1
|
Bi H, Wang F, Lin L, Zhang D, Chen M, Shang Y, Hua L, Chen H, Wu B, Peng Z. The T-type voltage-gated Ca 2+ channel Ca V3.1 involves in the disruption of respiratory epithelial barrier induced by Pasteurella multocida toxin. Virulence 2025; 16:2466482. [PMID: 39950866 PMCID: PMC11834503 DOI: 10.1080/21505594.2025.2466482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 02/16/2025] Open
Abstract
Pasteurella multocida toxin (PMT) is an exotoxin produced by several members of the zoonotic respiratory pathogen P. multocida. The role of PMT in disrupting the mammalian respiratory barrier remains to be elucidated. In this study, we showed that inoculation of recombinantly expressed PMT increased the permeability of the respiratory epithelial barrier in mouse and respiratory cell models. This was evidenced by a decreased expression of tight junctions (ZO-1, occludin) and adherens junctions (β-catenin, E-cadherin), as well as enhanced cytoskeletal rearrangement. In mechanism, we demonstrated that PMT inoculation induced cytoplasmic Ca2+ inflow, leading to an imbalance of cellular Ca2+ homoeostasis and endoplasmic reticulum stress. This process further stimulated the RhoA/ROCK signalling, promoting cytoskeletal rearrangement and reducing the expression of tight junctions and adherens junctions. Notably, the T-type voltage-gated Ca2+ channel CaV3.1 was found to participate in PMT-induced cytoplasmic Ca2+ inflow. Knocking out CaV3.1 significantly reduced the cytotoxicity induced by PMT on swine respiratory epithelial cells and mitigated cytoplasmic Ca2+ inflow stimulated by PMT. These findings suggest CaV3.1 contributes to PMT-induced respiratory epithelial barrier disruption.
Collapse
Affiliation(s)
- Haixin Bi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fei Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dajun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Menghan Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuyao Shang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Zuverink M, Barbieri JT. From GFP to β-lactamase: advancing intact cell imaging for toxins and effectors. Pathog Dis 2015; 73:ftv097. [PMID: 26500183 DOI: 10.1093/femspd/ftv097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Canonical reporters such as green fluorescent protein (GFP) and luciferase have assisted researchers in probing cellular pathways and processes. Prior research in pathogenesis depended on sensitivity of biochemical and biophysical techniques to identify effectors and elucidate entry mechanisms. Recently, the β-lactamase (βlac) reporter system has advanced toxin and effector reporting by permitting measurement of βlac delivery into the cytosol or host βlac expression in intact cells. βlac measurement in cells was facilitated by the development of the fluorogenic substrate, CCF2-AM, to identify novel effectors, target cells, and domains involved in bacterial pathogenesis. The assay is also adaptable for high-throughput screening of small molecule inhibitors against toxins, providing information on mechanism and potential therapeutic agents. The versatility and limitations of the βlac reporter system as applied to toxins and effectors are discussed in this review.
Collapse
Affiliation(s)
- Madison Zuverink
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI 53226, USA
| | - Joseph T Barbieri
- Medical College of Wisconsin, Microbiology and Molecular Genetics, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Identification and characterization of monoclonal antibodies against the ORFV059 protein encoded by Orf virus. Virus Genes 2012; 44:429-40. [PMID: 22237464 DOI: 10.1007/s11262-011-0710-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/26/2011] [Indexed: 12/24/2022]
Abstract
Recent outbreaks of orf in China have been attributed to a novel strain of Orf virus (ORFV) designated ORFV-Jilin. Currently, monoclonal antibodies (Mabs) have not yet been developed against this specific pathogen even though such entities could have potential applications regarding the diagnosis and characterization of ORFV-Jilin. Therefore, the current study was undertaken to generate Mab against the immunodominant ORFV059 protein of this virus. For this purpose, the ORFV-Jilin ORFV059 protein was expressed in Escherichia coli and subsequently used as an antigen to immunize mice and for the initial screening of hybridomas prepared from the mice for their ability to produce anti-ORFV059 protein Mabs via an indirect ELISA. Ten, positive hybridomas were identified in this manner and verified based on the ability of their released Mab to react specifically with both naturally and artificially expressed ORFV059 protein in Western blots. The two hybridomas with the greatest propensity to secrete Mab were subcloned three times before being introduced intraperitoneally into mice. Afterwards, both Mab were separately purified from the mice's ascetic fluids and found to successfully recognize the ORFV-Jilin ORFV059 protein in a variety of immunological assays. Thus, the widespread utility of these Mab as a diagnostic core reagent should prove invaluable for further investigations regarding the mechanisms of orf pathogenesis and the control of this disease. In this regard, it should be noted that Mab A3 was used to confirm the predicted late expression of the ORFV-Jilin ORFV059 protein during virus replication.
Collapse
|
4
|
Pasteurella multocida toxin interaction with host cells: entry and cellular effects. Curr Top Microbiol Immunol 2012; 361:93-111. [PMID: 22552700 PMCID: PMC4408768 DOI: 10.1007/82_2012_219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric G(q)-, G(i)- and G(12/13)-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida.
Collapse
|
5
|
Abstract
The mitogenic toxin from Pasteurella multocida (PMT) is a member of the dermonecrotic toxin family, which includes toxins from Bordetella, Escherichia coli and Yersinia. Members of the dermonecrotic toxin family modulate G-protein targets in host cells through selective deamidation and/or transglutamination of a critical active site Gln residue in the G-protein target, which results in the activation of intrinsic GTPase activity. Structural and biochemical data point to the uniqueness of PMT among these toxins in its structure and action. Whereas the other dermonecrotic toxins act on small Rho GTPases, PMT acts on the α subunits of heterotrimeric G(q) -, G(i) - and G(12/13) -protein families. To date, experimental evidence supports a model in which PMT potently stimulates various mitogenic and survival pathways through the activation of G(q) and G(12/13) signaling, ultimately leading to cellular proliferation, whilst strongly inhibiting pathways involved in cellular differentiation through the activation of G(i) signaling. The resulting cellular outcomes account for the global physiological effects observed during infection with toxinogenic P. multocida, and hint at potential long-term sequelae that may result from PMT exposure.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
6
|
Wilson BA, Ho M. Recent insights into Pasteurella multocida toxin and other G-protein-modulating bacterial toxins. Future Microbiol 2010; 5:1185-201. [PMID: 20722598 DOI: 10.2217/fmb.10.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over the past few decades, our understanding of the bacterial protein toxins that modulate G proteins has advanced tremendously through extensive biochemical and structural analyses. This article provides an updated survey of the various toxins that target G proteins, ending with a focus on recent mechanistic insights in our understanding of the deamidating toxin family. The dermonecrotic toxin from Pasteurella multocida (PMT) was recently added to the list of toxins that disrupt G-protein signal transduction through selective deamidation of their targets. The C3 deamidase domain of PMT has no sequence similarity to the deamidase domains of the dermonecrotic toxins from Escherichia coli (cytotoxic necrotizing factor [CNF]1-3), Yersinia (CNFY) and Bordetella (dermonecrotic toxin). The structure of PMT-C3 belongs to a family of transglutaminase-like proteins, with active site Cys-His-Asp catalytic triads distinct from E. coli CNF1.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, B128 CLSL, Urbana, IL 61801, USA.
| | | |
Collapse
|
8
|
Aminova LR, Luo S, Bannai Y, Ho M, Wilson BA. The C3 domain of Pasteurella multocida toxin is the minimal domain responsible for activation of Gq-dependent calcium and mitogenic signaling. Protein Sci 2008; 17:945-9. [PMID: 18369188 DOI: 10.1110/ps.083445408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The large 1285-amino-acid protein toxin from Pasteurella multocida (PMT) is a multifunctional single-chain polypeptide that binds to and enters eukaryotic cells and acts intracellularly to promote G(q) and G(12/13) protein-dependent calcium and mitogenic signal transduction. Previous studies indicated that the intracellular activity domain responsible for PMT action was located within the C-terminal 600-700 amino acids. In this study, we have exogenously expressed a series of N- and C-terminal PMT fragments directly in mammalian cells and have used the dual luciferase reporter system to assay for toxin-mediated activation of calcium-calcineurin-NFAT signaling (NFAT-luciferase) and mitogenic serum response signaling (SRE-luciferase). Using this approach, we have defined the last 180 amino acids, which encompass the C3 domain in the crystal structure, as the minimum domain sufficient to activate both NFAT and SRE signaling pathways.
Collapse
Affiliation(s)
- Leila R Aminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|