1
|
Sallandt L, Wolf CA, Schuster S, Enke H, Enke D, Wolber G, Niedermeyer THJ. Derivatization of Microcystins Can Increase Target Inhibition while Reducing Cellular Uptake. JOURNAL OF NATURAL PRODUCTS 2025; 88:3-14. [PMID: 39427253 PMCID: PMC11773564 DOI: 10.1021/acs.jnatprod.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
Microcystins, a large family of nonribosomal cyclic heptapeptides known for their hepatotoxicity, are among the best-studied cyanobacterial toxins. Recently, they have been discussed as leads for the development of anticancer drug substances. Their main mode-of-action is inhibition of the eukaryotic serine/threonine protein phosphatases 1 and 2A. Unlike many cytotoxins that can cross cell membranes by passive diffusion, microcystins depend on active uptake via organic anion transporting polypeptides 1B1 or 1B3. Both phosphatase inhibition and transportability strongly depend on the structure of the individual microcystin. Here, we present how chemical modification of positions 2 and 4 of the microcystin core structure can alter these two properties. Aiming to reduce transportability and increase phosphatase inhibition, we used pharmacophore modeling to investigate the phosphatase inhibition potential of microcystins derivatized with small molecules containing a variety of functional groups. The respective derivatives were synthesized using click chemistry. We discovered that some derivatized microcystins can address a yet undescribed subpocket of the protein phosphatase 1. The derivatized microcystins were tested for phosphatase 1 inhibition and cytotoxicity on transporter-expressing cell lines, revealing that target inhibition and transportability of microcystins can independently be influenced by the physicochemical properties, especially of the residue located in position 2 of the microcystin. Derivatization with small acids or amino acids resulted in microcystins with a favorable ratio of inhibition to transportability, making these derivatives potentially suitable for drug development.
Collapse
Affiliation(s)
- Laura
L. Sallandt
- Department
of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Clemens A. Wolf
- Department
of Pharmaceutical Chemistry (Molecular Drug Design), Institute of
Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Heike Enke
- Simris
Biologics GmbH, 12489 Berlin, Germany
| | - Dan Enke
- Simris
Biologics GmbH, 12489 Berlin, Germany
| | - Gerhard Wolber
- Department
of Pharmaceutical Chemistry (Molecular Drug Design), Institute of
Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Timo H. J. Niedermeyer
- Department
of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zheng B, He S, Zhao L, Li J, Du Y, Li Y, Shi J, Wu Z. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? HARMFUL ALGAE 2023; 124:102406. [PMID: 37164561 DOI: 10.1016/j.hal.2023.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023]
Abstract
As a tropical filamentous cyanobacterium, Raphidiopsis raciborskii has attracted much attention due to its expansion and toxin production. However, the mechanisms of its expansion to temperate regions have not been studied in detail. To address the potential strategies, the physiological and metabolomic profiles of R. raciborskii FACHB 1096 isolated from a temperate lake in China were determined and measured at different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 32 °C). The results demonstrated that temperature significantly changed cell viability, chlorophyll a content, specific growth rate, Chl a fluorescence, and filamentous shape of R. raciborskii. Low temperature decreased cell viability, specific growth rate, and photosynthetic efficiency, while the proportion of akinete and carbon fixation per unit cell were significantly increased compared with high temperature (32 °C). A constructed unimodal model indicated that filament length, cell volume, and cell length/width of R. raciborskii were significantly reduced in both high and low temperature environments. Under low-temperature conditions, R. raciborskii suffered different degrees of oxidative damage and produced corresponding antioxidant substances to resist oxidative stress, suggesting that low temperature changes the metabolic level of the cells, causing the cells to gradually switch from development to defense. Metabolomic data further confirmed that temperature change induced shifts in metabolic pathways in R. raciborskii, including starch and sucrose metabolic pathways, glutathione metabolic pathways, and the pentose phosphate pathways (PPP), as well as metabolic pathways related to the tricarboxylic acid (TCA) cycle. Our results indicated that the trade-offs of R. raciborskii cells among the growth, cell size, and metabolites can be significantly regulated by temperature, with broad implications for its global expansion in temperate waterbodies.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuhan He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Svirčev Z, Chen L, Sántha K, Drobac Backović D, Šušak S, Vulin A, Palanački Malešević T, Codd GA, Meriluoto J. A review and assessment of cyanobacterial toxins as cardiovascular health hazards. Arch Toxicol 2022; 96:2829-2863. [PMID: 35997789 PMCID: PMC9395816 DOI: 10.1007/s00204-022-03354-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Eutrophicated waters frequently support bloom-forming cyanobacteria, many of which produce potent cyanobacterial toxins (cyanotoxins). Cyanotoxins can cause adverse health effects in a wide range of organisms where the toxins may target the liver, other internal organs, mucous surfaces and the skin and nervous system. This review surveyed more than 100 studies concerning the cardiovascular toxicity of cyanotoxins and related topics. Over 60 studies have described various negative effects on the cardiovascular system by seven major types of cyanotoxins, i.e. the microcystin (MC), nodularin (NOD), cylindrospermopsin (CYN), anatoxin (ATX), guanitoxin (GNTX), saxitoxin (STX) and lyngbyatoxin (LTX) groups. Much of the research was done on rodents and fish using high, acutely toxin concentrations and unnatural exposure routes (such as intraperitoneal injection), and it is thus concluded that the emphasis in future studies should be on oral, chronic exposure of mammalian species at environmentally relevant concentrations. It is also suggested that future in vivo studies are conducted in parallel with studies on cells and tissues. In the light of the presented evidence, it is likely that cyanotoxins do not constitute a major risk to cardiovascular health under ordinary conditions met in everyday life. The risk of illnesses in other organs, in particular the liver, is higher under the same exposure conditions. However, adverse cardiovascular effects can be expected due to indirect effects arising from damage in other organs. In addition to risks related to extraordinary concentrations of the cyanotoxins and atypical exposure routes, chronic exposure together with co-existing diseases could make some of the cyanotoxins more dangerous to cardiovascular health.
Collapse
Affiliation(s)
- Zorica Svirčev
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Kinga Sántha
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Stamenko Šušak
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Aleksandra Vulin
- University of Novi Sad, Faculty of Medicine, UNS, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
- Institute of Cardiovascular Diseases of Vojvodina, Sremska Kamenica, Serbia
| | - Tamara Palanački Malešević
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Jussi Meriluoto
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, UNS, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
4
|
Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins (Basel) 2021; 13:toxins13100711. [PMID: 34679003 PMCID: PMC8540411 DOI: 10.3390/toxins13100711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cyanotoxin occurrence is gaining importance due to anthropogenic activities, climate change and eutrophication. Among them, Microcystins (MCs) and Cylindrospermopsin (CYN) are the most frequently studied due to their ubiquity and toxicity. Although MCs are primary classified as hepatotoxins and CYN as a cytotoxin, they have been shown to induce deleterious effects in a wide range of organs. However, their effects on the immune system are as yet scarcely investigated. Thus, to know the impact of cyanotoxins on the immune system, due to its importance in organisms’ homeostasis, is considered of interest. A review of the scientific literature dealing with the immunotoxicity of MCs and CYN has been performed, and both in vitro and in vivo studies have been considered. Results have confirmed the scarcity of reports on the topic, particularly for CYN. Decreased cell viability, apoptosis or altered functions of immune cells, and changed levels and mRNA expression of cytokines are among the most common effects reported. Underlying mechanisms, however, are still not yet fully elucidated. Further research is needed in order to have a full picture of cyanotoxin immunotoxicity.
Collapse
|
5
|
Biales AD, Bencic DC, Flick RW, Delacruz A, Gordon DA, Huang W. Global transcriptomic profiling of microcystin-LR or -RR treated hepatocytes (HepaRG). Toxicon X 2020; 8:100060. [PMID: 33235993 PMCID: PMC7670210 DOI: 10.1016/j.toxcx.2020.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
The canonical mode of action (MOA) of microcystins (MC) is the inhibition of protein phosphatases, but complete characterization of toxicity pathways is lacking. The existence of over 200 MC congeners complicates risk estimates worldwide. This work employed RNA-seq to provide an unbiased and comprehensive characterization of cellular targets and impacted cellular processes of hepatocytes exposed to either MC-LR or MC-RR congeners. The human hepatocyte cell line, HepaRG, was treated with three concentrations of MC-LR or -RR for 2 h. Significant reduction in cell survival was observed in LR1000 and LR100 treatments whereas no acute toxicity was observed in any MR-RR treatment. RNA-seq was performed on all treatments of MC-LR and -RR. Differentially expressed genes and pathways associated with oxidative and endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) were highly enriched by both congeners as were inflammatory pathways. Genes associated with both apoptotic and inflammatory pathways were enriched in LR1000. We present a model of MC toxicity that immediately causes oxidative stress and leads to ER stress and the activation of the UPR. Differential activation of the three arms of the UPR and the kinetics of JNK activation ultimately determine whether cell survival or apoptosis is favored. Extracellular exosomes were enrichment of by both congeners, suggesting a previously unidentified mechanism for MC-dependent extracellular signaling. The complement system was enriched only in MC-RR treatments, suggesting congener-specific differences in cellular effects. This study provided an unbiased snapshot of the early systemic hepatocyte response to MC-LR and MC-RR congeners and may explain differences in toxicity among MC congeners. Microcystin-LR and microcystin-RR have similar transcriptional responses. Genes associated with oxidative stress and the unfolded protein response were enriched by congeners. Genes associated with extracellular exosomes were enriched, suggesting a potential new mechanism for cell signaling. Complement associated genes were strongly enriched only by microcystin-RR. Identified a potential molecular mechanism underlying the cellular fate of hepatocyte.
Collapse
Affiliation(s)
- Adam D Biales
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - David C Bencic
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Robert W Flick
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Armah Delacruz
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Denise A Gordon
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, USA
| | - Weichun Huang
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
6
|
Schreidah CM, Ratnayake K, Senarath K, Karunarathne A. Microcystins: Biogenesis, Toxicity, Analysis, and Control. Chem Res Toxicol 2020; 33:2225-2246. [PMID: 32614166 DOI: 10.1021/acs.chemrestox.0c00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microcystins are cyclic peptide toxins formed by cyanobacteria. These toxins are recognized for their association with algal blooms, posing a significant threat to ecosystems and drinking water quality. Due to the growing environmental concerns they raise, a comprehensive review on microcystins' genesis, toxicity, and analytical methods for their quantitative determination is outlined. Genes, including the mcyABC cluster, regulate microcystin biogenesis. Bioanalytical experiments have identified key environmental factors, such as temperature and nitrogen availability, that promote microcystin production. Microcystin toxicity is explored based on its modulatory effects on protein phosphatases 1 and 2A in specific tissues and organs. Additionally, biochemical mechanisms of chelation, transportation, resultant oxidative stress, and tumor promotion abilities of microcystins are also discussed. Various analytical methods to separate, detect, and quantify microcystins, including the quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy, and chromatographic platforms-linked tandem mass spectrometry (LC-MS) for unequivocal structural identification, are also reviewed. Since control of microcystins in water is of great necessity, both water treatment and mechanisms of abiotic transformation and microbial degradation are also discussed.
Collapse
Affiliation(s)
- Celine M Schreidah
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
- Department of Chemistry, University of Colombo, Colombo 00300, Sri Lanka
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
7
|
Alosman M, Cao L, Massey IY, Yang F. The lethal effects and determinants of microcystin-LR on heart: a mini review. TOXIN REV 2020. [DOI: 10.1080/15569543.2019.1711417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muwaffak Alosman
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Linghui Cao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Isaac Yaw Massey
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
- Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem Toxicol 2018; 125:106-132. [PMID: 30597222 DOI: 10.1016/j.fct.2018.12.042] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
Abstract
The occurrence of cyanobacterial toxins is being increasingly reported. This is a reason for concern as they can induce toxic effects both in humans and in the environment. Among them, microcystins (MCs) are the best described and most diverse group of cyanobacterial toxins, and MC-LR and MC-RR are the congeners most widely investigated. However, the number of MC variants has also increased in recent years. Some of these minority variants have been shown to have a different toxicokinetic and toxicodynamic profile, but research focused on them is still limited. Moreover, in some water bodies these minority variants can be the predominant toxins. Nonetheless, MC-LR is the only one used for risk evaluation purposes at present. In order to contribute to more realistic risk assessments in the future, the aim of this review was to compile the available information in the scientific literature regarding the occurrence and concentration of minority MCs in water and food samples, and their toxic effects. The data retrieved demonstrate the congener-specific toxicity of MCs, as well as many data gaps in relation to analytical or mechanistic aspects, among others. Therefore, further research is needed to improve the toxicological characterization of these toxins and the exposure scenarios.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012, Seville, Spain
| |
Collapse
|
9
|
Chen L, Liu X, Pan Z, Liu S, Han H, Zhao C, Tang X. The role of IL-8/CXCR2 signaling in microcystin-LR triggered endothelial cell activation and increased vascular permeability. CHEMOSPHERE 2018; 194:43-48. [PMID: 29197248 DOI: 10.1016/j.chemosphere.2017.11.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Microcystins are a family of cyclic heptapeptide toxins naturally produced by freshwater cyanobacteria. Microcystin-LR (MCLR) is believed to be the most toxic and common one with various pathological effects on human and mammals. However, the effects of MCLR on endothelial cells and vascular homeostasis have been largely unknown. We explored the mRNA and protein expression changes of several pro-inflammatory mediators in human umbilical vein endothelial cells (HUVECs) and C57BC/6 mice exposed to MCLR. Tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), especially interleukin-8 (IL-8) were remarkably upregulated both in endothelial cells and in serum. Increased endothelial permeability in vitro and chronic microvascular permeability in animals were also observed. Silencing the IL-8 gene with siRNA or blocking its cognate receptor, CXC-chemokine receptor type 2 (CXCR2), by a specific inhibitor efficiently prevented the MCLR induced leakage. These observations indicate a novel insight of inflammation triggered property of MCLR via IL-8/CXCR2 signaling, suggesting CXCR2 as a target molecule in protective strategy against the wide range pollution of microcystin.
Collapse
Affiliation(s)
- Limei Chen
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Zhifang Pan
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Shunmei Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Huirong Han
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Chunling Zhao
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, China.
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Abu-Serie MM, Nasser N, Abd El-Wahab A, Shehawy R, Pienaar H, Baddour N, Amer R. In vivo assessment of the hepatotoxicity of a new Nostoc isolate from the Nile River: Nostoc sp. strain NRI. Toxicon 2018; 143:81-89. [PMID: 29366868 DOI: 10.1016/j.toxicon.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/29/2017] [Accepted: 01/16/2018] [Indexed: 01/29/2023]
Abstract
Nostoc sp. is one of the most widely distributed cyanobacterial genera that produce potentially protein phosphatase (PP) inhibitor; microcystins (MCs). MCs have posed a worldwide concern due to predominant hepatotoxicity to human health. We have previously isolated a Nostoc strain (NR1) from the Nile River (the main water supply in Egypt) and this strain exerted production of rare and highly toxic MC; demethylated microcystin-LR. There is no data concerning risk factors of liver diseases for human and animal exposure to NR1-contaminated drinking water yet. It is thus important to evaluate acute (LD50 dose), subacute (0.01% and 10% of LD50 dose) and subchronic (0.01% and 10% of LD50 dose) hepatotoxicity's NR1 extract using experimental mice. Mice groups, who orally received 0.01% LD50, represented a permissible concentration of the World Health Organization (WHO) for MC in drinking water. Several parameters were detected, including hepatotoxicity (i.e. PP activity, liver function, oxidative stress markers and DNA fragmentation), pro-inflammatory cytokine (TNF-α) and liver histopathology. Our results demonstrated LD50 of NR1 extract was at 15,350 mg/kg body weight and caused hepatotoxicity that attributed to PP inhibition and a significant increase of hepatic damage biomarkers with lipid accumulation. Moreover, NR1 extract induced hepatic oxidative damage that may have led to DNA fragmentation and production of TNF-α. As demonstrated from the histopathological study, NR1 extract caused a severe collapse of cytoskeleton with subsequent focal degeneration of hepatocytes, necroinflammation and steatosis. The grade of hepatotoxicity in subacute (10% of LD50) group was higher than that in the subchronic (10% of LD50 and 0.01% of LD50, WHOch, respectively) groups. No significant hepatotoxicity was detectable for subacute (0.01% of LD50, WHOac) group. NR1 is therefore considered as one of the harmful and life-threatening cyanobacteria for Egyptian people being exposed to dose above WHO guideline. Thus, biological indicators and thresholds for water treatment are extremely needed.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Nermine Nasser
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Abeer Abd El-Wahab
- Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg El Arab, Egypt.
| | - Rehab Shehawy
- Institute IMDEA-Agua, C/Punto Net4, Alcalá de Henares, Madrid, Spain.
| | - Harrison Pienaar
- CSIR, Natural Resources and Environment, Pretoria, South Africa.
| | | | - Ranya Amer
- Environment and Natural Materials Research Institute (ENMRI), SRTA-City, New Borg El Arab, Egypt.
| |
Collapse
|
11
|
Oliveira de Lima VC, de Araújo Machado RJ, Vieira Monteiro NK, de Lyra IL, da Silva Camillo C, Coelho Serquiz A, Silva de Oliveira A, da Silva Rufino FP, Leal Lima Maciel B, Ferreira Uchôa A, Antunes dos Santos E, de Araújo Morais AH. Gastroprotective and antielastase effects of protein inhibitors from Erythrina velutina seeds in an experimental ulcer model. Biochem Cell Biol 2017; 95:243-250. [DOI: 10.1139/bcb-2016-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypsin and chymotrypsin inhibitors from Erythrina velutina seeds have been previously isolated by our group. In previous studies using a sepsis model, we demonstrated the antitumor and anti-inflammatory action of these compounds. This study aimed to evaluate the gastroprotective and antielastase effects of protein inhibitors from E. velutina seeds in an experimental stress-induced ulcer model. Two protein isolates from E. velutina seeds, with antitrypsin (PIAT) and antichymotrypsin (PIAQ) activities, were tested. Both protein isolates showed a high affinity and inhibitory effect against human neutrophil elastase, with 84% and 85% inhibition, respectively. Gastric ulcer was induced using ethanol (99%) in 6 groups of animals (female Wistar rats, n = 6). Before ulcer induction, these animals were treated for 5 days with one of the following: (1) PIAT (0.2 mg·kg−1), (2) PIAT (0.4 mg·kg−1), (3) PIAQ (0.035 mg·kg−1), (4) ranitidine hydrochloride (50 mg·kg−1), (5) saline solution (0.9%), or (6) no intervention (sham). Both PIAT and PIAQ protected gastric mucosa, preventing hemorrhagic lesions, edema, and mucus loss. No histologic toxic effects of PIAT or PIAQ were seen in liver and pancreatic cells. Our results show that protein isolates from E. velutina seeds have potential gastroprotective effects, placing these compounds as natural candidates for gastric ulcer prevention.
Collapse
Affiliation(s)
| | | | | | - Ibson Lucas de Lyra
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Christina da Silva Camillo
- Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Alexandre Coelho Serquiz
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Adeliana Silva de Oliveira
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | | | - Bruna Leal Lima Maciel
- Nutrition Department Center for Health Sciences, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Adriana Ferreira Uchôa
- Molecular Biology and Genetics Department, Center for Health Sciences, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - Elizeu Antunes dos Santos
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | | |
Collapse
|
12
|
Carvalho GMC, Oliveira VR, Casquilho NV, Araujo ACP, Soares RM, Azevedo SMFO, Pires KMP, Valença SS, Zin WA. Pulmonary and hepatic injury after sub-chronic exposure to sublethal doses of microcystin-LR. Toxicon 2016; 112:51-8. [PMID: 26844922 DOI: 10.1016/j.toxicon.2016.01.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
Abstract
We had previously shown that microcystin-LR (MCLR) could induce lung and liver inflammation after acute exposure. The biological outcomes following prolonged exposure to MCLR, although more frequent, are still poorly understood. Thus, we aimed to verify whether repeated doses of MCLR could damage lung and liver and evaluate the dose-dependence of the results. Male Swiss mice received 10 intraperitoneal injections (i.p.) of distilled water (60 μL, CTRL) or different doses of MCLR (5 μg/kg, TOX5), 10 μg/kg (TOX10), 15 μg/kg (TOX15) and 20 μg/kg (TOX20) every other day. On the tenth injection respiratory mechanics (lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance) was measured. Lungs and liver were prepared for histology (morphometry and cellularity) and inflammatory mediators (KC and MIP-2) determination. All mechanical parameters and alveolar collapse were significantly higher in TOX5, 10, 15 and 20 than CTRL, but did not differ among them. Lung inflammatory cell content increased dose-dependently in all TOX groups in relation to CTRL, being TOX20 the largest. The production of KC was increased in lung and liver homogenates. MIP-2 increased in the liver of all TOX groups, but in lung homogenates it was significantly higher only in TOX20 group. All TOX mice livers showed steatosis, necrosis, inflammatory foci and a high degree of binucleated hepatocytes. In conclusion, sub-chronic exposure to MCLR damaged lung and liver in all doses, with a more important lung inflammation in TOX20 group.
Collapse
Affiliation(s)
| | - Vinícius Rosa Oliveira
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Vasconcelos Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Cristine Pereira Araujo
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Moraes Soares
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Maria F O Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karla Maria Pereira Pires
- Laboratory of Integrative Histology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valença
- Laboratory of Integrative Histology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Microcystin-LR Induced Immunotoxicity in Mammals. J Toxicol 2016; 2016:8048125. [PMID: 26925102 PMCID: PMC4746376 DOI: 10.1155/2016/8048125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 01/07/2023] Open
Abstract
Microcystins are toxic molecules produced by cyanobacterial blooms due to water eutrophication. Exposure to microcystins is a global health problem because of its association with various other pathological effects and people all over the world are exposed to microcystins on a regular basis. Evidence shows that microcystin-LR (MC-LR) may adversely affect the immune system, but its specific effects on immune functions are lacking. In the present review, immunotoxicological effects associated with MC-LR in animals, humans, and in vitro models have been reported. Overall, the data shows that chronic exposure to MC-LR has the potential to impair vital immune responses which could lead to increased risk of various diseases including cancers. Studies in animal and in vitro models have provided some pivotal understanding into the potential mechanisms of MC-LR related immunotoxicity suggesting that further investigation, particularly in humans, is required to better understand the relationship between development of disease and the MC-LR exposure.
Collapse
|
14
|
Kiryu Y, Landsberg JH, Peters EC, Tichenor E, Burleson C, Perry N. Pathological effects of cyanobacteria on sea fans in southeast Florida. J Invertebr Pathol 2015; 129:13-27. [PMID: 25958261 DOI: 10.1016/j.jip.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
In early August 2008, observations by divers indicated that sea fans, particularly Gorgonia ventalina, Gorgonia flabellum, and Iciligorgia schrammi, were being covered by benthic filamentous cyanobacteria. From August 2008 through January 2009 and again in April 2009, tissue samples from a targeted G. ventalina colony affected by cyanobacteria and from a nearby, apparently healthy (without cyanobacteria) control colony, were collected monthly for histopathological examination. The primary cellular response of the sea fan to overgrowth by cyanobacteria was an increase in the number of acidophilic amoebocytes (with their granular contents dispersed) that were scattered throughout the coenenchyme tissue. Necrosis of scleroblasts and zooxanthellae and infiltration of degranulated amoebocytes were observed in the sea fan surface tissues at sites overgrown with cyanobacteria. Fungal hyphae in the axial skeleton were qualitatively more prominent in cyanobacteria-affected sea fans than in controls.
Collapse
Affiliation(s)
- Y Kiryu
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - J H Landsberg
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - E C Peters
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA.
| | - E Tichenor
- Palm Beach County Reef Rescue, Boynton Beach, FL 33425, USA.
| | - C Burleson
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - N Perry
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| |
Collapse
|
15
|
Xu H, Wang H, Xu Q, Lv L, Yin C, Liu X, Du H, Yan H. Pathway for Biodegrading Microcystin-YR by Sphingopyxis sp. USTB-05. PLoS One 2015; 10:e0124425. [PMID: 25919632 PMCID: PMC4412663 DOI: 10.1371/journal.pone.0124425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/13/2015] [Indexed: 12/12/2022] Open
Abstract
Harmful cyanobacterial blooms in waters have become a global environmental problem, this mainly due to the production and release of various microalgal toxins, in which microcystins (MCs) are distributed widely. Here, we focused on the study of a typical form of microcystins called microcystin-YR (MC-YR). It was found that initial 14.8 mg/L of MC-YR could be completely eliminated within 10 hr by the crude enzymes (CEs) of Sphingopyxis sp. USTB-05, a promising bacterial strain we isolated and identified in our previous study. During the enzymatic biodegradation of MC-YR with time course, the peaks of two intermediate and two final products were observed on the profiles of HPLC at the wavelengths of 238 nm and 230 nm, respectively. Based on the analysis of m/z ratios of MC-YR and its four products by LC-MS/MS, we suggested that at least four enzymes were involved in the biodegradation of MC-YR by Sphingopyxis sp. USTB-05. The first enzyme microcystinase converted cyclic MC-YR to linear MC-YR as the first product. Then the second enzyme serine protease was found to cleave the target peptide bond between alanine (Ala) and tyrosine (Tyr) of linearized MC-YR, producing a tetrapeptide and a tripeptide as second products, which were Adda-Glu-Mdha-Ala and Tyr-Masp-Arg, respectively. Next, the third enzyme peptidase converted the tetrapeptide of Adda-Glu-Mdha-Ala to Adda. And the fourth enzyme cleaved the tripeptide of Tyr-Masp-Arg to produce Tyr and dipeptide (Masp-Arg), which has never been reported. These findings will help us better understand the biodegradation pathway of MC-YR by Sphingopyxis sp. USTB-05.
Collapse
Affiliation(s)
- Huimin Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Huasheng Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Le Lv
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Chunhua Yin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
16
|
In vivo effects of microcystins and complex cyanobacterial biomass on rats (Rattus norvegicus var. alba): Changes in immunological and haematological parameters. Toxicon 2013; 73:1-8. [DOI: 10.1016/j.toxicon.2013.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 01/31/2023]
|
17
|
Zhang J, Chen J, Xia Z. Microcystin-LR Exhibits Immunomodulatory Role in Mouse Primary Hepatocytes Through Activation of the NF-κB and MAPK Signaling Pathways. Toxicol Sci 2013; 136:86-96. [DOI: 10.1093/toxsci/kft180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
18
|
Uberti AF, Olivera-Severo D, Wassermann GE, Scopel-Guerra A, Moraes JA, Barcellos-de-Souza P, Barja-Fidalgo C, Carlini CR. Pro-inflammatory properties and neutrophil activation by Helicobacter pylori urease. Toxicon 2013; 69:240-9. [PMID: 23466444 DOI: 10.1016/j.toxicon.2013.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/25/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023]
Abstract
The gastric pathogen Helicobacter pylori produces large amounts of urease, whose enzyme activity enables the bacterium to survive in the stomach. We have previously shown that ureases display enzyme-independent effects in mammalian models, most through lipoxygenases-mediated pathways. Here, we evaluated potential pro-inflammatory properties of H. pylori urease (HPU). Mouse paw edema and activation of human neutrophils were tested using a purified, cell-free, recombinant HPU. rHPU induced paw edema with intense neutrophil infiltration. In vitro 100 nM rHPU was chemotactic to human neutrophils, inducing production of reactive oxygen species. rHPU-activated neutrophils showed increased lifespan, with inhibition of apoptosis accompanied by alterations of Bcl-XL and Bad contents. These effects of rHPU persisted in the absence of enzyme activity. rHPU-induced paw edema, neutrophil chemotaxis and apoptosis inhibition reverted in the presence of the lipoxygenase inhibitors esculetin or AA861. Neutrophils exposed to rHPU showed increased content of lipoxygenase(s) and no alteration of cyclooxygenase(s). Altogether, our data indicate that HPU, besides allowing the bacterial survival in the stomach, could play an important role in the pathogenesis of the gastrointestinal inflammatory disease caused by H. pylori.
Collapse
Affiliation(s)
- Augusto F Uberti
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Antiulcerogenic activity of chlorogenic acid in different models of gastric ulcer. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:5-14. [PMID: 23128853 DOI: 10.1007/s00210-012-0807-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/22/2012] [Indexed: 02/05/2023]
Abstract
Chlorogenic acid (CGA) is found in many foods, including coffee, berries, potatoes, carrots, wine, apples, and various herbs, and has anti-inflammatory, antidiabetic, and antitumoral actions. The CGA is well absorbed orally, and its effects on gastric ulcer have not been previously reported. The present manuscript evaluated the effect of oral administration of CGA on ethanol/HCl (Et/HCl) or nonsteroidal anti-inflammatory drug (NSAID)-induced gastric ulcer model in male Swiss mice. Animals were pretreated with 0.2 % carboxymethylcellulose (vehicle, p.o.), omeprazole (positive control, 30 mg/kg, p.o.), carbenoxolone (antioxidant positive control, 100 mg/kg, p.o.), or CGA (5, 25, or 50 mg/kg, p.o.). One hour later, the gastric ulcer was induced by injecting Et/HCl solution (100 μL/10 g body weight; Et 60 % + HCl 0.03 M) or piroxicam (100 mg/kg, p.o). After another hour or 4 h later, gastric tissues were collected from Et/HCl or piroxicam-treated animals, respectively, to evaluate the size of the lesion, histological alterations, secretion of gastric acid, neutrophil migration, oxidative/antioxidative enzymes, markers of lipid peroxidation, or concentrations of inflammatory mediators. CGA treatment had a gastroprotective effect in both models, reducing the percentage of lesioned area. CGA treatment did not alter the secretion of gastric action but inhibited neutrophil migration and restored the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione, and thiobarbituric acid reactive substances in mice treated with Et/HCl. Additionally, CGA treatment blocked the increase of tumor necrosis factor alpha and leukotriene B4 but did not restore the reduced prostaglandin levels in the NSAID-induced ulcer. Together, the data presented herein show that CGA may be a suitable natural compound for the prevention and treatment of gastric lesions caused by a different etiology.
Collapse
|
20
|
Rymuszka A, Adaszek Ł. Pro- and anti-inflammatory cytokine expression in carp blood and head kidney leukocytes exposed to cyanotoxin stress--an in vitro study. FISH & SHELLFISH IMMUNOLOGY 2012; 33:382-388. [PMID: 22641113 DOI: 10.1016/j.fsi.2012.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Cyanotoxins are toxic, secondary metabolites produced by different species of cyanobacteria that are present all over the world in aquatic environments. No data are available about the molecular mechanisms underlying the stress associated with exposure of fish immune cells to low concentrations of cyanotoxins. The purpose of this study was to determine whether the expression of cytokines that underlie immune regulation are changed after incubation of fish leukocytes with pure cyanotoxins: microcystin- LR (MC-LR), anatoxin-a (Antx-a), or an extract containing Antx-a. The study investigated the relative gene expression of four important cytokines, IL-1β, TNF-α, IL-10, and TGF-β, in carp head kidney and blood leukocytes exposed to toxins at concentrations of 0.01 or 0.1 μg/ml for 4 h. The data showed that pure toxins could induce dysregulation of pro-/anti-inflammatory cytokine expression. Expression of cytokine IL-1 β was highly upregulated following Antx-a exposure, whereas MC-LR induced merely moderate reactions. The expression of TNF-α mRNA was significantly suppressed in blood and head kidney cells incubated with toxins at the higher concentration. These results showed that pure toxins dysregulated the expression of pro-inflammatory cytokines IL-1β and TNF-α more promptly than the anti-inflammatory cytokines TGF-β and IL-10. In contrast, the studies demonstrated a clearly downward trend of pro-inflammatory cytokines and an upward trend of anti-inflammatory cytokines in leukocytes exposed to an extract containing defined concentrations of Antx-a. This study suggests that cyanotoxins present in aquatic environments may exert immunotoxic effects by altering the transcription of important mediators of the fish immune system.
Collapse
Affiliation(s)
- Anna Rymuszka
- The John Paul II Catholic University of Lublin, Institute of Biotechnology, Department of Physiology and Ecotoxicology, Lublin, Poland.
| | | |
Collapse
|
21
|
LASSBio 596 per os avoids pulmonary and hepatic inflammation induced by microcystin-LR. Toxicon 2011; 58:195-201. [DOI: 10.1016/j.toxicon.2011.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
|
22
|
Chen JZ, Ye JY, Zhang HY, Jiang XJ, Zhang YX, Liu ZL. Freshwater toxic cyanobacteria induced DNA damage in apple (Malus pumila), rape (Brassica napus) and rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2011; 190:240-244. [PMID: 21497440 DOI: 10.1016/j.jhazmat.2011.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/21/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Cyanobacteria in freshwater ecosystems can present a harmful effect on growth and development of plants through irrigation with contaminated water. In this study, the effects of microcystins (MCs)-containing cyanobacteria extract (CE) on DNA damage of apple, rape and rice were investigated to explore the phytotoxic mechanism of MCs through DNA fragmentation and RAPD analysis. Determination of DNA fragmentation by fluorescent dye DAPI showed that significant DNA damage was observed in rice seedlings after exposure to CE while DNA fragmentation in rape seedlings and apple cultures did not differ significantly between treatment and control groups. Qualitative characterization of genomic DNA fragmentation by agarose gel electrophoresis supported the quantitative determination using DAPI. The main changes in RAPD profiles of rape seedlings following exposure of lower doses of CE were variation in band intensity for the primers F03 and S01, while higher doses of CE caused loss of normal bands and appearance of new bands except band intensity changes. The data presented here demonstrate that DNA damage in plants occurs following exposure of microcystins, and the polymorphic RAPDs may be used as an investigation tool for environmental toxicology and as a useful biomarker for the detection of genotoxic effects of microcystins on plants.
Collapse
Affiliation(s)
- J Z Chen
- School of Life Science, Huzhou University, Huzhou 313000, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
FANG YF, CHEN DX, HUANG YP, YANG J, CHEN GW. Heterogeneous Fenton Photodegradation of Microcystin-LR with Visible Light Irradiation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1016/s1872-2040(10)60433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Dörr FA, Pinto E, Soares RM, Feliciano de Oliveira e Azevedo SM. Microcystins in South American aquatic ecosystems: Occurrence, toxicity and toxicological assays. Toxicon 2010; 56:1247-56. [DOI: 10.1016/j.toxicon.2010.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/15/2010] [Accepted: 03/22/2010] [Indexed: 12/23/2022]
|
25
|
Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR? Toxicon 2010; 56:604-12. [PMID: 20547173 DOI: 10.1016/j.toxicon.2010.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/01/2010] [Accepted: 06/05/2010] [Indexed: 11/20/2022]
Abstract
The treatment of microcystin-LR (MCYST-LR)-induced lung inflammation has never been reported. Hence, LASSBio 596, an anti-inflammatory drug candidate, designed as symbiotic agent that modulates TNF-alpha levels and inhibits phosphodiesterase types 4 and 5, or dexamethasone were tested in this condition. Swiss mice were intraperitoneally (i.p.) injected with 60 microl of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 micrg/kg). 6 h later they were treated (i.p.) with saline (TOX), LASSBio 596 (10 mg/kg, L596), or dexamethasone (1 mg/kg, 0.1 mL, DEXA). 8 h after MCYST-LR injection, pulmonary mechanics were determined, and lungs and livers prepared for histopathology, biochemical analysis and quantification of MCYST-LR. TOX showed significantly higher lung impedance than CTRL and L596, which were similar. DEXA could only partially block the mechanical alterations. In both TOX and DEXA alveolar collapse and inflammatory cell influx were higher than in CTRL and L596, being LASSBio 596 more effective than dexamethasone. TOX showed oxidative stress that was not present in CTRL and L596, while DEXA was partially efficient. MCYST-LR was detected in the livers of all mice receiving MCYST-LR and no recovery was apparent. In conclusion, LASSBio 596 was more efficient than dexamethasone in reducing the pulmonary functional impairment induced by MCYST-LR.
Collapse
|
26
|
Chen J, Dai J, Zhang H, Wang C, Zhou G, Han Z, Liu Z. Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:796-803. [PMID: 20052542 DOI: 10.1007/s10646-009-0456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
The bioaccumulation and harmful effects of microcystins (MCs) and the activity of peroxidase (POD) and superoxide dismutase (SOD) were examined in the apple (Malus pumila) exposed in vitro with the crude extract of toxic cyanobacterial blooms from Dianchi Lake in southwestern China. The results showed that the growth and proliferation of M. pumila shoots in vitro decreased markedly after exposure to microcystins above 0.3 microg/ml. Recovered microcystins determined by enzyme-linked immunosorbent assay (ELISA) in M. pumila shoot cultures increased with exposure time and concentration. After 14 days exposure to the concentration of 3 microg/ml microcystins, M. pumila shoot cultures accumulated microcystins up to a concentration of 510.23 +/- 141.10 ng MC-LR equiv/g FW (fresh weight), equivalent to an accumulation rate of 36.45 ng/g day. POD activity was significantly increased after 7 days exposure to 3 microg/ml microcystins. After 14 days of exposure, microcystins caused POD to increase significantly at the concentration of 0.3 and 3 microg/ml. The activity of SOD was not affected by microcystins at concentrations up to 3 microg/ml on 7 days. After 14 days exposure to microcystins, SOD activity increased significantly at the concentration of 0.3 and 3 microg/ml in M. pumila shoot cultures.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Life Science, Huzhou University, 313000, Huzhou, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wada SI, Usami I, Umezawa Y, Inoue H, Ohba SI, Someno T, Kawada M, Ikeda D. Rubratoxin A specifically and potently inhibits protein phosphatase 2A and suppresses cancer metastasis. Cancer Sci 2010; 101:743-50. [PMID: 20028386 PMCID: PMC11158319 DOI: 10.1111/j.1349-7006.2009.01438.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although cytostatin analog protein phosphatase 2A (PP2A)-specific inhibitors are promising candidates of a new type of anticancer drug, their development has been hindered because of their liability. To find new classes of PP2A-specific inhibitors, we conducted a screening with microbial metabolites and found that rubratoxin A, a classical mycotoxin, is a highly specific and potent inhibitor of the enzyme. While rubratoxin A inhibits PP2A at Ki = 28.7 nm, it hardly inhibited any other phosphatases examined. Rubratoxin B, a close analog, also specifically but weakly inhibits PP2A at Ki = 3.1 microM. The inhibition of intracellular PP2A in cultured cells is obviously observed with 20 microM rubratoxin A treatment for 3 h, inducing the overphosphorylation in PP2A substrate proteins. Although rubratoxins and cytostatin differ in the apparent structures, these compounds share similarities in the structures in detail and PP2A-binding manners. Rubratoxin A showed higher suppression of tumor metastasis and reduction of the primary tumor volume than cytostatin in mouse experiments. As a successor of cytostatin analogs, rubratoxin A should be a good compound leading to the development of antitumor drugs targeting PP2A.
Collapse
Affiliation(s)
- Shun-ichi Wada
- Numazu Bio-Medical Research Institute, Microbial Chemistry Research Foundation, Shizuoka
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rymuszka A, Sierosławska A, Bownik A, Skowroński T. Microcystin-LR modulates selected immune parameters and induces necrosis/apoptosis of carp leucocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:569-574. [PMID: 20821480 DOI: 10.1002/etc.87] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Microcystins (MCs) are potent hepatotoxins acting by the inhibition of protein phosphatase 1 and 2A, and may promote liver tumors. Moreover, studies also suggest they are nephrotoxic. The aim of the present study was to assess possible in vitro effects of microcystin-LR (which contains the amino acids leucine and arginine, the most widely studied and distributed variant of all microcystins) on the selected immune functions of the cells isolated from the head kidney of carp. In the experiments, pure microcystin-LR (MC-LR), was used at concentrations of 0.01, 0.1, 0.5, and 1 microg/ml RPMI-1640 medium. Leucocytes (lymphocytes and phagocytes) were isolated by centrifugation on a density gradient. Lymphocyte proliferation, intracellular production of reactive oxygen species by phagocytes, and the presence of apoptotic and/or necrotic cells were assessed. The respiratory burst activity of phagocytic cells was increased at the lowest toxin concentration used in the study, but it was decreased at higher concentrations. Using a sensitive luminescent immunoassay, MC-LR was observed to have no influence on the T-cell proliferation but decreased the proliferation of B lymphocytes. Moreover, it was noted that MC-LR induced necrosis to a higher degree than apoptosis in fish leucocytes. The results of the present study suggest the modulatory potency of microcystin-LR on fish leucocytes.
Collapse
Affiliation(s)
- Anna Rymuszka
- Department of Physiology and Ecotoxicology, The John Paul II Catholic University of Lublin, 14 Al. Racławickie str, Lublin, Poland.
| | | | | | | |
Collapse
|
29
|
Campos A, Vasconcelos V. Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 2010; 11:268-287. [PMID: 20162015 PMCID: PMC2821003 DOI: 10.3390/ijms11010268] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/31/2022] Open
Abstract
Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.
Collapse
Affiliation(s)
- Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +351-223-401-813; Fax: +351-223-390-608
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR, Rua dos Bragas 289, 4050-123 Porto, Portugal; E-Mail:
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal
| |
Collapse
|
30
|
Kujbida P, Hatanaka E, Vinolo MAR, Waismam K, Cavalcanti DMDH, Curi R, Farsky SHP, Pinto E. Microcystins -LA, -YR, and -LR action on neutrophil migration. Biochem Biophys Res Commun 2009; 382:9-14. [PMID: 19360947 DOI: 10.1016/j.bbrc.2009.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital microscopic studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression of L-selectin and beta2-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to fMLP, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation.
Collapse
Affiliation(s)
- Paula Kujbida
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Prof. Lineu Prestes, 580 bloco 13 B, 05508-900 Butanta, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao Y, Xie P, Tang R, Zhang X, Li L, Li D. In vivo studies on the toxic effects of microcystins on mitochondrial electron transport chain and ion regulation in liver and heart of rabbit. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:204-10. [PMID: 18590982 DOI: 10.1016/j.cbpc.2008.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 05/19/2008] [Accepted: 05/20/2008] [Indexed: 11/24/2022]
Abstract
This study examined the toxic effects of microcystins on mitochondria of liver and heart of rabbit in vivo. Rabbits were injected i.p. with extracted microcystins (mainly MC-RR and -LR) at two doses, 12.5 and 50 MC-LReq. microg/kg bw, and the changes in mitochondria of liver and heart were studied at 1, 3, 12, 24 and 48 h after injection. MCs induced damage of mitochondrial morphology and lipid peroxidation in both liver and heart. MCs influenced respiratory activity through inhibiting NADH dehydrogenase and enhancing succinate dehydrogenase (SDH). MCs altered Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities of mitochondria and consequently disrupted ionic homeostasis, which might be partly responsible for the loss of mitochondrial membrane potential (MMP). MCs were highly toxic to mitochondria with more serious damage in liver than in heart. Damage of mitochondria showed reduction at 48 h in the low dose group, suggesting that the low dose of MCs might have stimulated a compensatory response in the rabbits.
Collapse
Affiliation(s)
- Yanyan Zhao
- Fisheries College of Huazhong Agricultural University; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|