1
|
Lopes-Ferreira JV, Matos JEM, Dias FCR, Siervo GEML, Gomes MLM. Protective effects of phenolic phytochemicals on male fertility: a narrative review. BRAZ J BIOL 2025; 85:e288879. [PMID: 39968999 DOI: 10.1590/1519-6984.288879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025] Open
Abstract
Infertility is a global health issue and is closely related to oxidative stress, which occurs when high concentrations of free radicals surpass the protective effects of antioxidant molecules and enzymes. Such imbalance causes damage to DNA, as well as cellular proteins and lipids, ultimately leading to the destruction of the blood-testis barrier. This, in turn, hinders spermatogenesis. Various plants and compounds have been employed in an attempt to reverse these damages, such as phenolic compounds. Therefore, this review aims to identify the main phytochemical phenolic compounds and their respective effects when used in the treatment of male infertility. Related information concerning phenolic phytochemical compounds was gathered from studies selected from PubMed, Scopus, and Web of Science databases. The search was conducted using the combination of six terms: "phenolic compounds", "male infertility", "testis", "spermatozoa", "testosterone" and "male fertility". These compounds can raise testosterone levels, reduce lipid peroxidation, and improve tubular histoarchitecture in cases of subfertility associated with diabetes mellitus. They can also mitigate the damage caused by obesity by increasing serum testosterone, antioxidant activity, and sperm motility. When it comes to fertility problems caused by inorganic and organic pollutants, these compounds effectively restore the structure of the seminiferous tubules, increase testosterone levels, and improve sperm quality. Furthermore, phenolic phytochemical compounds have shown beneficial effects in countering the adverse impacts of certain drugs on testicular physiology by reducing apoptosis in testicular tissue, increasing the number of Leydig cells, and promoting spermatocyte production. However, while these compounds may have protective effects on sperm cryopreservation for in vitro fertilization, caution is needed as certain dosages can cause irreversible damage to sperm quality. Overall, plant extracts containing phenolic phytochemical compounds hold promise as a therapeutic avenue for treating infertility and subfertility caused by metabolic disorders and environmental pollutants.
Collapse
Affiliation(s)
- J V Lopes-Ferreira
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - J E M Matos
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - F C R Dias
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| | - G E M L Siervo
- Universidade Federal do Triângulo Mineiro, Departamento de Patologia, Genética e Evolução, Uberaba, MG, Brasil
| | - M L M Gomes
- Universidade Federal do Triângulo Mineiro, Departamento de Biologia Estrutural, Uberaba, MG, Brasil
| |
Collapse
|
2
|
Jiang X, Tehreem S, Rahim K, Wang M, Wu P, Zhang G. Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design. Enzyme Microb Technol 2024; 180:110499. [PMID: 39191068 DOI: 10.1016/j.enzmictec.2024.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Zearalenone (ZEN) is a fungal toxin produced by Fusarium exospore, which poses a significant threat to both animal and human health due to its reproductive toxicity. Removing ZEN through ZEN lactonase is currently the most effective method reported, however, all published ZEN lactonases suffer from the poor thermal stability, losing almost all activity after 10 min of treatment at 55℃. In this study, we heterologously expressed ZHD11A from Phialophora macrospora and engineered it via semi-rational design. A mutant I160Y-G242S that can retain about 40 % residual activity at 55℃ for 10 min was obtained, which is the most heat-tolerant ZEN hydrolase reported to date. Moreover, the specific activity of the I160Y-G242S was also elevated 2-fold compared to ZHD11A from 220 U/mg to 450 U/mg, which is one of the most active ZEN lactonses reported. Dynamics analysis revealed that the decreased flexibility of the main-chain carbons contributes to increased thermal stability and the improved substrate binding affinity and catalytic turnover contribute to enhanced activity of variant I160Y-G242S. In all, the mutant I160Y-G242S is an excellent candidate for the industrial application of ZEN degradation.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sana Tehreem
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meixing Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Ben Taheur F, Mansour C, Skhiri SS, Chaaban H, Jridi M, Fakhfakh N, Zouari N. Kefir mitigates renal damage caused by zearalenone in female wistar rats by reducing oxidative stress. Toxicon 2024; 243:107743. [PMID: 38701903 DOI: 10.1016/j.toxicon.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The estrogen-like mycotoxin zearalenone (ZEA) was popularly occurred in several food and feeds, posing threats to human and animal health. ZEA induced renal toxicity and caused oxidative stress. In the current study, the protecting effect of kefir administration against ZEA-induced renal damage in rats was explored. Rats were divided into 4 groups, each consisting of 5 animals. For the initial 7 days, they were orally administered sterile milk (200 μL/day). Subsequently, during the second week, the groups were exposed to kefir (200 μL/day), ZEA (40 mg/kg b.w./day) and a combination of kefir and ZEA. The biochemical parameters, kidney histological changes and ZEA residue were assessed. Kefir supplementation enhanced the antioxidant enzymes in the kidney, such as superoxide dismutase, catalase and glutathione peroxidase activities, which increased by 1.2, 4 and 20 folds, respectively, relative to the ZEA group. Remarkably, the concomitant administration kefir + ZEA suppressed ZEA residues in both serum and kidney. Additionally, serum levels of blood urea nitrogen, uric acid and renal malondialdehyde decreased by 22, 65 and 54%, respectively, in the kefir + ZEA group; while, the creatinine content increased by around 60%. Rats co-treated with kefir showed a normal kidney histological architecture contrary to tissues alterations mediated in the ZEA group. These results suggest that kefir may showed a protective effect on the kidneys, mitigating ZEA-induced acute toxicity in rats.
Collapse
Affiliation(s)
- Fadia Ben Taheur
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia; University of Gabes, Higher Institute of Applied Biology of Medenine (ISBAM), Medenine, 4119, Tunisia
| | - Chalbia Mansour
- University of Monastir, Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir, 5000, Tunisia
| | - Sihem Safta Skhiri
- University of Monastir, ABCDF Laboratory, Faculty of Dental Medicine, Monastir, 5000, Tunisia
| | - Habib Chaaban
- University of Monastir, Department of Physiology and Animal Biology, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Mourad Jridi
- University of Jendouba, Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, Beja, 9000, Tunisia
| | - Nahed Fakhfakh
- University of Gabes, Higher Institute of Applied Biology of Medenine (ISBAM), Medenine, 4119, Tunisia; University of Gabes, Faculty of Sciences of Gabes, Gabes, 6072, Laboratory of Ecology and Environment (LR24ES17), Tunisia
| | - Nacim Zouari
- University of Gabes, Higher Institute of Applied Biology of Medenine (ISBAM), Medenine, 4119, Tunisia; University of Gabes, Faculty of Sciences of Gabes, Gabes, 6072, Laboratory of Ecology and Environment (LR24ES17), Tunisia.
| |
Collapse
|
4
|
Sayed H, Zhang Q, Tang Y, Wang Y, Guo Y, Zhang J, Ji C, Ma Q, Zhao L. Alleviative Effect of Rutin on Zearalenone-Induced Reproductive Toxicity in Male Mice by Preventing Spermatogenic Cell Apoptosis and Modulating Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Toxins (Basel) 2024; 16:121. [PMID: 38535787 PMCID: PMC10974791 DOI: 10.3390/toxins16030121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 04/25/2025] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin found in many agricultural products and can cause reproductive disorders, mainly affecting spermatogenesis in male animals. Rutin (RUT) is a natural flavonoid compound recognized for its significant antioxidant, anti-inflammatory and estrogenic properties. The present study aimed to determine the protective role of RUT against ZEN-induced reproductive toxicity in male mice. Twenty-four adult Kunming male mice were divided into four groups: control, RUT (500 mg/kg RUT), ZEN (10 mg/kg ZEN), ZEN + RUT (500 mg/kg RUT + 10 mg/kg ZEN), with six replicates per treatment. The results indicated that RUT mitigated ZEN-induced disruption in spermatogenic cell arrangement, decreased spermatozoa count, and increased sperm mortality in the testes. RUT significantly restored ZEN-induced reduction in T, FSH, LH, and E2 serum levels. Moreover, RUT mitigated ZEN-induced apoptosis by increasing the mRNA expression level of bcl-2, decreasing the mRNA expression level of kiss1-r, and decreasing the protein expression level of caspase 8 in reproductive tissues. These findings indicate the protective role of RUT against ZEN-induced reproductive toxicity in male mice by regulating gonadotropin and testosterone secretions to maintain normal spermatogenesis via the HPG axis, which may provide a new application direction for RUT as a therapeutic agent to mitigate ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Hira Sayed
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Qiongqiong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China;
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| |
Collapse
|
5
|
Protective effect of glucosamine on zearalenone-induced reproductive toxicity and placental dysfunction in mice. Food Chem Toxicol 2023; 172:113539. [PMID: 36462645 DOI: 10.1016/j.fct.2022.113539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
This study was conducted to determine the effects of glucosamine (GlcN) on zearalenone (ZEA)-induced reproductive toxicity and placental dysfunction in mice. The pregnant mice were randomly divided into one of the four groups, such as the control group, the ZEA group, the GlcN group, and the GlcN plus ZEA group. Reproductive toxicity was induced by consecutive gavages of ZEA at 5 mg/kg body weight during gestational days (GDs 0-14) and in the presence or absence of oral administration of GlcN (0.5 mM). The results showed that GlcN significantly alleviated the decrease of growth performance induced by ZEA exposure of pregnant mice. Meanwhile, ZEA ingestion significantly reduced the number and weight of fetuses, and reduction of placenta weight. Moreover, results of blood biochemical markers indicated that ZEA exposure led to increased oxidative stress levels in pregnant mice. Further analyses demonstrated that ZEA inhibited placental development, resulted in placental inflammation, increased the expression of pro-apoptotic proteins, and decreased the expression of placental tight junction proteins, which were reversed by the administration of GlcN. Results of western blot revealed that GlcN reversed ZEA-mediated phenotype by activating PI3K, while inhibiting MAPK signaling pathway. All these findings showed that GlcN was effective in the protection against ZEA-induced placental dysfunction and reproductive toxicity in pregnant mice. Supplementation of GlcN might be potential nutritional intervention with an ability to alleviate ZEA-induced toxicity in pregnant mice.
Collapse
|
6
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
7
|
Ghafari F, Sadeghian Z, Oftadeh Harsin A, Khodabandelo S, Ranjbar A. Anti-oxidative properties of nanocrocin in Zearalenone induced toxicity on Hek293 cell; The novel formulation and cellular assessment. Hum Exp Toxicol 2023; 42:9603271231169911. [PMID: 37072122 DOI: 10.1177/09603271231169911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
BACKGROUND Zearalenone (ZEA) is a mycotoxin produced by fungi and induces cytotoxicity by the generation of reactive oxygen species. The aim of this study was to evaluate and compare the nephroprotective effects of crocin and nano-crocin against ZEA-induced toxicity in HEK293 cell line via modulation of oxidative stress and special formulation to make nano-crocin. METHOD Nano-crocin physicochemical properties, such as size, load, appearance, and drug release profile were determined. Also, the viability of intoxicated HEK293 cells was evaluated by MTT assay. Furthermore, lactate dehydrogenase lipid Peroxidation (LPO), and oxidative stress biomarkers were measured. RESULT The best nano-crocin formulation with superior entrapment effectiveness (54.66 ± 6.02), more significant drug loading (1.89 ± 0.01), better zeta potential (-23.4 ± 2.844), and smaller particle size (140.3 ± 18.0 nm) was chosen. This study showed that treatment with crocin and nano-crocin in ZEA-induced cells, significantly decreased LDH and LPO levels and increased superoxide dismutase (SOD), catalase (CAT) activities, and total antioxidant capacity (TAC) levels compared to the control group. Moreover, nano-crocin had a more curative effect against oxidative stress than crocin. CONCLUSION Niosomal structure of crocin, when administered with the special formulation, may be more beneficial in reducing ZEA-induced in vitro toxicity than conventional crocin.
Collapse
Affiliation(s)
- Fatemeh Ghafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohre Sadeghian
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Oftadeh Harsin
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sodabe Khodabandelo
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Gheraibia S, Belattar N, Diab KA, Hassan ME, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Costus speciosus extract protects against the oxidative damage of zearalenone via modulation of inflammatory cytokines, Nrf2 and iNOS gene expression in rats. Toxicon 2022; 214:62-73. [PMID: 35597521 DOI: 10.1016/j.toxicon.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin that induces severe health disturbances in humans and animals. This study aimed to determine the bioactive compounds in Costus speciosus extract (CSE) using GC-MS and evaluate its protective capability against ZEN-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Six groups of male Sprague Dawley rats were treated orally for 15 days including the control group, CSE-treated groups at low (200 mg/kg b. w) or high (400 mg/kg b. w) dose, ZEN-treated group (40 μg/kg b. w), and the groups treated with ZEN plus the low or the high dose of CSE. Blood and tissue samples were collected for different assays and pathological analyses. The results of GC-MS indicated the identification of 6 compounds and Azulene was the major. Animals that received ZEN showed severe disturbances in serum biochemical, cytokines, oxidative stress indicators, mRNA expression of iNOS, Nrf2, and inflammatory-related genes. ZEN also increased micronucleated polychromatic erythrocytes (MNPCEs) and comet tail formation in bone marrow cells along with the disturbances in the histological architecture of the liver and kidney. Co-administration of CSE plus ZEN could normalize the majority of the tested parameters and the histological picture at a dose as low as 200 mg/kg b. w. Therefore, CSE protects against ZEN toxicity via its antioxidant activity, modulation of iNOS, inflammatory-related genes, and the Nrf2 pathway and it could be used in the endemic regions.
Collapse
Affiliation(s)
- Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif, 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
Feng YQ, Zhao AH, Wang JJ, Tian Y, Yan ZH, Dri M, Shen W, De Felici M, Li L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022; 829:146511. [PMID: 35447234 DOI: 10.1016/j.gene.2022.146511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Guo J, Shen Y, Zhang X, Lin D, Xia P, Song M, Yan L, Zhong W, Gou X, Wang C, Wei S, Yu H, Shi W. Effect-Directed Analysis Based on the Reduced Human Transcriptome (RHT) to Identify Organic Contaminants in Source and Tap Waters along the Yangtze River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7840-7852. [PMID: 35617516 DOI: 10.1021/acs.est.1c08676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since a large number of contaminants are detected in source waters (SWs) and tap waters (TWs), it is important to perform a comprehensive effect evaluation and key contributor identification. A reduced human transcriptome (RHT)-based effect-directed analysis, which consisted of a concentration-dependent RHT to reveal the comprehensive effects and noteworthy pathways and systematic identification of key contributors based on the interactions between compounds and pathway effects, was developed and applied to typical SWs and TWs along the Yangtze River. By RHT, 42% more differentially expressed genes and 33% more pathways were identified in the middle and lower reaches, indicating heavier pollution. Hormone and immune pathways were prioritized based on the detection frequency, sensitivity, and removal efficiency, among which the estrogen receptor pathway was the most noteworthy. Consistent with RHT, estrogenic effects were widespread along the Yangtze River based on in vitro evaluations. Furthermore, 38 of 100 targets, 39 pathway-related suspects, and 16 estrogenic nontargets were systematically identified. Among them, diethylstilbestrol was the dominant contributor, with the estradiol equivalent (EEQ) significantly correlated with EEQwater. In addition, zearalenone and niclosamide explained up to 54% of the EEQwater. The RHT-based EDA method could support the effect evaluation, contributor identification, and risk management of micropolluted waters.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Environmental Monitoring Station of Suzhou Industrial Park, Suzhou 215027, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenjun Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiao Gou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
12
|
Ben Taheur F, Mansour C, Mechri S, Skhiri SS, Jaouadi B, Mzoughi R, Chaieb K, Zouari N. Does probiotic Kefir reduce dyslipidemia, hematological disorders and oxidative stress induced by zearalenone toxicity in wistar rats? Toxicon X 2022; 14:100121. [PMID: 35392129 PMCID: PMC8980486 DOI: 10.1016/j.toxcx.2022.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022] Open
Abstract
Zearalenone (ZEA) is a toxic metabolite of the genus Fusarium, which causes hepatotoxicity and induces oxidative stress. Kefir is an important probiotic dairy-product showing important in vitro antioxidant potential. In this study, the effect of Kefir supplementation to mitigate ZEA toxicity in rats was investigated. Animals were divided into four groups of five rats each, which received sterile milk (200 μL/day) during the first week. Then, they were switched to Kefir (200 μL/day), ZEA (40 mg/kg b. w./day) and Kefir + ZEA for the second week. Hematological and biochemical parameters, as well as liver histological analysis were determined. Kefir administration prevented the changes occurred in the count of all blood cells, and improved the antioxidant enzymes in the liver, such as catalase, glutathione peroxidase and superoxide dismutase activities that increased by 6, 4.5 and 1.3 folds, respectively, compared to ZEA group. Interestingly, the concurrent regimen Kefir + ZEA removed ZEA residues in the serum and liver. Furthermore, the Kefir + ZEA group showed a reduction in the levels of bilirubin, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and hepatic malonaldehyde by ∼82, 54, 66, 50 and 36%, respectively, compared to the ZEA group. The histopathological analysis showed a normal liver histological architecture in Kefir + ZEA group, while degenerative changes were observed in ZEA group. These results suggest that Kefir as probiotic consortium may have a hepatoprotective effect against ZEA poisoning. Zearalenone caused oxidative stress and liver damage in rats. Zearalenone induced disruption of hematological and biochemical parameters. Kefir improved the antioxidant defense systems in rats subjected to Zearalenone. Kefir prevented Zearalenone-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Fadia Ben Taheur
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Chalbia Mansour
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Sondes Mechri
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Sihem Safta Skhiri
- ABCDF Laboratory, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology, Enzymatic, and Biomolecules (LMBEB), Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Kamel Chaieb
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Medenine, Tunisia
- Corresponding author. Higher Institute of Applied Biology of Medenine, Medenine, University of Gabes, Tunisia.
| |
Collapse
|
13
|
Zhu W, Ge M, Li X, Wang J, Wang P, Tai T, Wang Y, Sun J, Shi G. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. Int Immunopharmacol 2021; 102:108408. [PMID: 34920313 DOI: 10.1016/j.intimp.2021.108408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA) is a ubiquitous mycotoxin contaminant that causes immune toxicity, apoptosis, and oxidative stress in animals. Hyperoside (Hyp) is a flavonol glycoside compound with antioxidant and anti-apoptotic properties. However, the potential of Hyp to prevent ZEA-induced spleen injury remains unknown. To evaluate the chemoprotective effect of Hyp against ZEA-induced spleen injury, 60 male Kunming mice were randomly assigned into five groups. The first two groups were orally treated with ZEA (40 mg/kg) for 30 days, and combined with Hyp (0, 100 mg/kg) treatment. The other three groups are orally treated with normal saline, olive oil, or Hyp (100 mg/kg) for 30 days. Hyperoside had an inhibitory effect against ZEA-induced spleen lesions. In addition, Hyp significantly increased the activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT)], the total antioxidant capacity (T-AOC), and significantly reduced the malondialdehyde (MDA) content reducing ZEA-induced oxidative stress in the spleen. Moreover, the translation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes (CAT, NQO1, SOD1, GSS, GCLM, and GCLC) were ameliorated using co-therapy with Hyp before treatment with ZEA. Hyperoside also significantly inhibited the translation and expression of apoptotic genes (caspase3, casepase9, Bax, Bcl-2) and the production of apoptotic bodies induced by ZEA in the spleen. In conclusion, the findings revealed that Hyp inhibited ZEA-induced spleen injury through its antioxidant and anti-apoptotic effects. Thus, it provides a new treatment option for immune system diseases caused by ZEA.
Collapse
Affiliation(s)
- Weifeng Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiuyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jiangfeng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - PanPan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yuxi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Jianxu Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 2021; 202:115-122. [PMID: 34562499 DOI: 10.1016/j.toxicon.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022]
Abstract
Fusarium graminearum invasion and Zearalenone (ZEN)-mycotoxin contamination are considered the most global threat to food and feed. This study investigates the effect Lactobacillus plantarum MON03 viable cells (LPVC) and LP free cells supernatant (LPFCS) against Fusarium graminearum growth and ZEN production in vitro and evaluates if treatment with LP viable cells can counteract the negative effect of ZEN on inflammation and oxidative stress in mesenteric lymph nodes and serum biochemical parameters in mice. For the in vitro study, 7 days of LPVC, LPFCS and F. graminearum co-incubation at different concentrations was done in order to determine the antifungal activity and ZEN- production inhibition. Regarding the in vivo study, Balb/c mice were treated as following: Control, ZEN group, LP group and ZEN + LP group for 30 days. In vitro, LPVC showed an excellent antifungal activity after 7 days of co-incubation (103 CFU/ml). LPVC was succeeded also to inhibit ZEN production by the fungi. In vivo, ZEN has shown an important oxidative damage. As a result of the exposure to ZEN, an increase cytokines, as effectors of an inflammatory response, were observed in the mesenteric lymph nodes (MLN) of intoxicated mice. In parallel, a serum biochemical change was also observed. LPVC induced a reduction of ZEN-induced oxidative stress and counteracts also the biochemical parameters damage and the inflammatory markers increased by ZEN. LPVC can be valorized as an anti-cating agent in the vitro and in the gastro-intestinal tract to decrease ZEN-toxic effects.
Collapse
|
15
|
Wu J, Li J, Liu Y, Liao X, Wu D, Chen Y, Liang Z, Yuan Z, Li R, Yi J, Wen L. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117557. [PMID: 34167001 DOI: 10.1016/j.envpol.2021.117557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium strains, that is widely present in crops, and endangers the reproductive system of animals. Tannic acid (TA) is a natural polyphenolic substance that is widespread in the roots, stems, and leaves of plants, and has special pharmacological activity. This study was designed to investigate the therapeutic effect of TA on ZEA-induced ovarian damage in mice and to explore the molecular mechanism involved. Ninety healthy Kunming female mice were divided into six equal groups. All the groups but the control group were administered daily with ZEA [10 mg/kg body weight (bw)] orally, for 7 days, to induce damage to the reproductive system. Some groups were also administered with TA (50, 100, and 200 mg/bw) for 7 days. Mice were euthanized 24 h later to allow for collection of serum and ovaries. TA can effectively alleviate the appearance of congestion and redness of the ovary, caused by ZEA, and increase the number of healthy growing follicles. Moreover, the estrogen content and the levels of MDA and ROS in the ovaries can be effectively reduced by TA. It can also reduce the apoptosis of ovarian cells, decreases the protein expression of the estrogen receptor, Fas, Fasl, caspase-3, caspase-8, caspase-9, and Bax, and increases the protein expression of Bcl-2. Our study indicates that TA reduces the strong estrogen and oxidative damage induced by ZEA, and these therapeutic effects may be partially mediated by the death receptor and mitochondrial apoptosis signaling pathway.
Collapse
Affiliation(s)
- Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yanwei Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xinxin Liao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Dongyi Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China; Hunan Co-innovation Center of Animal Production Safety, Changsha, 410128, China.
| |
Collapse
|
16
|
Owumi SE, Najophe SE, Idowu TB, Nwozo SO. Protective mechanisms of gallic acid on hepatorenal dysfunction of zearalenone treated rat. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00828-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Polydatin Protects Bovine Mammary Epithelial Cells Against Zearalenone-Induced Apoptosis By Inhibiting Oxidative Responses and Endoplasmic Reticulum Stress. Toxins (Basel) 2021; 13:toxins13020121. [PMID: 33562867 PMCID: PMC7915214 DOI: 10.3390/toxins13020121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEA) is a mycotoxin of the Fusarium genus that can cause endoplasmic reticulum (ER) stress and Apoptosis in bovine mammary epithelial cells (MAC-T). Polydatin (PD), a glycoside purified from Polygonum cuspidatum, has antioxidant properties. This study aimed to explore whether PD can alleviate ZEA-induced damage on bovine mammary epithelial cells (MAC-T). We found that incasing the concentration of ZEA (0, 7.5, 15, 30, 60, 90, 120, and 240 μM) gradually decreased the cell viability. PD treatment alone at 5, 10, and 20 μM did not affect cell viability. Follow-up studies then applied 30 μM of ZEA and 5 μM of PD to treat cells; the results showed that the ZEA + PD treatment group effectively reduced cell oxidative damage compared with the ZEA treatment group. The qPCR analysis showed that ZEA treatment significantly up-regulated the expression of ER stress-related genes, relative to the control. However, adding PD significantly down-regulated the expression of ER stress-related genes. The cell apoptosis detection results showed that, compared with the ZEA treatment group, the ZEA + PD treatment group down-regulated the Bax gene and up-regulated the Bcl-2 gene expressions, which reduced the cell apoptosis rate and Caspase-3 activity. Taken together, these results indicate that PD reduces ZEA-induced apoptosis by inhibiting oxidative damage and ER stress.
Collapse
|
18
|
Song T, Liu X, Yuan X, Yang W, Liu F, Hou Y, Huang L, Jiang S. Dose-Effect of Zearalenone on the Localization and Expression of Growth Hormone, Growth Hormone Receptor, and Heat Shock Protein 70 in the Ovaries of Post-weaning Gilts. Front Vet Sci 2021; 8:629006. [PMID: 33614768 PMCID: PMC7889998 DOI: 10.3389/fvets.2021.629006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Zearalenone (ZEA) has an estrogen-like effect, which can injure the reproductive system of animals, causing infertility, and abortion in sows. However, the underlying mechanisms are still not clear. The objective of this study was to assess the effects of ZEA on the localization and expression of growth hormone (GH), growth hormone receptor (GHR), and heat shock protein 70 (Hsp70) in the ovaries of post-weaning gilts. Forty healthy post-weaning gilts were randomly provided one of four diets: normal basal diet supplemented with 0 (control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), and 1.5 (ZEA1.5) mg ZEA/kg. Gilts were housed and fed individually for 35 days; the ovaries were collected after euthanasia for antioxidant index, relative mRNA and protein expression, and immunohistochemical analyses of GH, GHR, and Hsp70. The results revealed that the glutathione peroxidase and total superoxide dismutase levels decreased (p < 0.05), whereas the malondialdehyde level increased (p < 0.05) with increasing ZEA content. The localization pattern of GH, GHR, and Hsp70 in ZEA-treated gilts was the same as that in the control; however, the localization of yellow and brown immunoreactive substances of GH, GHR, and Hsp70 was stronger in the ZEA groups than in the control. The relative mRNA and protein expression of GHR and Hsp70 was the highest in the ZEA1.0 group (p < 0.05), whereas that of GH was the highest in the ZEA0.5 group (p < 0.05). The mRNA and protein expression of GH was lower in the ZEA1.5 group than in the control (p < 0.05). Hsp70 results showed adverse responses to increasing ZEA levels in gilt ovaries, suggesting that Hsp70 played an important role in alleviating ZEA-induced oxidative stress.
Collapse
Affiliation(s)
- Tingting Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiufeng Liu
- College of Life and Sciences, Shandong Agricultural University, Tai'an, China
| | - Xuejun Yuan
- College of Life and Sciences, Shandong Agricultural University, Tai'an, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Faxiao Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yanmeng Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Agahi F, Juan C, Font G, Juan-García A. In silico methods for metabolomic and toxicity prediction of zearalenone, α-zearalenone and β-zearalenone. Food Chem Toxicol 2020; 146:111818. [PMID: 33098936 PMCID: PMC7576377 DOI: 10.1016/j.fct.2020.111818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Zearalenone (ZEA), α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL) (ZEA's metabolites) are co/present in cereals, fruits or their products. All three with other compounds, constitute a cocktail-mixture that consumers (and also animals) are exposed and never entirely evaluated, nor in vitro nor in vivo. Effect of ZEA has been correlated to endocrine disruptor alterations as well as its metabolites (α-ZEL and β-ZEL); however, toxic effects associated to metabolites generated once ingested are unknown and difficult to study. The present study defines the metabolomics profile of all three mycotoxins (ZEA, α-ZEL and β-ZEL) and explores the prediction of their toxic effects proposing an in silico workflow by using three programs of predictions: MetaTox, SwissADME and PASS online. Metabolomic profile was also defined and toxic effect evaluated for all metabolite products from Phase I and II reaction (a total of 15 compounds). Results revealed that products describing metabolomics profile were: from O-glucuronidation (1z and 2z for ZEA and 1 ab, 2 ab and 3 ab for ZEA's metabolites), S-sulfation (3z and 4z for ZEA and 4 ab, 5 ab and 6 ab for ZEA's metabolites) and hydrolysis (5z and 7 ab for ZEA's metabolites, respectively). Lipinsky's rule-of-five was followed by all compounds except those coming from O-glucuronidation (HBA>10). Metabolite products had better properties to reach blood brain barrier than initial mycotoxins. According to Pa values (probability of activation) order of toxic effects studied was carcinogenicity > nephrotoxic > hepatotoxic > endocrine disruptor > mutagenic (AMES TEST) > genotoxic. Prediction of inhibition, induction and substrate function on different isoforms of Cytochrome P450 (CYP1A1, CYP1A2, CYP2C9 and CYP3A4) varied for each compounds analyzed; similarly, for activation of caspases 3 and 8. Relying to our findings, the metabolomics profile of ZEA, α-ZEL and β-ZEL analyzed by in silico programs predicts alteration of systems/pathways/mechanisms that ends up causing several toxic effects, giving an excellent sight and direct studies before starting in vitro or in vivo assays contributing to 3Rs principle; however, confirmation can be only demonstrated by performing those assays.
Collapse
Affiliation(s)
- Fojan Agahi
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain.
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| |
Collapse
|
20
|
Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 2020; 185:46-56. [DOI: 10.1016/j.toxicon.2020.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/17/2023]
|
21
|
Mohamed AS. Echinochrome Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma in Swiss Albino Mice. Nutr Cancer 2020; 73:124-132. [PMID: 32151164 DOI: 10.1080/01635581.2020.1737152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Echinochrome (Ech) is a common pigment present in sea urchins, which has antioxidant, antimicrobial, antialgal, hypolipidemic and hypoglycemic activities.Purpose: The present investigation assessed the anticancer and antioxidant activities of Ech against the Ehrlich ascites carcinoma tumor model in mice.Methods: Forty female mice were divided into four groups (n = 10). All groups except the group I received EAC cells (5 × 106 cells/mouse i.p.). Group I, served as saline control (5 ml/kg 0.9% NaCl w/v p.o); group II served as EAC; groups III and IV received Ech (1 mg/kg body weight i.p.), and reference drug (5-Fu, 20 mg/kg body weight i.p.) respectively. Tumor markers, hematological parameters, liver functions, kidney functions and oxidative stress markers were analyzed in the present study.Results: A significant decrease (p < 0.05) were detected in the tumor volume, tumor cell counts, tumor cells viability, WBC count, MDA, urea, uric acid, AST, ALT, and ALP levels in Ech-treated mice. Furthermore, Ech-treated mice showed significant increases in RBCs count, Hb, Pt, GSH, CAT, and GST levels.Conclusion: The study results revealed that echinochrome suppresses tumor growth, decreases lipid peroxidation and improves the antioxidant status.
Collapse
|
22
|
Eid AM, Jaradat N. Public Knowledge, Attitude, and Practice on Herbal Remedies Used During Pregnancy and Lactation in West Bank Palestine. Front Pharmacol 2020; 11:46. [PMID: 32116721 PMCID: PMC7034419 DOI: 10.3389/fphar.2020.00046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
The use of herbal products by pregnant and lactating mothers without awareness of their harmful effects may expose both mother and fetus or infant to great dangers, such as abortion, premature delivery, uterine bleeding, and physical and mental retardation of the fetus. Thus, the aim of this study was to investigate the extent to which herbal product treatment is used and the reason for which such products are used and to ensure that these reasons are correct. An ethnopharmacological survey (cross-sectional observational design study) using a pre-piloted questionnaire was undertaken on herbal products used by pregnant and lactating women in the West Bank area of Palestine. A questionnaire was distributed to 350 pregnant and lactating women. The informed consent forms, ethics, and aims of the present study were reviewed and approved by the Institutional Review Board (IRB) at An-Najah National University. To identify the most important species used, the use value (UV) index was employed, while the SPSS program was used to analyze the data. Collected data revealed that 13 medicinal plants are utilized, while 12 plants are not used during pregnancy. Moreover, 15 plants are utilized and 9 plants are not used during lactation for treating and dealing with various problems. The most commonly used plants belonged to 14 families, including Lamiaceae, Apiaceae, Leguminosae, and Rubiaceae. The plants most used during pregnancy were sage (Salvia fruticosa), anise (Pimpinella anisum), and peppermint (Mentha × piperita). Castor (Ricinus communis) oil, ginger (Zingiber officinale), saffron (Crocus sativus), and senna (Senna alexandrina) mostly were not used by pregnant women. Moreover, cinnamon (Cinnamomum verum), anise (P. anisum), peppermint (M. piperita), and sage (S. fruticosa) were mostly used during lactation. Castor (R. communis) oil, ginger (Z. officinale), garlic (Allium sativum), and aloe (Aloe vera) mostly were not used during lactation. This study is of great importance in order to decrease the possibility of endangering the lives of fetuses and infants. A combined effort among researchers, scientists, lactating women, and pregnant women may help in changing wrong uses and thoughts about medicinal plants and help to improve the overall health of both mother and fetus.
Collapse
Affiliation(s)
- Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
23
|
Ben Salah-Abbès J, Belgacem H, Ezzdini K, Abdel-Wahhab MA, Abbès S. Zearalenone nephrotoxicity: DNA fragmentation, apoptotic gene expression and oxidative stress protected by Lactobacillus plantarum MON03. Toxicon 2020; 175:28-35. [PMID: 31830485 DOI: 10.1016/j.toxicon.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/17/2023]
Abstract
The present study was conducted to determine the abilities of the living Lactobacillus plantarum MON03 cells to degrade Zearalenone (ZEN) in liquid medium, and to elucidate the preventive effect in ZEN-contaminated balb/c mice showing kidney damage. The DNA fragmentation, Bcl-2 and Bax gene expression, caspase-3 activity, mRNA level of inflammation-regulating cytokines and histology of kidney tissues were examined. Female Balb/c mice were divided into four groups (10/group) and treated daily for 2 wk by oral gavage with lactic acid bacteria (L. plantarum MON03) 2 × 109 CFU/L, ~2 mg/kg only, ZEN (40 mg/kg BW) only, ZEN (40 mg/kg BW) + lactic acid bacteria (L. plantarum MON03, 2 × 109 CFU/L, ~2 mg/kg). Control group received vehicle. At the end of experiment, the kidney was collected for the determination of DNA fragmentation, Bcl-2 and Bax gene expression,caspase-3 activity, Malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) content, as well as for any alterations in expression of total antioxidant activity (TAC) and mRNA levels of inflammation-regulating cytokines (e.g., IL-10, IL-6, TNF-alpha). The results indicated that, kidney cells exposure to ZEN led to increased caspase-3 activity, MDA, and IL-10, IL-6, TNF-alpha and Bax mRNA levels, but decreased TAC content and down-regulated expression of GSH-Px and CAT and Bcl-2 mRNA. Co-treatment with ZEN plus LP suppressed the levels of DNA fragmentation; normalized kidney MDA and increased CAT levels, up-regulated expression of GSH-Px and CAT, and normalized mRNA levels of the analyzed cytokines. It's concluded that ZEN might have toxic effects in kidney. Further, it can be seen that use of LP induced protective effects against the oxidative stress and kidney toxicity of ZEN in part through adhesion (and so likely diminished bioavailability).
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezzdini
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
24
|
Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr 2019; 60:2710-2729. [DOI: 10.1080/10408398.2019.1655388] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ankita Rai
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR campus, Lucknow, India
| |
Collapse
|
25
|
Yang S, Gong P, Pan J, Wang N, Tong J, Wang M, Long M, Li P, He J. Pediococcus pentosaceus xy46 Can Absorb Zearalenone and Alleviate its Toxicity to the Reproductive Systems of Male Mice. Microorganisms 2019; 7:microorganisms7080266. [PMID: 31426404 PMCID: PMC6722568 DOI: 10.3390/microorganisms7080266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA) contamination is a very serious problem around the world as it can induce reproductive disorders in animals and affect the health of humans. Therefore, reducing the damage it causes to humans and animals is a current focus of research. In this study, we assess the removing capacity of Pediococcus pentosaceus xy46 towards ZEA and investigate the mechanism responsible for its action, thus confirming if it can alleviate ZEA toxicity to the reproductive systems of male mice. Our results show that the rate at which the strain removes ZEA is as high as 89.2% in 48 h when the concentration of ZEA is 4 μg/mL in the liquid medium. Heat and acid treatment significantly enhanced the ability of the bacteria to remove ZEA. The animal experiments results show that the oral administration of xy46 to mice (0.2 mL daily at a concentration of 109 CFU/mL for 28 days) significantly reduces the degree of testicular pathomorphological changes and apoptosis induced by ZEA when the mice are intragastric administration with 40 mg/kg ZEA daily for 28 days. Moreover, oral administration of xy46 enhances the decrease in the testosterone level and improves the oxidative stress injury induced by ZEA. Furthermore, oral administration of xy46 reverts the expression of these genes and proteins in the testicular tissues of the mice involved in the blood-testis barrier and apoptosis (e.g., Vim, caspase 12, Cldn11, N-cad, Bax, and Bcl-2). However, xy46 cannot significantly revert in some of these evaluated parameters, especially in sperm quantity and quality when the mice were given 70 mg/kg ZEA daily for 28 days. In conclusion, our results suggest that the strain Pediococcus pentosaceus xy46 can efficiently remove ZEA from the liquid medium, the mechanism responsible for its action is absorption, and it can alleviate the toxicity of ZEA to the reproductive systems of male mice when the mice are given 40 mg/kg ZEA daily, However, it cannot completely alleviate the reproductive toxicity of higher dosage of zearalenone through its ability to adsorb ZEA.
Collapse
Affiliation(s)
- Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
26
|
Zearalenone causes embryotoxicity and induces oxidative stress and apoptosis in differentiated human embryonic stem cells. Toxicol In Vitro 2019; 54:243-250. [DOI: 10.1016/j.tiv.2018.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
27
|
Su Y, Chen YP, Cheng YF, Wen C, Zhou YM. Effects of Modified Palygorskite Supplementation on Egg Quality and Mineral Element Content, and Intestinal Integrity and Barrier Function of Laying Hens. Biol Trace Elem Res 2018; 186:529-537. [PMID: 29658063 DOI: 10.1007/s12011-018-1335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
This study was conducted to investigate effects of modified palygorskite (MPal) supplementation on the laying performance, egg quality and mineral element content, immunity, oxidative status, and intestinal integrity and barrier function of laying hens. A total of 360 52-week-old Hyline Brown hens were randomly assigned into four dietary treatments for a 7-week feeding trial. The birds were fed a basal diet supplemented with 0 (control group), 0.25, 0.5, and 1 g/kg MPal, respectively. The supplementation of MPal did not alter laying performance and egg quality among groups. Compared with the control group, MPal inclusion decreased lead (Pb) content in yolks at 49 days, and either 0.5- or 1-g/kg MPal supplementation decreased Pb accumulation in yolks at 25 days and manganese (Mn) accumulation in yolks at 25 and 49 days. The contents of jejunal secretory immunoglobulin A (SIgA), ileal SIgA, and immunoglobulin G were decreased by the dietary 0.5-g/kg MPal supplementation. The supplementation of MPal also decreased malondialdehyde content in jejunum and ileum, and decreased serum diamine oxidase activity of the laying hens at 25 and 49 days. The inclusion of 0.5 and 1 g/kg MPal enhanced villus height in jejunum and ileum, and also increased the ratio of villus height to crypt depth in ileum. In conclusion, MPal supplementation decreased Pb and Mn contents in yolks, and exhibited beneficial effects on the intestinal immunity, oxidative status, and intestinal integrity and barrier function of laying hens and its optimal dosage was 0.5 g/kg.
Collapse
Affiliation(s)
- Y Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y P Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y F Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - C Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Y M Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
El Golli-Bennour E, Timoumi R, Koroit M, Bacha H, Abid-Essefi S. Protective effects of kefir against zearalenone toxicity mediated by oxidative stress in cultured HCT-116 cells. Toxicon 2018; 157:25-34. [PMID: 30448289 DOI: 10.1016/j.toxicon.2018.11.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 01/19/2023]
Abstract
Kefir is a fermented milk with numerous health favors counting restorative properties of bacterial flora, reduction of the symptoms of lactose intolerance, immune system stimulation, cholesterol reduction, as well as anti-mutagenic and anti-tumor properties. Zearalenone (ZEN) is a mycotoxin produced by some Fusarium species. ZEN often occurs as a contaminant in cereal grains and animal feeds. Human exposure occurs by ingestion of mycotoxin-contaminated products and can cause serious health problems. This study aimed to assess the preventive effect of kefir against ZEN toxicity in cultured HCT-116 colorectal carcinoma cells; by the evaluation of cell viability, oxidative stress status and the initiation of apoptotic cell death pathway. Our results demonstrated that ZEN inhibits cell proliferation which was accompanied by an increase in the generation of free radicals as measured by fluorescent 2,7-dichlorofluorescein (DCF) and Malondialdehyde (MDA). As an adaptive response to this redox status, we showed an induction of heat shock protein expression (Hsp 70) and an activation of antioxidant enzymes; catalase and Superoxide Dismutase (SOD). Moreover, a loss of mitochondrial membrane potential (Δѱm) was observed. The co-treatment as well as the pre-treatment by kefir showed a reduction of ZEN induced damages for all tested markers. However, the pre-treatment seems to be the most efficient, it prevented almost all ZEN hazards. Consequently, oxidative damage appears to be a key determinant of ZEN induced toxicity in cultured HCT-116 cells. In conclusion, we showed that kefir may better exert its virtue on preventive mode rather than on curative one. By this way, kefir as a beverage with highly antioxidant properties could be relevant particularly with the emergent demand for natural products which may counteract the detrimental effects of oxidative stress and therefore prevent multiple human diseases.
Collapse
Affiliation(s)
- Emna El Golli-Bennour
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia.
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Meriam Koroit
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Monastir, Tunisia
| |
Collapse
|
29
|
Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem Toxicol 2018; 119:24-30. [DOI: 10.1016/j.fct.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
30
|
Su Y, Sun Y, Ju D, Chang S, Shi B, Shan A. The detoxification effect of vitamin C on zearalenone toxicity in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:284-292. [PMID: 29715633 DOI: 10.1016/j.ecoenv.2018.04.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/09/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Zearalenone (ZEN), one of the more virulent mycotoxins occurred in various cereals and feed during recent decades and made serious health hazards to plants, animals and humans. Vitamin C (Vc) has been shown to be an effective antidote to zearalenone. In this paper, the effects of diets containing zearalenone on the growth performance, genital organ and immunoglobulin of weaning piglets and the toxicity alleviation of vitamin C were studied. Piglets were weaned at 21 days of age and 32 healthy female hybrid weaning piglets (Duroc × Landrace × Large white) with a mean weight of 12.27 ± 0.30 kg were randomly selected. The thirty-two female weaning piglets were divided into four treatment groups according to body weight: control; basal diet + vitamin C (150 mg/kg); basal diet + 1.0 mg/kg ZEN; basal diet + 1 mg/kg ZEN+vitamin C (150 mg/kg). There were eight replicates in each group. The test period was twenty-eight days. The results demonstrated that dietary zearalenone could significantly increase the length, width and area of vulva (P < 0.05), the genital organ coefficient (P < 0.05), the level of IgA, IgG and IgM (P < 0.05), the level of BUN, CRE, AST and TBIL (P < 0.05), and significantly decrease the level of E2, PROG, LH and FSH (P < 0.05). However, the addition of 150 mg/kg vitamin C to dietary zearalenone prevented deformities in the vulva, decrease in immune response capacity, changes in serum biochemical indicators and disorders in hormones level of the piglets that received the diet containing only zearalenone. In conclusion, feeding ZEN of 1.0 mg/kg can result in a deleterious effect on piglets, which was totally or partly ameliorated by dietary supplementation of vitamin C at concentrations about 150 mg/kg diet. This study systematically investigated the inhibition mechanism of vitamin C on ZEN-induced reproductive toxicity, immunotoxicity and hematological toxicity of piglets, and which provided new ideas for reducing the harm of mycotoxins to the animals through means of nutrition regulation.
Collapse
Affiliation(s)
- Yang Su
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Daxin Ju
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Siying Chang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
31
|
Su Y, Chen Y, Chen L, Xu Q, Kang Y, Wang W, Wang A, Wen C, Zhou Y. Effects of different levels of modified palygorskite supplementation on the growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers. J Anim Physiol Anim Nutr (Berl) 2018; 102:1574-1584. [PMID: 30113108 DOI: 10.1111/jpn.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
This experiment was designed to investigate effects of different levels of modified palygorskite (MPal) supplementation on growth performance, immunity, oxidative status and intestinal integrity and barrier function of broilers. A total of 320 1-day-old Arbor Acres broilers were randomly assigned into 5 dietary treatments and fed a basal diet supplemented with 0, 0.25, 0.5, 1 and 2 g/kg MPal, respectively, for a 42-day feeding trial. Treatments quadratically reduced feed/gain ratio (F:G) during 1-21 days and linearly decreased average daily feed intake and F:G during 22-42 days, and linearly and quadratically decreased average daily feed intake and F:G during overall period (p < 0.05, 0.50 g/kg treatment showed the lowest F:G). MPal supplementation increased the contents of 21-day jejunal secretory immunoglobulin A (SIgA) quadratically, and 21-day jejunal immunoglobulin G (IgG), immunoglobulin M (IgM) and 42-day jejunal total superoxide dismutase (T-SOD) activity linearly and quadratically (0.50 g/kg treatment showed the highest immunoglobulin concentration), whereas linearly reduced 21-day ileal SIgA level and 42-day jejunal malondialdehyde (MDA) accumulation and serum diamine oxidase activity, and quadratically decreased 21-day ileal MDA level (p < 0.05). The 42-day jejunal SIgA, IgG and IgM concentrations, and T-SOD activity in jejunum at 21 days and ileum at both 21 days and 42 days were quadratically increased with MPal administration (p < 0.05, 0.50 g/kg treatment showed the highest T-SOD activity). The mucin 2 mRNA abundances in 42-day jejunum and 21-day ileum were quadratically increased with MPal supplementation (p < 0.05). Treatments linearly increased 42-day ileal zonula occludens-1, claudin-3 and jejunal claudin-3 mRNA level, whereas linearly and quadratically increased ileal claudin-2 mRNA level (p < 0.05). In conclusion, MPal supplementation exhibited beneficial effects on growth performance, intestinal immunity, antioxidant capacity and intestinal integrity and barrier function of broiler with its optimum dosage being 0.5 g/kg.
Collapse
Affiliation(s)
- Yue Su
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lingjie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.,R&D Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi, China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Shi D, Zhou J, Zhao L, Rong X, Fan Y, Hamid H, Li W, Ji C, Ma Q. Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts. J Anim Sci Biotechnol 2018; 9:42. [PMID: 29796255 PMCID: PMC5956560 DOI: 10.1186/s40104-018-0255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
Background The current study was carried out to evaluate the effects of mycotoxin biodegradation agent (MBA, composed of Bacillus subtilis ANSB01G and Devosia sp. ANSB714) on relieving zearalenone (ZEA) and deoxynivalenol (DON) toxicosis in immature gilts. Methods A total of forty pre-pubertal female gilts (61.42 ± 1.18 kg) were randomly allocated to four diet treatments: CO (positive control); MO (negative control, ZEA 596.86 μg/kg feed and DON 796 μg/kg feed); COA (CO + 2 g MBA/kg feed); MOA (MO + 2 g MBA/kg feed). Each treatment contained 10 replicates with 1 gilt per replicate. Gilts were housed in an environmentally controlled room with the partially slatted floor. Results During the entire experimental period of 28 d, average daily gain (ADG) and average daily feed intake (ADFI) of gilts in MO group was significantly reduced compared with those in CO group. The vulva size of gilts was significantly higher in MO group than CO group. In addition, significant increases in the plasma levels of IgA, IgG, IL-8, IL-10 and PRL were determined in MO group compared with that in CO group. ZEA and DON in the diet up-regulated apoptotic caspase-3 in ovaries and uteri, along with down-regulated the anti-apoptotic protein Bcl-2 in ovaries. The supplementation of MBA into diets co-contaminated with ZEA and DON significantly increased ADG, decreased the vulva sizes, reduced the levels of IgG, IL-8 and PRL in plasma, and regulated apoptosis in ovaries and uteri of gilts. Conclusions The present results indicated that feeding diet contaminated with ZEA and DON simultaneously (596.86 μg/kg + 796 μg/kg) had detrimental effects on growth performance, plasma immune function and reproductive status of gilts. And MBA could reduce the negative impacts of these two toxins, believed as a promising feed additive for mitigating toxicosis of ZEA and DON at low levels in gilts.
Collapse
Affiliation(s)
- Donghui Shi
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,2Liaoning Medical University, Jinzhou, 121001 People's Republic of China
| | - Jianchuan Zhou
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,Fuqing Fengze Agricultural Science and Technology Development Co. Ltd., Fuzhou, 350011 People's Republic of China
| | - Lihong Zhao
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Xiaoping Rong
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yu Fan
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100193 People's Republic of China
| | - Humera Hamid
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Wenqiang Li
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,2Liaoning Medical University, Jinzhou, 121001 People's Republic of China
| | - Cheng Ji
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Qiugang Ma
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
33
|
Muthulakshmi S, Maharajan K, Habibi HR, Kadirvelu K, Venkataramana M. Zearalenone induced embryo and neurotoxicity in zebrafish model (Danio rerio): Role of oxidative stress revealed by a multi biomarker study. CHEMOSPHERE 2018; 198:111-121. [PMID: 29421719 DOI: 10.1016/j.chemosphere.2018.01.141] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 05/19/2023]
Abstract
In the present study, we evaluated the zearalenone induced adverse effects in zebrafish embryos using various endpoints like embryo toxicity, heart rate, oxidative stress indicators (reactive oxygen species (ROS), lipid peroxidation (LPO), Nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase enzyme (GST) and reduced glutathione (GSH), metabolic biomarkers (lactate dehydrogenase (LDH) and Nitric oxide (NO)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (comet assay and acridine orange staining (AO)) and histological analysis. In this study, four concentrations 350, 550, 750 and 950 μg/L of ZEA were chosen based on LC10 and LC50 values of the previous report. The results shows that ZEA induces developmental defects like pericardial edema, hyperemia, yolk sac edema, spine curvature and reduction in heart rate from above 550 μg/L exposure and the severity was increased with concentration and time dependent manner. Significant induction in oxidative stress indices (ROS, LPO and NO), reduction in antioxidant defence system (SOD, CAT, GPx, GST and GSH) and changes in metabolic biomarkers (LDH and AP) were observed at higher ZEA exposed concentration. Neurotoxic effects of ZEA were observed with significant inhibition of AChE activity at higher exposure groups (750 and 950 μg/L). Moreover, we also noticed DNA damage, apoptosis and histological changes in the higher ZEA treatments at 96 h post fertilization (hpf) embryos. Hence, in the present study we concluded that oxidative stress is the main culprit in ZEA induced developmental, genotoxicity and neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Sellamani Muthulakshmi
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Kannan Maharajan
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Krishna Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India
| | - Mudili Venkataramana
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, India.
| |
Collapse
|
34
|
Pietsch C. Zearalenone (ZEN) and Its Influence on Regulation of Gene Expression in Carp (Cyprinus carpio L.) Liver Tissue. Toxins (Basel) 2017; 9:toxins9090283. [PMID: 28914814 PMCID: PMC5618216 DOI: 10.3390/toxins9090283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Zearalenone (ZEN) is a frequently-occurring mycotoxin in both animal and fish feeds. In order to characterize its effects on carp, three groups of fish were fed for 28 days with feeds contaminated with three different levels of ZEN (low: 332 µg kg−1, medium: 621 µg kg−1, and high: 797 µg kg−1 feed). The reversibility of the effects of ZEN was assessed by feeding all of the groups with uncontaminated feed for a further 14 days. Gene expression of immune genes in the liver tissue of the fish was analysed, revealing reduced expressions of immune, antioxidative, and estrogen-related genes after the fish had been exposed to ZEN. However, the expression of vacuole-type H+ ATPase increased substantially with ZEN exposure, thus supporting the previously-reported sensitivity of lysosomal functions to ZEN. Feeding the fish with a ZEN-free diet for a further two weeks changed the effects of ZEN on the expression of some genes, including the expressions of the cytokines IL-1β, IL-8, IL-10, and arginase 2, which were not influenced after four weeks of treatment, but showed lower values after the recovery phase in fish previously treated with ZEN compared with the control group. In summary, this study confirmed the broad effects of ZEN on different essential functions in carp and suggests that the current maximum allowable levels in compound feed are too high to prevent damage to fish.
Collapse
Affiliation(s)
- Constanze Pietsch
- Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), Grüental, P.O. Box, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
35
|
Kim S, Woo M, Kim M, Noh JS, Song YO. Hot water extracts of pressure-roasted dried radish attenuates hepatic oxidative stress via Nrf2 up-regulation in mice fed high-fat diet. Food Sci Biotechnol 2017; 26:1063-1069. [PMID: 30263637 PMCID: PMC6049537 DOI: 10.1007/s10068-017-0135-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 11/30/2022] Open
Abstract
This study investigated the effect of pressure-roasted dried radish (PRDR) against oxidative stress. To prepare PRDR extract, dried radish (DR) was pressure-roasted, boiled, and then freeze-dried. Mice fed a chow diet with oral administration of distilled water (DW) (normal group) or a high-fat diet with DW (control, CON group), DR (DR group, 237 mg/kg bw/day), or PRDR (PRDR group, 237 mg/kg bw/day) (n = 8 each group) for 12 weeks. Hepatic lipid peroxidation level in the DR and PRDR groups was lower than that in the CON group, whereas hepatic glutathione level in these groups was higher (p < 0.05). Hepatic expression of nuclear factor (erythroid-derived 2)-like 2 and its related antioxidant enzymes such as catalase, glutathione S-transferase, and peroxidases was the highest in the PRDR group (p < 0.05). It is apparent that radish attenuate oxidative stress and the process of pressure roasting might contribute positively to this effect.
Collapse
Affiliation(s)
- Seulki Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241 Republic of Korea
- Food Processing Research Center, Korean Food Research Institute, Seongnam, 13539 Republic of Korea
| | - Minji Woo
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241 Republic of Korea
| | - Mijeong Kim
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241 Republic of Korea
| | - Jeong Sook Noh
- Department of Food Science and Nutrition, Tongmyong University, Busan, 48520 Republic of Korea
| | - Yeong Ok Song
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, 46241 Republic of Korea
| |
Collapse
|
36
|
Islam MR, Kim JW, Roh YS, Kim JH, Han KM, Kwon HJ, Lim CW, Kim B. Evaluation of immunomodulatory effects of zearalenone in mice. J Immunotoxicol 2017. [PMID: 28641471 DOI: 10.1080/1547691x.2017.1340371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by Fusarium species. The toxicity of ZEA has been evaluated for reproductive and developmental effects; however, there is little evidence about its acute toxicity or general immunotoxicity. In the present study, immune regulatory functions were investigated in mice that had been exposed to ZEA (5 or 20 mg/kg BW) daily for 14 days. Results showed that sub-populations of CD4+, CD8+ and CD11c+ cells in the spleen and CD4+, CD8+ and F4/80+ cells in the mesenteric lymph nodes (MLN) of ZEA (20 mg/kg)-exposed hosts were decreased compared to those in the control mice. However, CD19+ and CD11c+ cells were increased in the MLN of the ZEA mice and CD4+CD25+Foxp3+ cells were decreased in the spleen and MLN. There were differential changes in the immune cell populations of the small intestine of the ZEA mice as well, depending on small intestine location. In ex vivo experiments, ZEA treatments resulted in increased proliferative capacities of mitogen-induced splenocytes and MLN cells; such changes were paralleled by significant increases in interferon (IFN)-γ production. With regard to serum isotypes, IgM levels were decreased and IgE levels were increased in the 20 mg/kg ZEA-treated mice. Mucosal IgA levels were decreased in the duodenum and vagina of these hosts. Serum analyzes also revealed that tumor necrosis factor (TNF)-α levels were decreased and interleukin (IL)-6 levels increased as a result of ZEA exposures. ZEA treatment also led to increased apoptosis in the spleen and Peyer's patches; these changes were associated with changes in the ratios of Bax:Bcl-2. Following priming with different TLR ligands, ZEA exposure led to differentially modulated TLR signaling and variable production of pro- and anti-inflammatory cytokines in RAW 264.7 macrophage cells. Taken together, these results indicated that ZEA could alter the normal expression/function of different immune system components and this would likely lead to immunomodulation in situ.
Collapse
Affiliation(s)
- Mohammad Rafiqul Islam
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Republic of Korea
| | - Jong Won Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Republic of Korea
| | - Yoon-Seok Roh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Jong-Hoon Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Republic of Korea
| | - Kang Min Han
- Department of Pathology, Dongguk University, Ilsan Hospital, Goyang, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Chonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
37
|
Chen P, Liu T, Jiang S, Yang Z, Huang L, Liu F. Effects of purified zearalenone on selected immunological and histopathologic measurements of spleen in post-weanling gilts. ACTA ACUST UNITED AC 2017; 3:212-218. [PMID: 29767107 PMCID: PMC5941232 DOI: 10.1016/j.aninu.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 11/09/2022]
Abstract
The present study was aimed at investigating the adverse effects of dietary zearalenone (ZEA) on the lymphocyte proliferation rate (LPR), interleukin-2 (IL-2), mRNA expressions of pro-inflammatory cytokines, and histopathologic changes of spleen in post-weanling gilts. A total of 20 crossbred piglets (Yorkshire × Landrace × Duroc) with an initial BW of 10.36 ± 1.21 kg (21 d of age) were used in the study. Piglets were fed a basal diet with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. The results showed that LPR and IL-2 production of spleen decreased linearly (P < 0.05) as dietary ZEA increased. Splenic mRNA expressions of interleukin-1β (IL-1β) and interleukin-6 (IL-6) were linearly up-regulated (P < 0.05) as dietary ZEA increased. On the contrary, linear down-regulation (P < 0.05) of mRNA expression of interferon-γ (IFN-γ) was observed as dietary ZEA increased. Swelling splenocyte in 1.1 mg/kg ZEA treatments, atrophy of white pulp and swelling of red pulp in 2.0 and 3.2 mg/kg ZEA treatments were observed. The cytoplasmic edema in 1.1 mg/kg ZEA treatments, significant chromatin deformation in 2.0 mg/kg ZEA treatment and phagocytosis in 3.2 mg/kg ZEA treatment were observed. Results suggested that dietary ZEA at 1.1 to 3.2 mg/kg can induce splenic damages and negatively affect immune function of spleen in post-weanling gilts.
Collapse
Affiliation(s)
- Peng Chen
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Tingjun Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
38
|
Shi B, Su Y, Chang S, Sun Y, Meng X, Shan A. Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct 2017; 8:3675-3687. [DOI: 10.1039/c7fo01301a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN), a common mycotoxin found in human food and animal feed, is effectively detoxified by vitamin C by modulation of the nuclear receptor signaling pathway.
Collapse
Affiliation(s)
- Baoming Shi
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yang Su
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Siying Chang
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Yuchen Sun
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Xiangyu Meng
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition
- Northeast Agricultural University
- Harbin
- P. R. China
| |
Collapse
|
39
|
The Protective Effect of Selenium on Chronic Zearalenone-Induced Reproductive System Damage in Male Mice. Molecules 2016; 21:molecules21121687. [PMID: 27941626 PMCID: PMC6274099 DOI: 10.3390/molecules21121687] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the protective effect of selenium (Se) on chronic zearalenone (ZEN)-induced reproductive system damage in male mice and the possible protective molecular mechanism against this. The chronic ZEN-induced injury mouse model was established with the continuous intragastric administration of 40 mg/kg body mass (B.M.) ZEN for 28 days. Then, interventions with different doses (0.1, 0.2, and 0.4 mg/kg B.M.) of Se were conducted on mice to analyse the changes in organ indexes of epididymis and testis, antioxidant capability of testis, serum level of testosterone, sperm concentration and motility parameters, and the expression levels of apoptosis-associated genes and blood testis barrier- (BTB) related genes. Our results showed that Se could greatly improve the ZEN-induced decrease of epididymis indexes and testis indexes. Results also showed that the decrease in sperm concentration, sperm normality rate, and sperm motility parameters, including percentage of motile sperm (motile), tropism percentage (progressive) and sperm average path velocity (VAP), caused by ZEN were elevated upon administration of the higher dose (0.4 mg/kg) and intermediate dose (0.2 mg/kg) of Se. Selenium also significantly reduced the content of malondialdehyde (MDA) but enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testis tissue. Further research demonstrated that ZEN increased the level of mRNA expression of BCL2-associated X protein (Bax) and caspase 3 (Casp3), decreased the level of mRNA expression of B cell leukemia/lymphoma 2 (Bcl2), vimentin (Vim) and cadherin 2 (Cdh2), whereas the co-administration of Se reversed these gene expression levels. Our results indicated that high levels of Se could protect against reproductive system damage in male mice caused by ZEN and the mechanism might such be that Se improved mice antioxidant ability, inhibited reproductive cell apoptosis, and increased the decrease of BTB integrity-related genes caused by ZEN.
Collapse
|
40
|
Long M, Yang S, Zhang W, Zhang Y, Li P, Guo Y, Wang Y, Chen X, He J. The Influence of Selenium Yeast on Hematological, Biochemical and Reproductive Hormone Level Changes in Kunming Mice Following Acute Exposure to Zearalenone. Biol Trace Elem Res 2016; 174:362-368. [PMID: 27147431 DOI: 10.1007/s12011-016-0725-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
Abstract
Healthy male Kunming mice received selenium yeast for 14 days prior to a single oral administration of zearalenone (ZEN). After 48 h, blood samples were collected for analysis and showed that mice in the ZEN-treated group has significantly decreased lymphocytes (P < 0.05) and platelets (P < 0.05) along with an increased white blood cell (WBC) count and other constituents (P < 0.05). The serum biochemistry analysis of the ZEN group indicated that glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST), urea, and uric acid were significantly increased (P < 0.05), whilst total bilirubin (TB) and albumin (ALB) were decreased along with serum testosterone and estrogen (P < 0. 05). The level of malondialdehyde (MDA) in the serum of the ZEN group was significantly increased whilst glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) had significantly decreased (P < 0.05). Treatment with selenium yeast had a significant effect on response with most of the experimental parameters returning to levels similar to those observed in the untreated control mice. From these data, it can be concluded that ZEN is highly poisonous in Kunming mice with high levels of toxicity on the blood, liver, and kidneys. High levels of oxidative stress were observed in mice and pre-treatment with selenium yeast by oral gavage is effective in the ameliorated effects of ZEN-induced damage.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Wenkui Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yuan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
41
|
Ben Salem I, Boussabbeh M, Prola A, Guilbert A, Bacha H, Lemaire C, Abid-Essefi S. Crocin protects human embryonic kidney cells (HEK293) from α- and β-Zearalenol-induced ER stress and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15504-15514. [PMID: 27121014 DOI: 10.1007/s11356-016-6741-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) are the major metabolites of Zearalenone (ZEN) and are known to induce many toxic effects. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in α- and β-ZOL-mediated toxicity in human kidney cells (HEK293) and evaluated the effect of a common dietary compound Crocin (CRO), from saffron. We show that α- and β-ZOL treatment induces ER stress as evidenced by the upregulation of the 78 kDa glucose-regulated protein (GRP78) and the Growth arrest and DNA damage-inducible protein (GADD34). Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm) and activation of caspases. We also demonstrate that the antioxidant properties of CRO help to prevent ER stress and reduce α- and β-ZOL-induced apoptosis in HEK293 cells. Our results suggest that saffron consumption might be helpful to prevent α- and β-ZOL-induced ER stress and toxicity.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | | | | | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Christophe Lemaire
- INSERM UMR-S 769, LabEx LERMIT, Châtenay-Malabry, France
- Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
- Université de Versailles Saint Quentin en Yvelines, Versailles, France
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia.
| |
Collapse
|
42
|
Yang L, Yang W, Feng Q, Huang L, Zhang G, Liu F, Jiang S, Yang Z. Effects of purified zearalenone on selected immunological measurements of blood in post-weaning gilts. ACTA ACUST UNITED AC 2016; 2:142-148. [PMID: 29767104 PMCID: PMC5941023 DOI: 10.1016/j.aninu.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
Zearalenone (ZEA), an estrogenic mycotoxin, is produced mainly by Fusarium fungi. Previous studies have indicated that acute ZEA exposure induced various damages in different species; however, its transparent hematotoxicity in female piglets at dietary levels of 1.1 to 3.2 mg/kg has not been shown. The present study was conducted to investigate the effects of dietary ZEA (1.1–3.2 mg/kg) on hematology, T lymphocyte subset, immunoglobulin, antibody titer, lymphocyte proliferation rate (LPR), and interleukin-2 (IL-2) in peripheral blood of post-weaning gilts. A total of 20 female piglets (Landrace × Yorkshire × Duroc), weaned at 42 d with an average body weight of 10.36 ± 1.21 kg were used in the study. Female piglets were kept in a temperature controlled room, divided into four treatments, and fed a diet based on corn-soybean meal-fishmeal-whey, with an addition of 0, 1.1, 2.0, or 3.2 mg/kg purified ZEA for 18 d ad libitum. Feed intake and refusal were measured daily and individual pigs were weighed weekly. Blood and serum samples were collected for selected immunological measurements. Female piglets fed different levels of dietary ZEA grew similarly with no difference in feed intake. Hematological values including leukocytes, platelets, lymphocytes, hematocrit, and mean corpuscular hemoglobin (MCH) decreased linearly (P < 0.05) as dietary ZEA increased. Female piglets fed diets containing 2.0 mg/kg ZEA or greater showed significantly decreased CD4+CD8+, CD4+, and CD4+/CD8+ in comparison to the control (P < 0.05), whereas CD8+ was significantly increased (P = 0.026) in the gilts which were fed the diet containing 3.2 mg/kg ZEA. Serum immunoglobulin G (IgG) and the antibody titer on d 18 were reduced linearly as dietary ZEA levels increased (P < 0.001). Linear decrease in LPR was observed (P < 0.05). Female piglets fed diets containing 2.0 mg/kg ZEA or more showed significantly decreased IL-2 in comparison to the control (P < 0.05). The results suggested that dietary ZEA at the levels of 1.1 to 3.2 mg/kg can induce different degrees of hematotoxicity and negatively affect immune function in female piglets.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Qiang Feng
- Tai'an Central Hospital, Shandong 271000, China
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Guiguo Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
43
|
Yang WS, Kim I, Seu YB, Jeong YJ, Han HS, Ryu KO, Kang SC. Ethanolic Extract of Radish Sprout (Raphanus Sativus
L.) Prevents Bisphenol A-Induced Testicular Dysfunction in Male Rats. J Food Biochem 2016. [DOI: 10.1111/jfbc.12245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Woong-Suk Yang
- School of Life Sciences and Biotechnology; Kyungpook National University; Daegu 702-701 Republic of Korea
| | - Inhye Kim
- Department of Food and Nutrition; College of Human Ecology, Hanyang University; Seoul 133-791 Republic of Korea
| | - Young-Bae Seu
- School of Life Sciences and Biotechnology; Kyungpook National University; Daegu 702-701 Republic of Korea
| | - Yong Joon Jeong
- Department of Life Science; Gachon University; Seongnam 461-701 Republic of Korea
| | - Hyo Sang Han
- Department of Health Administration; Joongbu University; Geumsan 312-702 Republic of Korea
| | - Kyung Oh Ryu
- Asia Seed Co., Ltd.; Seoul 137-807 Republic of Korea
| | - Se Chan Kang
- Department of Life Science; Gachon University; Seongnam 461-701 Republic of Korea
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104; Republic of Korea
| |
Collapse
|
44
|
Sang Y, Li W, Zhang G. The protective effect of resveratrol against cytotoxicity induced by mycotoxin, zearalenone. Food Funct 2016; 7:3703-15. [DOI: 10.1039/c6fo00191b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zearalenone (ZEA), a non-steroidal estrogenic mycotoxin, is widely present in cereals and agricultural products.
Collapse
Affiliation(s)
- Yaqiu Sang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Wenzhu Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
| |
Collapse
|
45
|
Ben Salem I, Prola A, Boussabbeh M, Guilbert A, Bacha H, Abid-Essefi S, Lemaire C. Crocin and Quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones 2015; 20:927-38. [PMID: 26134454 PMCID: PMC4595428 DOI: 10.1007/s12192-015-0613-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/16/2015] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are considered to be significant contaminants of food and animal feed. Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium in cereals and agricultural products. ZEN has been shown to be cytotoxic, genotoxic, and mutagenic in different cell types. In the present study, we investigated the involvement of endoplasmic reticulum (ER) stress in ZEN-mediated toxicity in human intestine (HCT116) and kidney (HEK293) cells and evaluated the effects of the two common dietary compounds Quercetin (QUER) and Crocin (CRO). We show that ZEN treatment induces ER stress and activates the unfolded protein response (UPR) as evidenced by XBP1 mRNA splicing and upregulation of GRP78, ATF4, GADD34, PDIA6, and CHOP. Activation of the ER stress response is associated with activation of the mitochondrial pathway of apoptosis. This apoptotic process is characterized by an increase in ROS generation and lipid peroxidation, a loss of mitochondrial transmembrane potential (ΔΨm), and an activation of caspases and DNA damages. We also demonstrate that the antioxidant properties of QUER and CRO help to prevent ER stress and reduce ZEN-induced apoptosis in HCT116 and HEK293 cells. Our results suggest that antioxidant molecule might be helpful to prevent ZEN-induced ER stress and toxicity.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | | | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte, Tunisia
| | | | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds (LRSBC), Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia.
| | - Christophe Lemaire
- INSERM UMR-S 1180, LabEx LERMIT, Châtenay-Malabry, France
- Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
- Université de Versailles Saint Quentin en Yvelines, Versailles, France
| |
Collapse
|
46
|
Cao DQ, Luo L, Wang RO, Yang Z, Zhang LL, You LY, Wang Q, Song Q, Li XR, Liang Y. Protective effects of Raphanus sativus extract on intestinal mucosal peroxide damage in rats with incomplete intestinal obstruction. Shijie Huaren Xiaohua Zazhi 2015; 23:4236-4241. [DOI: 10.11569/wcjd.v23.i26.4236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effects of Raphanus sativus extract (Rex) on intestinal mucosal peroxide damage in a rat model of incomplete intestinal obstruction (IIO).
METHODS: Sprague-Dawley rats were randomly divided into a normal group (group A, n = 14), a sham-operation group (group B, n = 14), an intestinal obstruction group (group C, n = 20) and an intestinal obstruction + Rex group (group D, n = 20). IIO was induced by surrounding the terminal ileum with a sterile pipe. After that, the animals in group D was given Rex (100 mg/kg body weight), while the rest groups were given equal volumes of saline. On days 5 and 7, the abdominal cavity was opened to collect 3 mL blood from the abdominal aorta for determining superoxide dismutase (SOD) and malondialdehyde (MDA) levels. Meanwhile, two segments of the small intestine were taken 4 cm above the obstructive for hematoxylin-eosin (HE) staining and for measuring diamine oxidase (DAO), respectively.
RESULTS: At each corresponding time point, compared with group B, SOD and DAO levels were significantly lower (P < 0.05 or P < 0.01) and MDA content and mucosal injury score were significantly higher (P < 0.01) in group C. Swelling, necrosis and shedding were visible in epithelial cells. Meanwhile, the submucosa, muscular and serosa had apparent congestion with infiltration of inflammatory cells. Compared with group C, treatment with Rex in group D significantly increased SOD activity (P < 0.05 or P < 0.01) and DAO content (P < 0.01), while MDA content and mucosal injury score were significantly decreased (P < 0.01). The damage of the ileum mucosa, infiltration of inflammatory cells and vascular responses in the ileum were significantly alleviated after treatment with Rex.
CONCLUSION: Rex can elevate serum SOD activity, reduce MDA content and increase tissue DAO levels in rats with IIO to protect the intestinal mucosal from being damaged by oxidative stress reaction effectively.
Collapse
|
47
|
Jia Z, Yin S, Liu M, Zhang Y, Gao R, Shi B, Shan A, Chen Z. Modified halloysite nanotubes and the alleviation of kidney damage induced by dietary zearalenone in swine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1312-21. [DOI: 10.1080/19440049.2015.1048748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Yin S, Meng Q, Zhang B, Shi B, Shan A, Li Z. Alleviation of zearalenone toxicity by modified halloysite nanotubes in the immune response of swine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:87-99. [DOI: 10.1080/19440049.2014.987700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Liu M, Gao R, Meng Q, Zhang Y, Bi C, Shan A. Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats. PLoS One 2014; 9:e106412. [PMID: 25180673 PMCID: PMC4152245 DOI: 10.1371/journal.pone.0106412] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/06/2014] [Indexed: 01/25/2023] Open
Abstract
The present study was conducted to investigate the effects of maternal zearalenone (ZEN) exposure on the intestine of pregnant Sprague-Dawley (SD) rats and its offspring. Ninety-six pregnant SD rats were randomly divided into four groups and were fed with diets containing ZEN at concentrations of 0.3 mg/kg, 48.5 mg/kg, 97.6 mg/kg or 146.0 mg/kg from gestation days (GD) 1 to 7. All rats were fed with mycotoxin-free diet until their offspring were weaned at three weeks of age. The small intestinal fragments from pregnant rats at GD8, weaned dams and pups were collected and studied for toxic effects of ZEN on antioxidant status, immune response, expression of junction proteins, and morphology. The results showed that ZEN induced oxidative stress, affected the villous structure and reduced the expression of junction proteins claudin-4, occludin and connexin43 (Cx43) in a dose-dependent manner in pregnant rats. Different effects on the expression of cytokines were also observed both in mRNA and protein levels in these pregnant groups. Ingestion of high levels of ZEN caused irreversible damage in weaned dams, such as oxidative stress, decreased villi hight and low expression of junction proteins and cytokines. Decreased expression of jejunal interleukin-8 (IL-8) and increased expression of gastrointestinal glutathione peroxidase (GPx2) mRNA were detected in weaned offspring, indicating long-term damage caused by maternal ZEN. We also found that the Nrf2 expression both in mRNA and protein levels were up-regulated in the ZEN-treated groups of pregnant dams and the high-dose of ZEN group of weaned dams. The data indicate that modulation of Nrf2-mediated pathway is one of mechanism via which ZEN affects gut wall antioxidant and inflammatory responses.
Collapse
Affiliation(s)
- Min Liu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Rui Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Yuanyuan Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
50
|
Jiang S, Li Z, Wang G, Yang Z, Yang W, Zhang G, Wu Y. Effects of Fusarium mycotoxins with yeast cell wall absorbent on hematology, serum biochemistry, and oxidative stress in broiler chickens. J APPL POULTRY RES 2014. [DOI: 10.3382/japr.2013-00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|