1
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Structural, enzymatic and pharmacological profiles of AplTX-II - A basic sPLA 2 (D49) isolated from the Agkistrodon piscivorus leucostoma snake venom. Int J Biol Macromol 2021; 175:572-585. [PMID: 33529631 DOI: 10.1016/j.ijbiomac.2021.01.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
A basic sPLA2 (D49) from the venom of snake Agkistrodon piscivorus leucostoma (AplTX-II) was isolated, purified and characterized. We determined the enzymatic and pharmacological profiles of this toxin. AplTX-II was isolated with a high level of purity through reverse phase chromatography and molecular exclusion. The enzyme showed pI 9.48 and molecular weight of 14,003 Da. The enzymatic activity of the AplTX-II depended on Ca2+ pH and temperature. The comparison of the primary structure with other sPLA2s revealed that AplTX-II presented all the structural reasons expected for a basic sPLA2s. Additionally, we have resolved its structure with the docked synthetic substrate NOBA (4-nitro-3-octanoyloxy benzoic acid) by homology modeling, and performed MD simulations with explicit solvent. Structural similarities were found between the enzyme's modeled structure and other snake sPLA2 X-Ray structures, available in the PDB database. NOBA and active-site water molecules spontaneously adopted stable positions and established interactions in full agreement with the reaction mechanism, proposed for the physiological substrate, suggesting that NOBA hydrolysis is an excellent model to study phospholipid hydrolysis.
Collapse
|
3
|
Jia Y, Olvera P, Rangel F, Mendez B, Reddy S. Rapid Identification of Phospholipase A₂ Transcripts from Snake Venoms. Toxins (Basel) 2019; 11:E69. [PMID: 30691065 PMCID: PMC6409593 DOI: 10.3390/toxins11020069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Phospholipase A₂ (PLA₂) is a major component in snake venoms and it is found in many different isoforms. To identify transcripts encoding different PLA₂ isoforms, we developed a simple, rapid procedure. Total RNA was extracted from the venoms of three cottonmouth snakes and two diamondback rattlesnakes, and further reverse-transcribed into complementary DNA (cDNA). Using one pair of cottonmouth PLA₂-specific primers and a Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique, we identified 27 unique full-length PLA₂ transcripts, including nine sequences identical to the previously documented ones in the database and one novel GIII-like PLA₂. Two common transcripts respectively encoding Asp49 and Lys49 PLA₂ isoforms were identified in all three cottonmouth venoms, that contain more PLA₂ transcripts than the diamondback rattlesnake venoms. The placement of cloned PLA₂ transcripts in snake venom PLA₂s was further discussed by phylogenetic analysis. The procedure developed in this study paves the way for accelerated acquisition of transcriptome data on any other venom toxin families. The results obtained are crucial for insight into the structure and function of PLA₂ isoforms for scientific and potential therapeutic purposes.
Collapse
Affiliation(s)
- Ying Jia
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Pablo Olvera
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Frida Rangel
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Bianca Mendez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Samir Reddy
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| |
Collapse
|
4
|
Jia Y, Ermolinsky B, Garza A, Provenzano D. Phospholipase A2 in the venom of three cottonmouth snakes. Toxicon 2017. [DOI: 10.1016/j.toxicon.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Resende L, Almeida J, Schezaro-Ramos R, Collaço R, Simioni L, Ramírez D, González W, Soares A, Calderon L, Marangoni S, da Silva S. Exploring and understanding the functional role, and biochemical and structural characteristics of an acidic phospholipase A2, AplTx-I, purified from Agkistrodon piscivorus leucostoma snake venom. Toxicon 2017; 127:22-36. [DOI: 10.1016/j.toxicon.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/28/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
|
6
|
Abstract
Over the last three decades, transcriptomic studies of venom gland cells have continuously evolved, opening up new possibilities for exploring the molecular diversity of animal venoms, a prerequisite for the discovery of new drug candidates and molecular phylogenetics. The molecular complexity of animal venoms is much greater than initially thought. In this review, we describe the different technologies available for transcriptomic studies of venom, from the original individual cloning approaches to the more recent global Next Generation Sequencing strategies. Our understanding of animal venoms is evolving, with the discovery of complex and diverse bio-optimized cocktails of compounds, including mostly peptides and proteins, which are now beginning to be studied by academic and industrial researchers.
Collapse
|
7
|
McGivern JJ, Wray KP, Margres MJ, Couch ME, Mackessy SP, Rokyta DR. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics 2014; 15:1061. [PMID: 25476704 PMCID: PMC4289226 DOI: 10.1186/1471-2164-15-1061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Largely because of their direct, negative impacts on human health, the venoms of front-fanged snakes of the families Viperidae and Elapidae have been extensively characterized proteomically, transcriptomically, and pharmacologically. However, relatively little is known about the molecular complexity and evolution of the venoms of rear-fanged colubrid snakes, which are, with a few notable exceptions, regarded as harmless to humans. Many of these snakes have venoms with major effects on their preferred prey, and their venoms are probably as critical to their survival as those of front-fanged elapids and viperids. Results We sequenced the venom-gland transcriptomes from a specimen of Hypsiglena (Desert Night Snake; family Colubridae, subfamily Dipsadinae) and of Boiga irregularis (Brown Treesnake; family Colubridae, subfamily Colubrinae) and verified the transcriptomic results proteomically by means of high-definition mass spectrometry. We identified nearly 3,000 nontoxin genes for each species. For B. irregularis, we found 108 putative toxin transcripts in 46 clusters with <1% nucleotide divergence, and for Hypsiglena we identified 79 toxin sequences that were grouped into 33 clusters. Comparisons of the venoms revealed divergent venom types, with Hypsiglena possessing a viper-like venom dominated by metalloproteinases, and B. irregularis having a more elapid-like venom, consisting primarily of three-finger toxins. Conclusions Despite the difficulty of procuring venom from rear-fanged species, we were able to complete all analyses from a single specimen of each species without pooling venom samples or glands, demonstrating the power of high-definition transcriptomic and proteomic approaches. We found a high level of divergence in the venom types of two colubrids. These two venoms reflected the hemorrhagic/neurotoxic venom dichotomy that broadly characterizes the difference in venom strategies between elapids and viperids.
Collapse
Affiliation(s)
| | | | | | | | | | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
8
|
Brahma RK, McCleary RJR, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 2014; 93:1-10. [PMID: 25448392 DOI: 10.1016/j.toxicon.2014.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 01/13/2023]
Abstract
Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.
Collapse
Affiliation(s)
- Rajeev Kungur Brahma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, South Australia 5001, Australia
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India.
| |
Collapse
|
9
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
10
|
Transcriptional regulatory network analysis of the over-expressed genes in adipose tissue. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0145-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Genetic Basis for Variation of Metalloproteinase-Associated Biochemical Activity in Venom of the Mojave Rattlesnake (Crotalus scutulatus scutulatus). Biochem Res Int 2013; 2013:251474. [PMID: 23984070 PMCID: PMC3745941 DOI: 10.1155/2013/251474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/25/2013] [Indexed: 11/23/2022] Open
Abstract
The metalloproteinase composition and biochemical profiles of rattlesnake venom can be highly variable among rattlesnakes of the same species. We have previously shown that the neurotoxic properties of the Mojave rattlesnake (Crotalus scutulatus scutulatus) are associated with the presence of the Mojave toxin A subunit suggesting the existence of a genetic basis for rattlesnake venom composition. In this report, we hypothesized the existence of a genetic basis for intraspecies variation in metalloproteinase-associated biochemical properties of rattlesnake venom of the Mojave rattlesnake. To address this question, we PCR-amplified and compared the genomic DNA nucleotide sequences that code for the mature metalloproteinase domain of fourteen Mojave rattlesnakes captured from different geographical locations across the southwest region of the United States. In addition, the venoms from the same rattlesnakes were tested for their ability to hydrolyze fibrinogen, fibrin, casein, and hide powder azure and for induction of hemorrhage in mice. Overall, based on genomic sequencing and biochemical data, we classified Mojave rattlesnake venom into four distinct groups of metalloproteinases. These findings indicate that differences in nucleotide sequences encoding the mature proteinase domain and noncoding regions contribute to differences in venom metalloproteinase activities among rattlesnakes of the same species.
Collapse
|
12
|
Feng J, Chen T, Zhou M, Shaw C. Cloning of cDNAs and molecular characterisation of C-type lectin-like proteins from snake venoms. Toxicon 2012; 60:1363-9. [PMID: 23010162 DOI: 10.1016/j.toxicon.2012.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
Abstract
C-type lectin-like proteins (CTLPs) isolated from snake venoms are the largest and most complex non-mammalian vertebrate C-type lectin-like domain family. In the present study, we simultaneously amplified four cDNAs encoding different types of CTLP subunits from the venoms of two different species of snakes by RT-PCR with a single sense primer and a nested universal primer - two CTLP subunit-encoding cDNAs were cloned from Deinagkistrodon acutus venom and two from Agkistrodon halys Pallas venom. All four cloned CTLP subunits exhibited typical motifs in their corresponding domain regions but with relatively-low sequence similarities to each other. Compared with previously-published CTLPs, the four cloned CTLPs subunits showed slight variations in the calcium-binding sites and the disulphide bonding patterns. To our knowledge, these data constitute the first example of co-expression of CTLP platelet glycoprotein Ib-binding subunits and coagulation factors in Agkistrodon halys Pallas venom.
Collapse
Affiliation(s)
- Jian Feng
- Molecular Therapeutics Research, School of Pharmacy, Medical Biology Centre, McClay Research Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
13
|
Yin C, Jia Y, Garcia CA. A novel method for the purification of low soluble recombinant C-type lectin proteins. Biochem Biophys Res Commun 2012; 425:636-41. [PMID: 22867876 DOI: 10.1016/j.bbrc.2012.07.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
Snake venoms contain a complex mixture of many biological molecules including proteins. The purification of recombinant proteins is a key step in studying their function and structure with affinity chromatography as the common method used in their purification. In bacterial expression systems, hydrophobic recombinant proteins are usually precipitated into inclusion bodies, and contaminants are typically associated with tagged proteins after purification. The purpose of this study was to develop a procedure to purify hydrophobic recombinant proteins without an affinity tag. Snake venom mature C-type lectin-like proteins (CLPs) with a tag were cloned, expressed, and purified by repeated sonication and wash steps. The effects of the signal peptide on the expression and solubility of the recombinant protein were investigated. The CLPs in washed inclusion bodies were solubilized and refolded by dialysis. The CLPs without a tag were successfully purified with a yield 38 times higher than the traditional method, and inhibited blood platelet aggregation with an IC(50) of 100.57 μM in whole blood. This novel procedure is a rapid, and inexpensive method to purify functional recombinant hydrophobic CLPs from snake venoms useful in the development of drug therapies.
Collapse
Affiliation(s)
- Chunhui Yin
- Texas A&M University Kingsville, Department of Biological and Health Sciences, Kingsville, TX 78363, USA
| | | | | |
Collapse
|
14
|
Sukkapan P, Jia Y, Nuchprayoon I, Pérez JC. Phylogenetic analysis of serine proteases from Russell's viper (Daboia russelli siamensis) and Agkistrodon piscivorus leucostoma venom. Toxicon 2011; 58:168-78. [PMID: 21640745 PMCID: PMC3303153 DOI: 10.1016/j.toxicon.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Serine proteases are widely found in snake venoms. They have variety of functions including contributions to hemostasis. In this study, five serine proteases were cloned and characterized from two different cDNA libraries: factor V activator (RVV-V), alpha fibrinogenase (RVAF) and beta fibrinogenase (RVBF) from Russell's viper (Daboia russelli siamensis), and plasminogen activator (APL-PA) and protein C activator (APL-C) from Agkistrodon piscivorus leucostoma. The snake venom serine proteases were clustered in phylogenetic tree according to their functions. K(A)/K(S) values suggested that accelerated evolution has occurred in the mature protein coding regions in cDNAs of snake venom serine proteases.
Collapse
Affiliation(s)
- Pattadon Sukkapan
- Snake Bite and Venom Research Unit, Chula Medical Research Center, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Patumwan District, Bangkok 10330, Thailand
| | | | | | | |
Collapse
|
15
|
Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon 2011; 57:657-71. [PMID: 21255598 DOI: 10.1016/j.toxicon.2011.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Despite causing considerable human mortality and morbidity, animal toxins represent a valuable source of pharmacologically active macromolecules, a unique system for studying molecular adaptation, and a powerful framework for examining structure-function relationships in proteins. Snake venoms are particularly useful in the latter regard as they consist primarily of a moderate number of proteins and peptides that have been found to belong to just a handful of protein families. As these proteins and peptides are produced in dedicated glands, transcriptome sequencing has proven to be an effective approach to identifying the expressed toxin genes. We generated a venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) using Roche 454 sequencing technology. In the current work, we focus on transcripts encoding toxins. We identified 40 unique toxin transcripts, 30 of which have full-length coding sequences, and 10 have only partial coding sequences. These toxins account for 24% of the total sequencing reads. We found toxins from 11 previously described families of snake-venom toxins and have discovered two putative, previously undescribed toxin classes. The most diverse and highly expressed toxin classes in the C. adamanteus venom-gland transcriptome are the serine proteinases, metalloproteinases, and C-type lectins. The serine proteinases are the most abundant class, accounting for 35% of the toxin sequencing reads. Metalloproteinases are the most diverse; 11 different forms have been identified. Using our sequences and those available in public databases, we detected positive selection in seven of the eight toxin families for which sufficient sequences were available for the analysis. We find that the vast majority of the genes that contribute directly to this vertebrate trait show evidence for a role for positive selection in their evolutionary history.
Collapse
Affiliation(s)
- Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| | | | | | | | | |
Collapse
|
16
|
Cardoso KC, Da Silva MJ, Costa GGL, Torres TT, Del Bem LEV, Vidal RO, Menossi M, Hyslop S. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). BMC Genomics 2010; 11:605. [PMID: 20977763 PMCID: PMC3017861 DOI: 10.1186/1471-2164-11-605] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/26/2010] [Indexed: 01/13/2023] Open
Abstract
Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.
Collapse
Affiliation(s)
- Kiara C Cardoso
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, CP 6111, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet 2010; 11:239-64. [PMID: 20590429 DOI: 10.1146/annurev-genom-082509-141646] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of birds and nonavian reptiles (Reptilia) are critical for understanding genome evolution in mammals and amniotes generally. Despite decades of study at the chromosomal and single-gene levels, and the evidence for great diversity in genome size, karyotype, and sex chromosome diversity, reptile genomes are virtually unknown in the comparative genomics era. The recent sequencing of the chicken and zebra finch genomes, in conjunction with genome scans and the online publication of the Anolis lizard genome, has begun to clarify the events leading from an ancestral amniote genome--predicted to be large and to possess a diverse repeat landscape on par with mammals and a birdlike sex chromosome system--to the small and highly streamlined genomes of birds. Reptilia exhibit a wide range of evolutionary rates of different subgenomes and, from isochores to mitochondrial DNA, provide a critical contrast to the genomic paradigms established in mammals.
Collapse
Affiliation(s)
- Daniel E Janes
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
18
|
Correa-Netto C, Teixeira-Araujo R, Aguiar AS, Melgarejo AR, De-Simone SG, Soares MR, Foguel D, Zingali RB. Immunome and venome of Bothrops jararacussu: A proteomic approach to study the molecular immunology of snake toxins. Toxicon 2010; 55:1222-35. [DOI: 10.1016/j.toxicon.2009.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 01/12/2023]
|
19
|
Jia Y, Pérez JC. Molecular cloning and characterization of cDNAs encoding metalloproteinases from snake venom glands. Toxicon 2009; 55:462-9. [PMID: 19799929 DOI: 10.1016/j.toxicon.2009.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are a superfamily of zinc-dependent proteases and participate in a number of important biological, physiological and pathophysiological processes. In this work, we simultaneously amplified nine cDNAs encoding different classes of metalloproteinases from glands of four different snake species (Agkistrodon contortrix laticinctus, Crotalus atrox, Crotalus viridis viridis and Agkistrodon piscivorus leucostoma) by RT-PCR with a pair of primers. Among the encoded metalloproteinases, two enzymes (AclVMP-I and AplVMP-I), three enzymes (CaVMP-II, CvvVMP-II and AplVMP-II) and four enzymes (AclVMP-III, CaVMP-III, CvvVMP-III and AplVMP-III) with the characteristic motif (HEXXHXXGXXH) of metalloproteinase belong to type P-I, P-II and P-III enzymes, respectively. Disintegrin domains of CaVMP-II and CvvVMP-II from two Crotatus snakes contain RGD-motif whereas AplVMP-II from Agkistrodon snake has KGD-motif. Instead of R/KGD-motif within disintegrin domain of SVMP-II enzyme, CaVMP-III, CvvVMP-III and AplVMP-III enzymes contain SECD-motif, while AclVMP-III has DDCD-motif in their corresponding position of disintegrin-like domains. There are 12 Cys amino acids in cysterin-rich domains of each P-III enzyme. Moreover, a disintegrin precursor (AplDis) with RGD-motif also simultaneously amplified from the glands of A.p. leucostoma while amplifying AplVMP-II and AplVMP-III, which indicated that different types of SVMPs and related genes are present in a single species of snake and share a consensus sequence at the 3' and 5' untranslated regions. RT-PCR result also showed that P-III is highly expressed in Crotalus snakes than in Agkistrodon snakes. Aligning the deduced amino acid sequence of these enzymes with other SVMPs from GenBank database indicated that this is the first report on the isolation of cDNAs encoding P-II and P-III enzymes from C.v. viridis and A.p. leucostoma snakes. The availability of these SVMP sequences directly facilitated further studies of structure characterization and diversified function analysis.
Collapse
Affiliation(s)
- Ying Jia
- Natural Toxins Research Center, College of Arts and Sciences, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
| | | |
Collapse
|
20
|
Jia Y, Lucena S, Cantu E, Sánchez EE, Pérez JC. cDNA cloning, expression and fibrin(ogen)olytic activity of two low-molecular weight snake venom metalloproteinases. Toxicon 2009; 54:233-43. [PMID: 19375443 DOI: 10.1016/j.toxicon.2009.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Two cDNA clones, AplVMP1 and AplVMP2, were isolated from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. The full-length cDNA sequence of AplVMP1 with a calculated molecular mass of 46.61 kDa is 1233 bp in length. AplVMP1 encodes PI class metalloproteinase with an open reading frame of 411 amino acid residues that includes signal peptide, pro-domain and metalloproteinase domains. The full-length cDNA of the AplVMP2 (1371 bp) has a calculated molecular mass of 51.16 kDa and encodes PII class metalloproteinase. The open reading frame of AplVMP2 with a 457 amino acid residues is composed of signal peptide, pro-domain, metalloproteinase and disintegrin domains. AplVMP1 and AplVMP2 showed 85% and 93% amino acid identical to PI class enzyme Agkistrodon contortrix laticinctus ACLPREF and PII class enzyme Agkistrodon piscivorus piscivorus piscivostatin, respectively. When expressed in Escherichia coli, most of recombinant proteins of AplVMP1 and AplVMP2 were in insoluble inclusion bodies, with soluble yields of 0.7 mg/l and 0.4 mg/l bacterial culture, respectively. Both affinity purified recombinant proteins show proteolytic activity on fibrinogen, although having an activity lower than that of crude A. p. leucostoma venom. Proteolytic activities of AplVMP1 and AplVMP2 were completely abolished after incubation with a final concentration of 100 microM of EDTA or 1,10-phenanthroline. Both AplVMP1 and AplVMP2 were active in a fibrin-agarose plate but devoid of hemorrhagic activity when injected (up to 50 microg) subcutaneously into mice, and had no capacity to inhibit platelet aggregation.
Collapse
Affiliation(s)
- Ying Jia
- Natural Toxins Research Center, College of Arts and Sciences, Texas A&M University, Kingsville, TX 78363, USA
| | | | | | | | | |
Collapse
|
21
|
Leão LI, Ho PL, Junqueira-de-Azevedo IDLM. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake) venom. BMC Genomics 2009; 10:112. [PMID: 19291316 PMCID: PMC2662881 DOI: 10.1186/1471-2164-10-112] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/16/2009] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Micrurus corallinus (coral snake) is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs) from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. RESULTS A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx) (24%) and phospholipases A(2) (PLA(2)s) (15%). However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA(2)) and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. CONCLUSION Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA immunization may be a viable alternative. In fact, the selected candidates provided an initial evidence of the feasibility of this approach, which is less costly and not dependent on the availability of the venom.
Collapse
Affiliation(s)
- Luciana I Leão
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| | - Paulo L Ho
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Inacio de LM Junqueira-de-Azevedo
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
22
|
Jia Y, Pérez JC. Recombinant expression and affinity purification of snake venom gland parvalbumin in Escherichia coli. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:303-8. [PMID: 19275943 DOI: 10.1016/j.cbpa.2009.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Parvalbumins (PV) are small, acidic, water soluble and calcium-binding proteins generally present in muscular and nervous tissues. In the present study, we identified and characterized a cDNA clone encoding PV, named AplPV, from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. AplPV belongs to EF-hand proteins with six alpha-helices constituting three EF-hand domains. The deduced amino acid sequence of AplPV is 91% and 68% identical to the previously characterized PVs of Boa constrictor and Cyprinus carpio, respectively. The full-length cDNA was subcloned into the expression vector pGEX and transformed into Escherichia coli (E.coli) to produce recombinant protein. The bacterially expressed GST-AplPV fusion protein was highly expressed, and effectively purified by Glutathione-Sepharose affinity chromatography. A high concentration of thrombin protease specifically cleaved and removed the GST tag from fusion protein, and further purified by Benzamidine column for removal of thrombin protease. As a result, the 12 kDa AplPV recombinant protein alone was purified. To investigate the tissue-specific biological occurrence of AplPV, a polyclonal antibody (anti-AplPV-antibody) was raised against GST-AplPV fusion protein in rabbit. Western blot analysis revealed that immunoreactive bands were exhibited in both recombinant protein and samples of venom glands, but not in any crude venom. This specific occurrence indicates a specialized function of AplPV in snake venom glands.
Collapse
Affiliation(s)
- Ying Jia
- Natural Toxins Research Center, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA
| | | |
Collapse
|
23
|
Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 2009; 72:165-82. [DOI: 10.1016/j.jprot.2009.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 12/14/2022]
|
24
|
Whittington CM, Koh JM, Warren WC, Papenfuss AT, Torres AM, Kuchel PW, Belov K. Understanding and utilising mammalian venom via a platypus venom transcriptome. J Proteomics 2009; 72:155-64. [DOI: 10.1016/j.jprot.2008.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/10/2023]
|