1
|
Socała K, Jakubiec M, Abram M, Mlost J, Starowicz K, Kamiński RM, Ciepiela K, Andres-Mach M, Zagaja M, Metcalf CS, Zawadzki P, Wlaź P, Kamiński K. TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates. Prog Neurobiol 2024; 240:102634. [PMID: 38834133 DOI: 10.1016/j.pneurobio.2024.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland.
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Cracow PL 31-343, Poland
| | - Rafał M Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Katarzyna Ciepiela
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland; Selvita S.A., Bobrzyńskiego 14, Cracow PL 30-348, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin PL 20-090, Poland
| | - Cameron S Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Przemysław Zawadzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin PL 20-033, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow PL 30-688, Poland
| |
Collapse
|
2
|
Yang H, Gu X, Chen H, Zeng Q, Mao Z, Jin M, Li H, Ge Y, Zha J, Martyniuk CJ. Transcriptome profiling reveals toxicity mechanisms following sertraline exposure in the brain of juvenile zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113936. [PMID: 35930839 DOI: 10.1016/j.ecoenv.2022.113936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Sertraline (SER) is one of the most commonly detected antidepressants in the aquatic environment that can negatively affect aquatic organisms at low concentrations. Despite some knowledge on its acute toxicity to fish, the effects of chronic SER exposure remain poorly understood along with any underlying mechanisms of SER-induced toxicity. To address this knowledge gap, the effects of chronic exposure to three SER concentrations from low to high were investigated in zebrafish. Juvenile zebrafish were exposed to three concentrations of 1, 10, or 100 μg/L of SER for 28 d, after which indicators of oxidative stress and neurotoxicity in the brain were measured. Superoxide dismutase (SOD) activity was significantly enhanced by SER at 1 up to 100 μg/L, and catalase (CAT) activity was significantly induced by SER at 1 or 10 μg/L. The activity of acetylcholinesterase (AChE) was significantly induced by 10 and 100 μg/L of SER, and the serotonin (5-HT) level was significantly increased by all three concentrations of SER. To ascertain mechanisms of SER-induced toxicity, transcriptomics was conducted in the brain of zebrafish following 100 μg/L SER exposure. The molecular signaling pathways connected with circadian system and the immune system were significantly altered in the zebrafish brain. Based on transcriptomic data, the expression levels of six circadian clock genes were measured, and three genes were significantly altered in relative abundance in fish from all experimental treatments with SER, including cryptochrome circadian regulator 2 (cry2), period circadian clock 2 (per2), and period circadian clock 3 (per3). We hypothesize that the circadian system may be related to SER-induced neurotoxicity and oxidative stress in the central nervous system. This study reveals potential mechanisms and key events (i.e., oxidative stress and neurotoxicity) associated with SER-induced toxicity, and improves understanding of the molecular and biochemical pathways putatively perturbed by SER.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinmiao Zha
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
3
|
Cunha SA, Dinis-Oliveira RJ. Raising Awareness on the Clinical and Forensic Aspects of Jellyfish Stings: A Worldwide Increasing Threat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8430. [PMID: 35886286 PMCID: PMC9324653 DOI: 10.3390/ijerph19148430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Jellyfish are ubiquitous animals registering a high and increasing number of contacts with humans in coastal areas. These encounters result in a multitude of symptoms, ranging from mild erythema to death. This work aims to review the state-of-the-art regarding pathophysiology, diagnosis, treatment, and relevant clinical and forensic aspects of jellyfish stings. There are three major classes of jellyfish, causing various clinical scenarios. Most envenomations result in an erythematous lesion with morphological characteristics that may help identify the class of jellyfish responsible. In rare cases, the sting may result in delayed, persistent, or systemic symptoms. Lethal encounters have been described, but most of those cases happened in the Indo-Pacific region, where cubozoans, the deadliest jellyfish class, can be found. The diagnosis is mostly clinical but can be aided by dermoscopy, skin scrapings/sticky tape, confocal reflectance microscopy, immunological essays, among others. Treatment is currently based on preventing further envenomation, inactivating the venom, and alleviating local and systemic symptoms. However, the strategy used to achieve these effects remains under debate. Only one antivenom is currently used and covers merely one species (Chironex fleckeri). Other antivenoms have been produced experimentally but were not tested on human envenomation settings. The increased number of cases, especially due to climate changes, justifies further research in the study of clinical aspects of jellyfish envenoming.
Collapse
Affiliation(s)
- Sara Almeida Cunha
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; or
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; or
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
- UCIBIO-REQUIMTE—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- MTG Research and Development Lab, 4200-604 Porto, Portugal
| |
Collapse
|
4
|
Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Int J Mol Sci 2022; 23:ijms23105772. [PMID: 35628583 PMCID: PMC9147560 DOI: 10.3390/ijms23105772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) ion channel plays an important role in the peripheral nociceptive pathway. TRPV1 is a polymodal receptor that can be activated by multiple types of ligands and painful stimuli, such as noxious heat and protons, and contributes to various acute and chronic pain conditions. Therefore, TRPV1 is emerging as a novel therapeutic target for the treatment of various pain conditions. Notably, various peptides isolated from venomous animals potently and selectively control the activation and inhibition of TRPV1 by binding to its outer pore region. This review will focus on the mechanisms by which venom-derived peptides interact with this portion of TRPV1 to control receptor functions and how these mechanisms can drive the development of new types of analgesics.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Youn-Yi Jo
- Gil Medical Center, Department of Anesthesiology and Pain Medicine, Gachon University, Incheon 21565, Korea;
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
| | - Yong-Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH 45242, USA;
- Correspondence: (T.B.); (C.-K.P.)
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Korea; (S.-M.H.); (Y.-H.K.)
- Correspondence: (T.B.); (C.-K.P.)
| |
Collapse
|
5
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
6
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
7
|
Zhou Q, Shi Y, Qi H, Liu H, Wei N, Jiang Y, Wang K. Identification of two natural coumarin enantiomers for selective inhibition of TRPV2 channels. FASEB J 2020; 34:12338-12353. [PMID: 32729134 DOI: 10.1096/fj.201901541rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Abstract
Thermosensitive transient receptor potential vanilloid 2 (thermoTRPV2) is a nonselective Ca2+ -permeable cation channel broadly expressed, and is implicated in the pathology of diseases such as diabetes and pancreatitis. However, the physiological and pharmacological functions of TRPV2 channels have not been extensively investigated because of the absence of specific modulators. In this study, we report a pair of natural coumarin derivative enantiomers (-)-murraxocin (B304-1) and (+)-murraxocin (B304-2) from Murraya exotica for their selective inhibition of TRPV2 channels expressed in HEK293 cells and native TRPV2 currents in differentiated brown adipocytes. Whole-cell patch clamp recordings confirmed the enantiomers B304-1 and B304-2 could selectively inhibit the agonist mediated activation of TRPV2 current with IC50 values of 22.2 ± 7.8 μM and 3.7 ± 0.7 μM, respectively. Molecular docking and site-directed mutagenesis revealed a key residue I600 of TRPV2 critical for the binding of the enantiomers. Furthermore, B304-1 and B304-2 significantly reversed TRPV2 agonist-induced inhibition of mouse brown adipocyte differentiation. Taken together, our identification of two natural coumarin enantiomers provides valuable tools and chemical leads for further elucidation of TRPV2 channel function, and pharmacological modulation of thermoTRPV2 in brown adipocytes may represent a new therapeutic strategy for treatment of energy imbalance or metabolic disorders.
Collapse
Affiliation(s)
- Qiqi Zhou
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yuntao Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hang Qi
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Huijie Liu
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ningning Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
8
|
Kumar R, Geron M, Hazan A, Priel A. Endogenous and Exogenous Vanilloids Evoke Disparate TRPV1 Activation to Produce Distinct Neuronal Responses. Front Pharmacol 2020; 11:903. [PMID: 32595512 PMCID: PMC7303340 DOI: 10.3389/fphar.2020.00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal signals are processed along the nociceptive pathway to convey discriminative information, which would manifest in the produced pain sensation. The transient receptor potential vanilloid 1 (TRPV1), an important signaling complex in nociceptors termini, is activated by different noxious stimuli that underlie distinct pain sensations. For example, while endovanilloids are associated with inflammatory pain and hypersensitivity through TRPV1 activation, the exovanilloid toxin, capsaicin, evokes an acute pain by activating this channel. Differences in the TRPV1 activation profile evoked by exogenous and endogenous vanilloids were suggested to underlie this disparity in pain sensations. However, the cellular processes that lead to these differences in pain sensation mediated by the same channel are not fully understood. Here, we sought to describe the neuronal response of TRPV1-expressing nociceptors to exo-and endovanilloids. To this end, we performed current-clamp recordings in rat trigeminal neurons exposed to either capsaicin or intracellular endovanilloids produced downstream of the bradykinin receptor BK2. Our results show that lipoxygenase metabolites generate persistent TRPV1-dependent action potential firing while capsaicin evokes robust depolarization and high-frequency firing that is quickly terminated by depolarization block. Additionally, we found that a weak TRPV1 activation prolongs action potential firing. Overall, our results indicate different firing patterns evoked by inflammatory mediators and capsaicin via TRPV1 that correlate with the respective subsequent pain sensation. These findings also suggest that differences in neuronal activation stem from the variable degree of TRPV1 activation they produce.
Collapse
Affiliation(s)
- Rakesh Kumar
- Institute for Drug Research (IDR), School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matan Geron
- Institute for Drug Research (IDR), School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adina Hazan
- Institute for Drug Research (IDR), School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Priel
- Institute for Drug Research (IDR), School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Adaszek Ł, Gadomska D, Mazurek Ł, Łyp P, Madany J, Winiarczyk S. Properties of capsaicin and its utility in veterinary and human medicine. Res Vet Sci 2018; 123:14-19. [PMID: 30579138 DOI: 10.1016/j.rvsc.2018.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
The main aim of this paper was to show the variety of capsaicin's properties. Capsaicin is an active component of plants of the Capsicum genus, and is known for its pungency. Capsaicin is used in the food, pharmaceutical and cosmetic industries. Additional properties of capsaicin have been demonstrated, including pain relief, weight loss, body thermoregulation, and antioxidant, antimicrobial and anticancer activities. Studies of capsaicin's effects on the human and animal organism need to be continued, with special emphasis on new applications.
Collapse
Affiliation(s)
- Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences Lublin, 30 Głęboka St., 20-612 Lublin, Poland.
| | - Dagmara Gadomska
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences Lublin, 30 Głęboka St., 20-612 Lublin, Poland
| | - Łukasz Mazurek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences Lublin, 30 Głęboka St., 20-612 Lublin, Poland
| | - Paweł Łyp
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences Lublin, 30 Głęboka St., 20-612 Lublin, Poland
| | - Jacek Madany
- Department and Clinic of Animal Internal Diseases, University of Life Sciences, 20-612 Lublin, Głęboka 30, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences Lublin, 30 Głęboka St., 20-612 Lublin, Poland
| |
Collapse
|
10
|
Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3819714. [PMID: 30402474 PMCID: PMC6196993 DOI: 10.1155/2018/3819714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022]
Abstract
Natural products with antispasmodic activity have been used in traditional medicine to alleviate different illnesses since the remote past. We searched the literature and compiled the antispasmodic activity of 248 natural compounds isolated from terrestrial plants. In this review, we summarized all the natural products reported with antispasmodic activity until the end of 2017. We also provided chemical information about their extraction as well as the model used to test their activities. Results showed that members of the Lamiaceae and Asteraceae families had the highest number of isolated compounds with antispasmodic activity. Moreover, monoterpenoids, flavonoids, triterpenes, and alkaloids were the chemical groups with the highest number of antispasmodic compounds. Lastly, a structural comparison of natural versus synthetic compounds was discussed.
Collapse
|
11
|
Hernández-Araiza I, Morales-Lázaro SL, Canul-Sánchez JA, Islas LD, Rosenbaum T. Role of lysophosphatidic acid in ion channel function and disease. J Neurophysiol 2018; 120:1198-1211. [PMID: 29947596 DOI: 10.1152/jn.00226.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).
Collapse
Affiliation(s)
- Ileana Hernández-Araiza
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Jesús Aldair Canul-Sánchez
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City, Mexico
| |
Collapse
|
12
|
Christie S, Wittert GA, Li H, Page AJ. Involvement of TRPV1 Channels in Energy Homeostasis. Front Endocrinol (Lausanne) 2018; 9:420. [PMID: 30108548 PMCID: PMC6079260 DOI: 10.3389/fendo.2018.00420] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
The ion channel TRPV1 is involved in a wide range of processes including nociception, thermosensation and, more recently discovered, energy homeostasis. Tightly controlling energy homeostasis is important to maintain a healthy body weight, or to aid in weight loss by expending more energy than energy intake. TRPV1 may be involved in energy homeostasis, both in the control of food intake and energy expenditure. In the periphery, it is possible that TRPV1 can impact on appetite through control of appetite hormone levels or via modulation of gastrointestinal vagal afferent signaling. Further, TRPV1 may increase energy expenditure via heat production. Dietary supplementation with TRPV1 agonists, such as capsaicin, has yielded conflicting results with some studies indicating a reduction in food intake and increase in energy expenditure, and other studies indicating the converse. Nonetheless, it is increasingly apparent that TRPV1 may be dysregulated in obesity and contributing to the development of this disease. The mechanisms behind this dysregulation are currently unknown but interactions with other systems, such as the endocannabinoid systems, could be altered and therefore play a role in this dysregulation. Further, TRPV1 channels appear to be involved in pancreatic insulin secretion. Therefore, given its plausible involvement in regulation of energy and glucose homeostasis and its dysregulation in obesity, TRPV1 may be a target for weight loss therapy and diabetes. However, further research is required too fully elucidate TRPV1s role in these processes. The review provides an overview of current knowledge in this field and potential areas for development.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gary A. Wittert
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Hui Li
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Amanda J. Page
| |
Collapse
|
13
|
Geron M, Hazan A, Priel A. Animal Toxins Providing Insights into TRPV1 Activation Mechanism. Toxins (Basel) 2017; 9:toxins9100326. [PMID: 29035314 PMCID: PMC5666373 DOI: 10.3390/toxins9100326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Beyond providing evolutionary advantages, venoms offer unique research tools, as they were developed to target functionally important proteins and pathways. As a key pain receptor in the nociceptive pathway, transient receptor potential vanilloid 1 (TRPV1) of the TRP superfamily has been shown to be a target for several toxins, as a way of producing pain to deter predators. Importantly, TRPV1 is involved in thermoregulation, inflammation, and acute nociception. As such, toxins provide tools to understand TRPV1 activation and modulation, a critical step in advancing pain research and the development of novel analgesics. Indeed, the phytotoxin capsaicin, which is the spicy chemical in chili peppers, was invaluable in the original cloning and characterization of TRPV1. The unique properties of each subsequently characterized toxin have continued to advance our understanding of functional, structural, and biophysical characteristics of TRPV1. By building on previous reviews, this work aims to provide a comprehensive summary of the advancements made in TRPV1 research in recent years by employing animal toxins, in particular DkTx, RhTx, BmP01, Echis coloratus toxins, APHCs and HCRG21. We examine each toxin’s functional aspects, behavioral effects, and structural features, all of which have contributed to our current knowledge of TRPV1. We additionally discuss the key features of TRPV1’s outer pore domain, which proves to be the target of the currently discussed toxins.
Collapse
Affiliation(s)
- Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Adina Hazan
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
14
|
Brill ZG, Condakes ML, Ting CP, Maimone TJ. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem Rev 2017; 117:11753-11795. [PMID: 28293944 PMCID: PMC5638449 DOI: 10.1021/acs.chemrev.6b00834] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pool of abundant chiral terpene building blocks (i.e., "chiral pool terpenes") has long served as a starting point for the chemical synthesis of complex natural products, including many terpenes themselves. As inexpensive and versatile starting materials, such compounds continue to influence modern synthetic chemistry. This review highlights 21st century terpene total syntheses which themselves use small, terpene-derived materials as building blocks. An outlook to the future of research in this area is highlighted as well.
Collapse
Affiliation(s)
- Zachary G. Brill
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew L. Condakes
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Chi P. Ting
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
15
|
Molecular Ghrelin System in the Pancreatic Acinar Cells: The Role of the Polypeptide, Caerulein and Sensory Nerves. Int J Mol Sci 2017; 18:ijms18050929. [PMID: 28468316 PMCID: PMC5454842 DOI: 10.3390/ijms18050929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/09/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022] Open
Abstract
Ghrelin (GHRL) is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Experimental studies showed that GHRL protects the stomach and pancreas against acute damage, but the effect of GHRL on pancreatic acinar cells was still undetermined. Aim: To investigate the effect of GHRL and caerulein on the functional ghrelin system in pancreatic acinar cells taking into account the role of sensory nerves (SN). Methods: Experiments were carried out on isolated pancreatic acinar cells and AR42J cells. Before acinar cells isolation, GHRL was administered intraperitoneally at a dose of 50 µg/kg to rats with intact SN or with capsaicin deactivation of SN (CDSN). After isolation, pancreatic acinar cells were incubated in caerulein-free or caerulein containing solution. AR42J cells were incubated under basal conditions and stimulated with caerulein, GHRL or a combination of the above. Results: Incubation of isolated acinar cells with caerulein inhibited GHS-R and GHRL expression at the level of mRNA and protein in those cells. Either in rats with intact SN or with CDSN, administration of GHRL before isolation of acinar cells increased expression of GHRL and GHS-R in those cells and reversed the caerulein-induced reduction in expression of those parameters. Similar upregulation of GHS-R and GHRL was observed after administration of GHRL in AR42J cells. Conclusions: GHRL stimulates its own expression and expression of its receptor in isolated pancreatic acinar cells and AR42J cells on the positive feedback pathway. This mechanism seems to participate in the pancreatoprotective effect of GHRL in the course of acute pancreatitis.
Collapse
|
16
|
Inflammatory Action of Secretory Phospholipases A2 from Snake Venoms. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Endogenous TRPV1 stimulation leads to the activation of the inositol phospholipid pathway necessary for sustained Ca 2+ oscillations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2905-2915. [PMID: 27663071 DOI: 10.1016/j.bbamcr.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/15/2023]
Abstract
Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50μM) evoked intracellular Ca2+ oscillations and/or intercellular Ca2+ waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca2+ ions. Concomitant oscillations of the mitochondrial matrix Ca2+ concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca2+ oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1μM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca2+ oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca2+ concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca2+ oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca2+ signal.
Collapse
|
18
|
Temperature-sensitive gating of TRPV1 channel as probed by atomistic simulations of its trans- and juxtamembrane domains. Sci Rep 2016; 6:33112. [PMID: 27612191 PMCID: PMC5017144 DOI: 10.1038/srep33112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
Heat-activated transient receptor potential channel TRPV1 is one of the most studied eukaryotic proteins involved in temperature sensation. Upon heating, it exhibits rapid reversible pore gating, which depolarizes neurons and generates action potentials. Underlying molecular details of such effects in the pore region of TRPV1 is of a crucial importance to control temperature responses of the organism. Despite the spatial structure of the channel in both open (O) and closed (C) states is known, microscopic nature of channel gating and mechanism of thermal sensitivity are still poorly understood. In this work, we used unrestrained atomistic molecular dynamics simulations of TRPV1 (without N- and C-terminal cytoplasmic domains) embedded into explicit lipid bilayer in its O- and C-states. We found that the pore domain with its neighboring loops undergoes large temperature-dependent conformational transitions in an asymmetric way, when fragments of only one monomer move with large amplitude, freeing the pore upon heating. Such an asymmetrical gating looks rather biologically relevant because it is faster and more reliable than traditionally proposed “iris-like” symmetric scheme of channel opening. Analysis of structural, dynamic, and hydrophobic organization of the pore domain revealed entropy growth upon TRPV1 gating, which is in line with current concepts of thermal sensitivity.
Collapse
|
19
|
Borges MH, Figueiredo SG, Leprevost FV, De Lima ME, Cordeiro MDN, Diniz MR, Moresco J, Carvalho PC, Yates JR. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi : searching for potential biotechnological applications. J Proteomics 2016; 136:35-47. [DOI: 10.1016/j.jprot.2016.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
20
|
García-Arredondo A, Rodríguez-Rios L, Díaz-Peña LF, Vega-Ángeles R. Pharmacological characterization of venoms from three theraphosid spiders: Poecilotheria regalis, Ceratogyrus darlingi and Brachypelma epicureanum. J Venom Anim Toxins Incl Trop Dis 2015; 21:15. [PMID: 26085827 PMCID: PMC4470046 DOI: 10.1186/s40409-015-0017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tarantulas (Theraphosidae) represent an important source of novel biologically active compounds that target a variety of ion channels and cell receptors in both insects and mammals. In this study, we evaluate and compare the pharmacological activity of venoms from three taxonomically different theraphosid spiders bred in captivity: Poecilotheria regalis, an aggressive arboreal tarantula from southeastern India; Ceratogyrus darlingi, an aggressive tarantula from southern Africa; and Brachypelma epicureanum, a docile tarantula from the Yucatan dry forest of Mexico. Prior to this study, no research had been conducted with regard to the composition and pharmacological activity of these venoms. METHODS The pharmacological characterization of the venoms was described for the first time by the assessment of their toxicity in crickets (LD50) along with their nociceptive (by using the formalin test), hyaluronidase, phospholipase A2, edematogenic and caseinolytic activity. RESULTS P. regalis and B. epicureanum venoms induced a similar lethal effect on crickets (LD50 = 5.23 ± 3.1 and 14.4 ± 5.0 μg protein/g 48 h post-injection, respectively), whereas C. darlingi venom (119.4 ± 29.5 μg protein/g 48 h post-injection) was significantly less lethal than the other two venoms. All three venoms induced similar edematogenic activity on rats but did not induce nociceptive behavior. The assessment of enzymatic activity indicated that P. regalis venom induces significantly higher hyaluronidase activity (27.6 ± 0.9 TRU/mg) than both C. darlingi (99.7 ± 1.9 TRU/mg) and B. epicureanum (99.6 ± 1.6 TRU/mg); these latter venoms did not display phospholipase A2 or caseinolytic activity. CONCLUSIONS This study demonstrates that these theraphosid spiders of different habitats produce venoms with different activities. P. regalis venom displays a high level of hyaluronidase activity, which may be associated with its potentially medically significant bite.
Collapse
Affiliation(s)
- Alejandro García-Arredondo
- Laboratory of Chemical and Pharmacological Natural Product Research, School of Chemistry, Autonomous University of Querétaro (UAQ), Santiago de Querétaro, Querétaro Mexico
| | - Luis Rodríguez-Rios
- Laboratory of Chemical and Pharmacological Natural Product Research, School of Chemistry, Autonomous University of Querétaro (UAQ), Santiago de Querétaro, Querétaro Mexico
| | - Luis Fernando Díaz-Peña
- Laboratory of Chemical and Pharmacological Natural Product Research, School of Chemistry, Autonomous University of Querétaro (UAQ), Santiago de Querétaro, Querétaro Mexico
| | - Ricardo Vega-Ángeles
- Laboratory of Chemical and Pharmacological Natural Product Research, School of Chemistry, Autonomous University of Querétaro (UAQ), Santiago de Querétaro, Querétaro Mexico
| |
Collapse
|
21
|
Morales-Lázaro SL, Rosenbaum T. A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci 2014; 125:15-24. [PMID: 25445434 DOI: 10.1016/j.lfs.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.
Collapse
Affiliation(s)
- Sara L Morales-Lázaro
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Tamara Rosenbaum
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
22
|
|
23
|
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A. Trafficking of ThermoTRP Channels. MEMBRANES 2014; 4:525-64. [PMID: 25257900 PMCID: PMC4194048 DOI: 10.3390/membranes4030525] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
ThermoTRP channels (thermoTRPs) define a subfamily of the transient receptor potential (TRP) channels that are activated by changes in the environmental temperature, from noxious cold to injurious heat. Acting as integrators of several stimuli and signalling pathways, dysfunction of these channels contributes to several pathological states. The surface expression of thermoTRPs is controlled by both, the constitutive and regulated vesicular trafficking. Modulation of receptor surface density during pathological processes is nowadays considered as an interesting therapeutic approach for management of diseases, such as chronic pain, in which an increased trafficking is associated with the pathological state. This review will focus on the recent advances trafficking of the thermoTRP channels, TRPV1, TRPV2, TRPV4, TRPM3, TRPM8 and TRPA1, into/from the plasma membrane. Particularly, regulated membrane insertion of thermoTRPs channels contributes to a fine tuning of final channel activity, and indeed, it has resulted in the development of novel therapeutic approaches with successful clinical results such as disruption of SNARE-dependent exocytosis by botulinum toxin or botulinomimetic peptides.
Collapse
Affiliation(s)
| | - Sakthikumar Mathivanan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Christoph Jakob Wolf
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| |
Collapse
|
24
|
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 2014; 171:2474-507. [PMID: 24102319 PMCID: PMC4008995 DOI: 10.1111/bph.12414] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 12/14/2022] Open
Abstract
Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called 'TRP channelopathies') that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field.
Collapse
Affiliation(s)
- Yosuke Kaneko
- Discovery Research Alliance, Ono Pharmaceutical Co. LtdOsaka, Japan
| | - Arpad Szallasi
- Department of Pathology and Laboratory Medicine, Monmouth Medical CenterLong Branch, NJ, USA
| |
Collapse
|
25
|
Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:39-76. [PMID: 24941664 DOI: 10.1007/978-3-0348-0828-6_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1.
Collapse
|
26
|
Min JW, Liu WH, He XH, Peng BW. Different types of toxins targeting TRPV1 in pain. Toxicon 2013; 71:66-75. [PMID: 23732125 DOI: 10.1016/j.toxicon.2013.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 02/06/2023]
Abstract
The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, PR China
| | | | | | | |
Collapse
|
27
|
Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer. PLoS Negl Trop Dis 2013; 7:e2198. [PMID: 23638210 PMCID: PMC3636088 DOI: 10.1371/journal.pntd.0002198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/25/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). METHODOLOGY/PRINCIPAL FINDINGS Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na(+) channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. CONCLUSION/SIGNIFICANCE Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating the diversity of targets triggered by PNV toxins.
Collapse
|
28
|
Tsuji F, Aono H. Role of transient receptor potential vanilloid 1 in inflammation and autoimmune diseases. Pharmaceuticals (Basel) 2012; 5:837-52. [PMID: 24280677 PMCID: PMC3763671 DOI: 10.3390/ph5080837] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/02/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, is a receptor activated by high temperatures and chemical agonists such as the vanilloids and protons. Because of these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurons. TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for controlling pain pharmacologically because it is a point where many proalgesic pathways converge and it is upregulated and sensitized by inflammation and injury. However, whether TRPV1 agonists promote or inhibit inflammation remains unclear. We recently demonstrated that SA13353 (1-[2-(1-adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea), a novel TRPV1 agonist, inhibits tumor necrosis factor-a production by the activation of capsaicin-sensitive afferent neurons and reduces the severity of symptoms in kidney injury, lung inflammation, arthritis, and encephalomyelitis. These results suggest that TRPV1 agonists may act as anti-inflammatories in certain inflammatory and autoimmune conditions in vivo. Given the potential deleterious effects of inhibiting the population of channels with a protective function, caution should be taken in the use of potent TRPV1 antagonists as a general strategy to treat inflammation. Further studies are required to clarify the role of TRPV1 and neuropeptides, which are released because of TRPV1 activation in inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Fumio Tsuji
- Research and Development Center, Santen Pharmaceutical Co., Ltd., 8916-16 Takayama-cho, Ikoma, Nara 630-0101, Japan.
| | | |
Collapse
|
29
|
Bohlen CJ, Julius D. Receptor-targeting mechanisms of pain-causing toxins: How ow? Toxicon 2012; 60:254-64. [PMID: 22538196 DOI: 10.1016/j.toxicon.2012.04.336] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
Venoms often target vital processes to cause paralysis or death, but many types of venom also elicit notoriously intense pain. While these pain-producing effects can result as a byproduct of generalized tissue trauma, there are now multiple examples of venom-derived toxins that target somatosensory nerve terminals in order to activate nociceptive (pain-sensing) neural pathways. Intriguingly, investigation of the venom components that are responsible for evoking pain has revealed novel roles and/or configurations of well-studied toxin motifs. This review serves to highlight pain-producing toxins that target the capsaicin receptor, TRPV1, or members of the acid-sensing ion channel family, and to discuss the utility of venom-derived multivalent and multimeric complexes.
Collapse
Affiliation(s)
- Christopher J Bohlen
- Department of Physiology, University of California, San Francisco, CA 94158-2517, USA.
| | | |
Collapse
|
30
|
New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel) 2011; 5:16-48. [PMID: 24288041 PMCID: PMC3763626 DOI: 10.3390/ph5010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.
Collapse
|
31
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Key Words
- chemesthesis
- chemosensation
- gastrointestinal cancer
- gastrointestinal motility
- hypersensitivity
- hyperalgesia
- inflammation
- inflammatory bowel disease
- mechanosensation
- pain
- taste
- transducers
- trpa1
- trpc4
- trpc6
- trpm5
- trpm6
- trpv1
- trpv4
- trpv6
- aitc, allyl isothiocyanate
- cck, cholecystokinin
- cgrp, calcitonin gene-related peptide
- drg, dorsal root ganglion
- dss, dextran sulfate sodium
- gi, gastrointestinal
- gpcr, g protein-coupled receptor
- 5-ht, 5-hydroxytryptamine
- icc, interstitial cell of cajal
- mrna, messenger ribonucleic acid
- par, protease-activated receptor
- pkd, polycystic kidney disease
- rna, ribonucleic acid
- sirna, small interfering ribonucleic acid
- tnbs, trinitrobenzene sulfonic acid
- trp, transient receptor potential
- trpa, transient receptor potential ankyrin
- trpc, transient receptor potential canonical (or classical)
- trpm, transient receptor potential melastatin
- trpp, transient receptor potential polycystin
- trpv, transient receptor potential vanilloid
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
32
|
Devesa I, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Ferrer-Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 2011; 4:67-81. [PMID: 22096371 PMCID: PMC3218746 DOI: 10.2147/jir.s12978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Natural product ligands have contributed significantly to the deorphanisation of TRP ion channels. Furthermore, natural product ligands continue to provide valuable leads for the identification of ligands acting at "orphan" TRP channels. Additional naturally occurring modulators at TRP channels can be expected to be discovered in future, aiding in our understanding of not only their pharmacology and physiology, but also the therapeutic potential of this fascinating family of ion channels.
Collapse
|
34
|
Diaz-Garcia CM, Sanchez-Soto C, Hiriart M. Toxins that modulate ionic channels as tools for exploring insulin secretion. Cell Mol Neurobiol 2010; 30:1275-81. [PMID: 21046453 PMCID: PMC11498850 DOI: 10.1007/s10571-010-9586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 01/26/2023]
Abstract
Glucose-induced insulin secretion is a cardinal process in glucose homeostasis and metabolic expenditure. Uncoupling of the insulin response to glucose variations may lead to type-2 diabetes mellitus. Thus the identification of more specific drugs to facilitate the study of insulin secretion mechanisms and to develop new pharmacological agents for therapeutics is fundamental. Venomous organisms possess a great diversity of toxic molecules and some of them are neurotoxins that affect membrane excitability. This article reviews properties of those toxins affecting ion channels pivotal for insulin secretion and the usefulness of such compounds in the study of pancreatic beta-cell physiology. Here we examine the major contributions of toxinology to the understanding of the ionic phase of insulin secretion, to the determination of ion channel composition in different insulin secreting cell-line models as well as from primary cultures of different mammal species. Finally, we present a summary of the many diverse toxins affecting insulin release and a brief discussion of the potential of novel toxins in therapeutics.
Collapse
Affiliation(s)
- Carlos Manlio Diaz-Garcia
- Instituto de Fisiología Celular, Neuroscience Division, Department of Neurodevelopment and Physiology, Universidad Nacional Autónoma de México, Ciudad Universitaria, AP 70-253 Coyoacán, 04510 Mexico, DF Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Carmen Sanchez-Soto
- Instituto de Fisiología Celular, Neuroscience Division, Department of Neurodevelopment and Physiology, Universidad Nacional Autónoma de México, Ciudad Universitaria, AP 70-253 Coyoacán, 04510 Mexico, DF Mexico
| | - Marcia Hiriart
- Instituto de Fisiología Celular, Neuroscience Division, Department of Neurodevelopment and Physiology, Universidad Nacional Autónoma de México, Ciudad Universitaria, AP 70-253 Coyoacán, 04510 Mexico, DF Mexico
| |
Collapse
|
35
|
Abstract
Background: It has been proposed that TRPV1 receptors may play a role modulating trigeminal sensory processing. We used models of trigeminovascular nociceptive activation to study the involvement of TRPV1 receptors in the rat. Due to a possible role of TRPV1 receptors in cortical spreading depression (CSD), an experimental phenomenon sharing many features with migraine aura, we also utilized a model of mechanically induced CSD. Methods: Male Sprague Dawley rats ( N = 39) were anesthetized and cannulated for monitoring and drug administration to study the effects of the TRPV1 receptor antagonist A-993610 (8 mg kg−1 IV). Wide-dynamic-range neurons, responding to electrical stimulation of the middle meningeal artery (MMA)/dura mater were identified and recorded using electrophysiological techniques. Intravital microscopy was used to study neurogenic dural vasodilation (NDV) of the MMA comparing capsaicin and electrical stimulation, and the effect of A-993610 on mechanically induced CSD was examined. Results: Administration of A-993610 had no significant effect on trigeminal firing of A- or C-fibers elicited by electrical stimulation of the MMA. It also showed no effect on NDV whilst blocking vasodilation due to intravenous capsaicin injection. The mechanically induced CSD response could not be altered by A-993610 administration. Conclusions: Although there is evidence that TRPV1 receptors play an important role in sensory processing in general, the new data do not support a role in the treatment of acute migraine.
Collapse
|
36
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
37
|
Ahmed N, Pinkham M, Warrell DA. Symptom in search of a toxin: muscle spasms following bites by Old World tarantula spiders (Lampropelma nigerrimum, Pterinochilus murinus, Poecilotheria regalis) with review. QJM 2009; 102:851-7. [PMID: 19776152 DOI: 10.1093/qjmed/hcp128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tarantula spiders are widely kept and bred in captivity by both adults and children. Their bites are generally considered harmless. AIM To explore the effects of envenoming by Old World tarantulas. DESIGN AND METHODS Clinical studies and review of conventional literature and hobbyist web sites. RESULTS Two men bitten on their index fingers by pet Old World tarantula spiders, Lampropelma nigerrimum (Ornithoctoninae) and Pterinochilus murinus (Harpactirinae) in England, developed intense local pain, swelling and episodic, agonising, generalised muscle cramps. In one of them, cramps persisted for 7 days and serum creatine kinase concentration was mildly elevated. A third man bitten on a finger by Poecilotheria regalis (Poecilotheriinae), suffered persistent local cramps in the affected hand. Reports since 1803, including recent ones on hobbyist web-sites, have been largely overlooked. They mentioned muscle spasms after bites by these and other genera of Old World tarantulas, including Eumenophorus, Selenocosmia and Stromatopelma. The severe muscle spasms seen in two of our patients were a challenge to medical treatment and might, under some circumstances, have been life threatening. They demand a toxinological explanation. CONCLUSION Bites by several genera of African, Asian and Australasian tarantulas can cause systemic neurotoxic envenoming. In the absence of available antivenom, severe persistent muscle spasms, reminiscent of latrodectism, pose a serious therapeutic challenge. Discovery of the toxin responsible would be of scientific and potential clinical benefit. Tarantula keepers should be warned of the danger of handling these animals incautiously.
Collapse
Affiliation(s)
- N Ahmed
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
38
|
Holzer P. The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 2008; 155:1145-62. [PMID: 18806809 PMCID: PMC2607216 DOI: 10.1038/bjp.2008.351] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/18/2008] [Accepted: 08/20/2008] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42 degrees C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration.
Collapse
Affiliation(s)
- P Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, Graz, Austria.
| |
Collapse
|
39
|
Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol 2008; 223:161-72. [PMID: 18791833 DOI: 10.1007/s00232-008-9123-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition, channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure-function data available for TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally, the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides. In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction mediated by Ca2+ -calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure.
Collapse
|