.)
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA; (H.M.); (A.I.)
| | - Elda Eliza Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Jacob Anthony Galan
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (N.K.W.); (E.S.); (F.A.O.); (C.S.W.); (J.S.O.); (M.C.); (E.E.S.); (M.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
- Correspondence:
| |
Collapse
|
6
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
7
|
Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021; 11:5032. [PMID: 33658582 PMCID: PMC7930282 DOI: 10.1038/s41598-021-84385-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023] Open
Abstract
During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.
Collapse
Affiliation(s)
- Carmen Scieuzo
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Franco
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marco Pezzi
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Flora Cozzolino
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Milvia Chicca
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara Scapoli
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Heiko Vogel
- grid.418160.a0000 0004 0491 7131Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Maria Monti
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Chiara Ferracini
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Pietro Pucci
- grid.4691.a0000 0001 0790 385XDepartment of Chemical Sciences, University Federico II of Napoli, Via Cinthia 6, 80126 Naples, Italy ,CEINGE Advanced Biotechnology, Via Gaetano Salvatore 486, 80126 Naples, Italy
| | - Alberto Alma
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Patrizia Falabella
- grid.7367.50000000119391302Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy ,grid.7367.50000000119391302Spinoff XFlies S.R.L, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Liu CC, Wu CJ, Hsiao YC, Yang YH, Liu KL, Huang GJ, Hsieh CH, Chen CK, Liaw GW. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A 2 activity with varespladib. J Proteomics 2020; 234:104084. [PMID: 33359941 DOI: 10.1016/j.jprot.2020.104084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/01/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
Protobothrops mucrosquamatus, also known as the brown spotted pit viper or Taiwanese habu, is a medically significant venomous snake in Taiwan, especially in the northern area. To more fully understand the proteome profile of P. mucrosquamatus, we characterized its venom composition using a bottom-up proteomic approach. Whole venom components were fractionated by RP-HPLC and then analyzed by SDS-PAGE. Each protein band in gels was excised and subjected to protein identification by LC-MS/MS. A subsequent proteomic analysis revealed the presence of 61 distinct proteins belonging to 19 families in P. mucrosquamatus venom. Snake venom metalloproteinase (SVMP; 29.4%), C-type lectin (CLEC; 21.1%), snake venom serine protease (SVSP; 17.6%) and phospholipase A2 (PLA2; 15.9%) were the most abundant protein families, whereas several low-abundance proteins, categorized into eight protein families, were demonstrated in P. mucrosquamatus venom for the first time. Because PLA2 is known to make a major contribution to venom lethality, we evaluated whether the known PLA2 inhibitor, varespladib, was capable of preventing the toxic effects of P. mucrosquamatus venom. This small-molecule drug demonstrated the ability to inhibit PLA2 activity in vitro (IC50 = 101.3 nM). It also blunted lethality in vivo, prolonging survival following venom injection in a mouse model, but it showed limited potency against venom-induced local hemorrhage in this model. Our findings provide essential biological and pathophysiological insights into the composition of P. mucrosquamatus venom and suggest PLA2 inhibition as an adjunctive or alternative therapeutic strategy in the clinical management of P. mucrosquamatus envenoming in emergency medicine. SIGNIFICANCE: P. mucrosquamatus envenomation is a significant medical concern in Taiwan, especially in the northern region. Although antivenom is commonly used for rescuing P. mucrosquamatus envenoming, severe clinical events still occur, with more than 20% of cases requiring surgical intervention. Small-molecule therapy offers several advantages as a potential adjunctive, or even alternative, to antivenom treatment, such as heat stability, low antigenicity and ease of administration, among others. A deeper understanding of the venom proteome of P. mucrosquamatus would aid in the discovery of small-molecule drugs that could be repurposed to target specific venom proteins. Here, we applied a bottom-up proteomic approach to characterize the protein profile of P. mucrosquamatus venom. Varespladib, a small-molecule drug used to treat inflammatory disease, was repurposed to inhibit the toxicity of P. mucrosquamatus venom, and was shown to reduce the lethal effects of P. mucrosquamatus envenomation in a rodent model. Varespladib might be used as a first-aid therapeutic against P. mucrosquamatus envenoming in the pre-referral period and/or as an adjunctive agent administered together with anti-P. mucrosquamatus antivenom.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ya-Han Yang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuei-Lin Liu
- Faculty of Biotechnology and Laboratory Science in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Takeuchi I, Omori K, Nagasawa H, Jitsuiki K, Kondo A, Ohsaka H, Ishikawa K, Yanagawa Y. Prognostic indicators among laboratory data on arrival to assess the severity of mamushi bites. J Rural Med 2019; 14:222-225. [PMID: 31788146 PMCID: PMC6877922 DOI: 10.2185/jrm.18-3016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 12/04/2022] Open
Abstract
Objective: This study aimed to retrospectively determine which laboratory
data on arrival for patients with mamushi bites was useful to predict the severity of
mamushi bites. Materials and Methods: The subjects were divided into the following two
groups: the mild group included subjects with mamushi bites Grades I and II, while the
severe group included subjects with mamushi bites Grades III, IV, and V. The subjects’
variables were compared between the two groups. Results: There were no significant differences between the two groups
regarding the levels of hematocrit, total protein, alanine aminotransferase, aspartate
aminotransferase, creatinine phosphokinase, blood urea nitrogen, creatinine, and
international normalized ratio of prothrombin time on arrival. Moreover, white blood cell
count and platelet count on arrival in the mild group were significantly lower than those
in the severe group. Furthermore, activated partial thromboplastin time on arrival was
significantly higher in the mild group than in the severe group. Multivariate analysis
using white blood cell count and platelet count and level of activated partial
thromboplastin time revealed the following significant prognostic indicators of severity
of mamushi bites: white blood cell count (Log Worth, 2.1; p<0.01) and platelet count
(Log Worth, 1.6; p<0.05). Conclusion: White blood cell count and platelet count on arrival of patients
with mamushi bites are considered significant prognostic indicators in determining the
severity of mamushi bites.
Collapse
Affiliation(s)
- Ikuto Takeuchi
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Kazuhiko Omori
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Hiroki Nagasawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Kei Jitsuiki
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Akihiko Kondo
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Hiromichi Ohsaka
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Kouhei Ishikawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| | - Youichi Yanagawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan
| |
Collapse
|
10
|
Gren EC, Kitano ES, Andrade-Silva D, Iwai LK, Reis MS, Menezes MC, Serrano SM. Comparative analysis of the high molecular mass subproteomes of eight Bothrops snake venoms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:113-121. [DOI: 10.1016/j.cbd.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 11/17/2022]
|
11
|
TAKEUCHI IKUTO, ISHIKAWA KOUHEI, NAGASAWA HIROKI, JITSUIKI KEI, KONDO AKIHIKO, OHSAKA HIROMICHI, OMORI KAZUHIKO, YANAGAWA YOUICHI. The Clinical Significance of C-Reactive Protein in Patients with <i>Gloydius blomhoffii</i> Bite. JUNTENDO MEDICAL JOURNAL 2019. [DOI: 10.14789/jmj.2019.65.jmj19-oa11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- IKUTO TAKEUCHI
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - KOUHEI ISHIKAWA
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - HIROKI NAGASAWA
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - KEI JITSUIKI
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - AKIHIKO KONDO
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - HIROMICHI OHSAKA
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - KAZUHIKO OMORI
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| | - YOUICHI YANAGAWA
- Department of Acute Critical Care Medicine, Juntendo University Shizuoka Hospital
| |
Collapse
|
12
|
Carregari VC, Rosa-Fernandes L, Baldasso P, Bydlowski SP, Marangoni S, Larsen MR, Palmisano G. Snake Venom Extracellular vesicles (SVEVs) reveal wide molecular and functional proteome diversity. Sci Rep 2018; 8:12067. [PMID: 30104604 PMCID: PMC6089973 DOI: 10.1038/s41598-018-30578-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Proteins constitute almost 95% of snake venom's dry weight and are produced and released by venom glands in a solubilized form during a snake bite. These proteins are responsible for inducing several pharmacological effects aiming to immobilize and initiate the pre-digestion of the prey. This study shows that proteins can be secreted and confined in snake venom extracellular vesicles (SVEVs) presenting a size distribution between 50 nm and 500 nm. SVEVs isolated from lyophilized venoms collected from four different species of snakes (Agkistrodon contortrix contortrix, Crotalus atrox, Crotalus viridis and Crotalus cerberus oreganus) were analyzed by mass spectrometry-based proteomic, which allowed the identification of proteins belonging to eight main functional protein classes such as SVMPs, serine proteinases, PLA2, LAAO, 5'nucleotidase, C-type lectin, CRISP and Disintegrin. Biochemical assays indicated that SVEVs are functionally active, showing high metalloproteinase and fibrinogenolytic activity besides being cytotoxic against HUVEC cells. Overall, this study comprehensively depicts the protein composition of SVEVs for the first time. In addition, the molecular function of some of the described proteins suggests a central role for SVEVs in the cytotoxicity of the snake venom and sheds new light in the envenomation process.
Collapse
Affiliation(s)
- Victor Corassolla Carregari
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil.,GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paulo Baldasso
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo Medical School (FMUSP), São Paulo, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology (IB), Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Santos PP, Games PD, Azevedo DO, Barros E, de Oliveira LL, de Oliveira Ramos HJ, Baracat-Pereira MC, Serrão JE. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21424. [PMID: 29024043 DOI: 10.1002/arch.21424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10-ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.
Collapse
Affiliation(s)
- Pollyanna Pereira Santos
- Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, Maranhão, Brazil
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Patricia Dias Games
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Edvaldo Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Kuniyoshi AK, Kodama RT, Moraes LHF, Duzzi B, Iwai LK, Lima IF, Cajado-Carvalho D, Portaro FV. In vitro cleavage of bioactive peptides by peptidases from Bothrops jararaca venom and its neutralization by bothropic antivenom produced by Butantan Institute: Major contribution of serine peptidases. Toxicon 2017; 137:114-119. [DOI: 10.1016/j.toxicon.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
|
15
|
Souza-Imberg A, Carneiro SM, Giannotti KC, Sant'Anna SS, Yamanouye N. Origin and characterization of small membranous vesicles present in the venom of Crotalus durissus terrificus. Toxicon 2017; 136:27-33. [PMID: 28668562 DOI: 10.1016/j.toxicon.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/19/2022]
Abstract
Small membranous vesicles are small closed fragments of membrane. They are released from multivesicular bodies (exosomes) or shed from the surface membrane (microvesicles). They contains various bioactive molecules and their molecular composition varies depending on their cellular origin. Small membranous vesicles have been identified in snake venoms, but the origin of these small membranous vesicles in the venom is controversial. The aim of this study was to verify the origin of the small membranous vesicles in venom of Crotalus durissus terrificus by morphological analyses using electron microscopy. In addition, the protein composition of the vesicles was analyzed by using a proteome approach. The small membranous vesicles present in the venom were microvesicles, since they originated from microvilli on the apical membrane of secretory cells. They contained cytoplasmic proteins, and proteins from the plasma membrane, endoplasmic reticulum (ER), and Golgi membrane. The release of microvesicles may be a mechanism to control the size of the cell membrane of the secretory cells after intense exocytosis. Microvesicle components that may have a role in envenoming include ecto-5'-nucleotidase, a cell membrane protein that releases adenosine, and aminopeptidase N, a cell membrane protein that may modulate the action of many peptides.
Collapse
Affiliation(s)
- Andréia Souza-Imberg
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| | - Sylvia Mendes Carneiro
- Laboratório de Biologia Celular, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| | - Karina Cristina Giannotti
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| | - Sávio Stefanini Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, Brazil.
| |
Collapse
|
16
|
Aird SD, da Silva NJ, Qiu L, Villar-Briones A, Saddi VA, Pires de Campos Telles M, Grau ML, Mikheyev AS. Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa. Toxins (Basel) 2017; 9:E187. [PMID: 28594382 PMCID: PMC5488037 DOI: 10.3390/toxins9060187] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022] Open
Abstract
Venom gland transcriptomes and proteomes of six Micrurus taxa (M. corallinus, M. lemniscatus carvalhoi, M. lemniscatus lemniscatus, M. paraensis, M. spixii spixii, and M. surinamensis) were investigated, providing the most comprehensive, quantitative data on Micrurus venom composition to date, and more than tripling the number of Micrurus venom protein sequences previously available. The six venomes differ dramatically. All are dominated by 2-6 toxin classes that account for 91-99% of the toxin transcripts. The M. s. spixii venome is compositionally the simplest. In it, three-finger toxins (3FTxs) and phospholipases A₂ (PLA₂s) comprise >99% of the toxin transcripts, which include only four additional toxin families at levels ≥0.1%. Micrurus l. lemniscatus venom is the most complex, with at least 17 toxin families. However, in each venome, multiple structural subclasses of 3FTXs and PLA₂s are present. These almost certainly differ in pharmacology as well. All venoms also contain phospholipase B and vascular endothelial growth factors. Minor components (0.1-2.0%) are found in all venoms except that of M. s. spixii. Other toxin families are present in all six venoms at trace levels (<0.005%). Minor and trace venom components differ in each venom. Numerous novel toxin chemistries include 3FTxs with previously unknown 8- and 10-cysteine arrangements, resulting in new 3D structures and target specificities. 9-cysteine toxins raise the possibility of covalent, homodimeric 3FTxs or heterodimeric toxins with unknown pharmacologies. Probable muscarinic sequences may be reptile-specific homologs that promote hypotension via vascular mAChRs. The first complete sequences are presented for 3FTxs putatively responsible for liberating glutamate from rat brain synaptosomes. Micrurus C-type lectin-like proteins may have 6-9 cysteine residues and may be monomers, or homo- or heterodimers of unknown pharmacology. Novel KSPIs, 3× longer than any seen previously, appear to have arisen in three species by gene duplication and fusion. Four species have transcripts homologous to the nociceptive toxin, (MitTx) α-subunit, but all six species had homologs to the β-subunit. The first non-neurotoxic, non-catalytic elapid phospholipase A₂s are reported. All are probably myonecrotic. Phylogenetic analysis indicates that the six taxa diverged 15-35 million years ago and that they split from their last common ancestor with Old World elapines nearly 55 million years ago. Given their early diversification, many cryptic micrurine taxa are anticipated.
Collapse
Affiliation(s)
- Steven D Aird
- Division of Faculty Affairs, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
| | - Lijun Qiu
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alejandro Villar-Briones
- Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Vera Aparecida Saddi
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Oncogenética e Radiobiologia da Associação de Combate ao Câncer em Goiás, Universidade Federal de Goiás, Rua 239 no. 52-Setor Universitário, Goiânia, Goiás 74065-070, Brazil.
| | - Mariana Pires de Campos Telles
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás 74605-140, Brazil.
- Laboratório de Genética & Biodiversidade, Universidade Federal de Goiás, Goiânia, Goiás 74690-900, Brazil.
| | - Miguel L Grau
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa-ken 904-0495, Japan.
| |
Collapse
|
17
|
Aird SD, Watanabe Y, Villar-Briones A, Roy MC, Terada K, Mikheyev AS. Quantitative high-throughput profiling of snake venom gland transcriptomes and proteomes (Ovophis okinavensis and Protobothrops flavoviridis). BMC Genomics 2013; 14:790. [PMID: 24224955 PMCID: PMC3840601 DOI: 10.1186/1471-2164-14-790] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 10/26/2013] [Indexed: 01/20/2023] Open
Abstract
Background Advances in DNA sequencing and proteomics have facilitated quantitative comparisons of snake venom composition. Most studies have employed one approach or the other. Here, both Illumina cDNA sequencing and LC/MS were used to compare the transcriptomes and proteomes of two pit vipers, Protobothrops flavoviridis and Ovophis okinavensis, which differ greatly in their biology. Results Sequencing of venom gland cDNA produced 104,830 transcripts. The Protobothrops transcriptome contained transcripts for 103 venom-related proteins, while the Ovophis transcriptome contained 95. In both, transcript abundances spanned six orders of magnitude. Mass spectrometry identified peptides from 100% of transcripts that occurred at higher than contaminant (e.g. human keratin) levels, including a number of proteins never before sequenced from snakes. These transcriptomes reveal fundamentally different envenomation strategies. Adult Protobothrops venom promotes hemorrhage, hypotension, incoagulable blood, and prey digestion, consistent with mammalian predation. Ovophis venom composition is less readily interpreted, owing to insufficient pharmacological data for venom serine and metalloproteases, which comprise more than 97.3% of Ovophis transcripts, but only 38.0% of Protobothrops transcripts. Ovophis venom apparently represents a hybrid strategy optimized for frogs and small mammals. Conclusions This study illustrates the power of cDNA sequencing combined with MS profiling. The former quantifies transcript composition, allowing detection of novel proteins, but cannot indicate which proteins are actually secreted, as does MS. We show, for the first time, that transcript and peptide abundances are correlated. This means that MS can be used for quantitative, non-invasive venom profiling, which will be beneficial for studies of endangered species.
Collapse
Affiliation(s)
- Steven D Aird
- Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Kunigami-gun, Okinawa-ken 904-0412, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TNW. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon 2012; 60:434-48. [PMID: 22446061 DOI: 10.1016/j.toxicon.2012.02.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 11/25/2022]
Abstract
The evolutionary origin and diversification of the reptilian venom system is described. The resolution of higher-order molecular phylogenetics has clearly established that a venom system is ancestral to snakes. The diversification of the venom system within lizards is discussed, as is the role of venom delivery in the behavioural ecology of these taxa (particularly Varanus komodoensis). The more extensive diversification of the venom system in snakes is summarised, including its loss in some clades. Finally, we discuss the contentious issue of a definition for "venom", supporting an evolutionary definition that recognises the homology of both the venom delivery systems and the toxins themselves.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Research Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Vaiyapuri S, Wagstaff SC, Watson KA, Harrison RA, Gibbins JM, Hutchinson EG. Purification and functional characterisation of rhiminopeptidase A, a novel aminopeptidase from the venom of Bitis gabonica rhinoceros. PLoS Negl Trop Dis 2010; 4:e796. [PMID: 20706583 PMCID: PMC2919393 DOI: 10.1371/journal.pntd.0000796] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Snake bite is a major neglected public health issue within poor communities living in the rural areas of several countries throughout the world. An estimated 2.5 million people are bitten by snakes each year and the cost and lack of efficacy of current anti-venom therapy, together with the lack of detailed knowledge about toxic components of venom and their modes of action, and the unavailability of treatments in rural areas mean that annually there are around 125,000 deaths worldwide. In order to develop cheaper and more effective therapeutics, the toxic components of snake venom and their modes of action need to be clearly understood. One particularly poorly understood component of snake venom is aminopeptidases. These are exo-metalloproteases, which, in mammals, are involved in important physiological functions such as the maintenance of blood pressure and brain function. Although aminopeptidase activities have been reported in some snake venoms, no detailed analysis of any individual snake venom aminopeptidases has been performed so far. As is the case for mammals, snake venom aminopeptidases may also play important roles in altering the physiological functions of victims during envenomation. In order to further understand this important group of snake venom enzymes we have isolated, functionally characterised and analysed the sequence-structure relationships of an aminopeptidase from the venom of the large, highly venomous West African gaboon viper, Bitis gabonica rhinoceros. METHODOLOGY AND PRINCIPAL FINDINGS The venom of B. g. rhinoceros was fractionated by size exclusion chromatography and fractions with aminopeptidase activities were isolated. Fractions with aminopeptidase activities showed a pure protein with a molecular weight of 150 kDa on SDS-PAGE. In the absence of calcium, this purified protein had broad aminopeptidase activities against acidic, basic and neutral amino acids but in the presence of calcium, it had only acidic aminopeptidase activity (APA). Together with the functional data, mass spectrometry analysis of the purified protein confirmed this as an aminopeptidase A and thus this has been named as rhiminopeptidase A. The complete gene sequence of rhiminopeptidase A was obtained by sequencing the PCR amplified aminopeptidase A gene from the venom gland cDNA of B. g. rhinoceros. The gene codes for a predicted protein of 955 amino acids (110 kDa), which contains the key amino acids necessary for functioning as an aminopeptidase A. A structural model of rhiminopeptidase A shows the structure to consist of 4 domains: an N-terminal saddle-shaped beta domain, a mixed alpha and beta catalytic domain, a beta-sandwich domain and a C-terminal alpha helical domain. CONCLUSIONS This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g. rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study points towards the importance of complete analysis of individual components of snake venom in order to develop effective therapies for snake bites.
Collapse
Affiliation(s)
- Sakthivel Vaiyapuri
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Simon C. Wagstaff
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kimberley A. Watson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Robert A. Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jonathan M. Gibbins
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
- Blood Transfusion Research Group, King Saud University, Riyadh, Saudi Arabia
| | - E. Gail Hutchinson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
20
|
Ogawa Y, Murayama N, Yanoshita R. Molecular cloning and characterization of ecto-5′-nucleotidase from the venoms of Gloydius blomhoffi. Toxicon 2009; 54:408-12. [DOI: 10.1016/j.toxicon.2009.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/18/2009] [Accepted: 05/11/2009] [Indexed: 11/15/2022]
|
21
|
Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom. Toxicon 2008; 51:984-93. [DOI: 10.1016/j.toxicon.2008.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/03/2008] [Accepted: 02/05/2008] [Indexed: 12/25/2022]
|