1
|
Ozawa M, Uchida H, Watanabe R, Matsushima R, Oikawa H, Takahashi K, Iwataki M, Suzuki T. Azaspiracid accumulation in Japanese coastal bivalves and ascidians fed with Azadinium poporum producing azaspiracid-2 as the dominant toxin component. Toxicon 2023; 226:107069. [PMID: 36871920 DOI: 10.1016/j.toxicon.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The filter-feeding bivalves often accumulate marine toxins by feeding on toxic dinoflagellates that produce marine toxins. Azaspiracids (AZAs) are a group of lipophilic polyether toxins which have been detected in a variety of organisms in many countries. In our present study, accumulation kinetics and toxin distributions in the tissues of seven bivalve species and ascidians relevant to Japanese coastal waters were investigated by experimentally feeding a toxic dinoflagellate Azadinium poporum, which produces azaspiracid-2 (AZA2) as the dominant toxin component. All bivalve species and ascidians investigated in this study had the capability to accumulate AZA2 and no metabolites of AZA2 were detected in the bivalves and the ascidians. Japanese short-neck clams, Japanese oysters, Pacific oysters and ascidians accumulated AZA2 with the highest concentrations on the hepatopancreas, whereas the highest concentrations of AZA2 were found on the gills in surf clams and horse clams. Hard clams and cockles accumulated high levels of AZA2 in both the hepatopancreas and the gills. As far as we know, this is the first report describing detailed tissue distribution of AZAs in several bivalve species other than mussels (M. edulis) and scallops (P. maximus). Variation of accumulation rates of AZA2 in Japanese short-neck clams on different cell densities or temperatures were observed.
Collapse
Affiliation(s)
- Mayu Ozawa
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hajime Uchida
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryuichi Watanabe
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Ryoji Matsushima
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hiroshi Oikawa
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| | - Kazuya Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| | - Toshiyuki Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
2
|
Samdal IA, Sandvik M, Vu J, Sukenthirarasa MS, Kanesamurthy S, Løvberg KLE, Kilcoyne J, Forsyth CJ, Wright EJ, Miles CO. Preparation and characterization of an immunoaffinity column for the selective extraction of azaspiracids. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1207:123360. [PMID: 35839625 DOI: 10.1016/j.jchromb.2022.123360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022]
Abstract
The presence of azaspiracids (AZAs) in shellfish may cause food poisoning in humans. AZAs can accumulate in shellfish filtering seawater that contains marine dinoflagellates such as Azadinium and Amphidoma spp. More than 60 AZA analogues have been identified, of which AZA1, AZA2 and AZA3 are regulated in Europe. Shellfish matrices may complicate quantitation by ELISA and LC-MS methods. Polyclonal antibodies have been developed that bind specifically to the C-26-C-40 domain of the AZA structure and could potentially be used for selectively extracting compounds containing this substructure. This includes almost all known analogues of AZAs, including AZA1, AZA2 and AZA3. Here we report preparation of immunoaffinity chromatography (IAC) columns for clean-up and concentration of AZAs. The IAC columns were prepared by coupling polyclonal anti-AZA IgG to CNBr-activated sepharose. The columns were evaluated using shellfish extracts, and the resulting fractions were analyzed by ELISA and LC-MS. The columns selectively bound over 300 ng AZAs per mL of gel without significant leakage, and did not retain the okadaic acid, cyclic imine, pectenotoxin and yessotoxin analogues that were present in the applied samples. Furthermore, 90-92% of the AZAs were recovered by elution with 90% MeOH, and the columns could be re-used without significant loss of performance.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway.
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Jennie Vu
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Merii S Sukenthirarasa
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | - Sinthuja Kanesamurthy
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Oslo Metropolitan University, P.O. Box 4, St. Olavs plass, N-0130 Oslo, Norway
| | | | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore H91 R673, County Galway, Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43220, United States
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway; Biotoxin Metrology, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| |
Collapse
|
3
|
Sandvik M, Miles CO, Løvberg KLE, Kryuchkov F, Wright EJ, Mudge EM, Kilcoyne J, Samdal IA. In Vitro Metabolism of Azaspiracids 1-3 with a Hepatopancreatic Fraction from Blue Mussels ( Mytilus edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11322-11335. [PMID: 34533950 DOI: 10.1021/acs.jafc.1c03831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. Of the 60 AZAs identified, levels of AZA1, AZA2, and AZA3 are regulated in shellfish as a food safety measure based on occurrence and toxicity. Information about the metabolism of AZAs in shellfish is limited. Therefore, a fraction of blue mussel hepatopancreas was made to study the metabolism of AZA1-3 in vitro. A range of AZA metabolites were detected by liquid chromatography-high-resolution tandem mass spectrometry analysis, most notably the novel 22α-hydroxymethylAZAs AZA65 and AZA66, which were also detected in naturally contaminated mussels. These appear to be the first intermediates in the metabolic conversion of AZA1 and AZA2 to their corresponding 22α-carboxyAZAs (AZA17 and AZA19). α-Hydroxylation at C-23 was also a prominent metabolic pathway, producing AZA8, AZA12, and AZA5 as major metabolites of AZA1-3, respectively, and AZA67 and AZA68 as minor metabolites via double-hydroxylation of AZA1 and AZA2, but only low levels of 3β-hydroxylation were observed in this study. In vitro generation of algal toxin metabolites, such as AZA3, AZA5, AZA6, AZA8, AZA12, AZA17, AZA19, AZA65, and AZA66 that would otherwise have to be laboriously purified from shellfish, has the potential to be used for the production of standards for analytical and toxicological studies.
Collapse
Affiliation(s)
- Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | | | - Fedor Kryuchkov
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| | - Elliott J Wright
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Elizabeth M Mudge
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, County Galway H91 R673, Ireland
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway
| |
Collapse
|
4
|
Boente-Juncal A, Raposo-García S, Louzao MC, Vale C, Botana LM. Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chem Res Toxicol 2021; 34:865-879. [PMID: 33512997 DOI: 10.1021/acs.chemrestox.0c00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Sandra Raposo-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - M Carmen Louzao
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Luis M Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| |
Collapse
|
5
|
Tillmann U, Wietkamp S, Gu H, Krock B, Salas R, Clarke D. Multiple New Strains of Amphidomataceae (Dinophyceae) from the North Atlantic Revealed a High Toxin Profile Variability of Azadinium spinosum and a New Non-Toxigenic Az. cf. spinosum. Microorganisms 2021; 9:134. [PMID: 33430155 PMCID: PMC7826828 DOI: 10.3390/microorganisms9010134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
Collapse
Affiliation(s)
- Urban Tillmann
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Stephan Wietkamp
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Rafael Salas
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| |
Collapse
|
6
|
Effects of Temperature, Growth Media, and Photoperiod on Growth and Toxin Production of Azadinium spinosum. Mar Drugs 2019; 17:md17090489. [PMID: 31443393 PMCID: PMC6780083 DOI: 10.3390/md17090489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5-5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.
Collapse
|
7
|
Samdal IA, Løvberg KE, Kristoffersen AB, Briggs LR, Kilcoyne J, Forsyth CJ, Miles CO. A Practical ELISA for Azaspiracids in Shellfish via Development of a New Plate-Coating Antigen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2369-2376. [PMID: 30763083 DOI: 10.1021/acs.jafc.8b05652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that appear periodically in shellfish and can cause food poisoning in humans. Current methods for quantifying the regulated AZAs are restricted to LC-MS but are not well suited to detecting novel and unregulated AZAs. An ELISA method for total AZAs in shellfish was reported recently, but unfortunately, it used relatively large amounts of the AZA-1-containing plate-coating conjugate, consuming significant amounts of pure AZA-1 per assay. Therefore, a new plate-coater, OVA-cdiAZA1 was produced, resulting in an ELISA with a working range of 0.30-4.1 ng/mL and a limit of quantification of 37 μg/kg for AZA-1 in shellfish. This ELISA was nearly twice as sensitive as the previous ELISA while using 5-fold less plate-coater. The new ELISA displayed broad cross-reactivity toward AZAs, detecting all available quantitative AZA reference materials as well as the precursors to AZA-3 and AZA-6, and results from shellfish analyzed with the new ELISA showed excellent correlation ( R2 = 0.99) with total AZA-1-10 by LC-MS. The results suggest that the new ELISA is suitable for screening samples for total AZAs, even in cases where novel AZAs are present and regulated AZAs are absent, such as was reported recently from Puget Sound and the Bay of Naples.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
| | | | - Lyn R Briggs
- AgResearch Ltd., Ruakura Research Centre , Hamilton 3214 , New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway H91 R673 , Ireland
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43220 , United States
| | - Christopher O Miles
- Norwegian Veterinary Institute , P.O. Box 750 Sentrum, N-0106 Oslo , Norway
- National Research Council Canada , 1411 Oxford St , Halifax , NS B3H 3Z1 , Canada
| |
Collapse
|
8
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
9
|
Ehrlich H, Shaala LA, Youssef DTA, Żółtowska- Aksamitowska S, Tsurkan M, Galli R, Meissner H, Wysokowski M, Petrenko I, Tabachnick KR, Ivanenko VN, Bechmann N, Joseph Y, Jesionowski T. Discovery of chitin in skeletons of non-verongiid Red Sea demosponges. PLoS One 2018; 13:e0195803. [PMID: 29763421 PMCID: PMC5953452 DOI: 10.1371/journal.pone.0195803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Suez Canal University Hospital, Suez Canal University, Ismailia, Egypt
| | - Diaa T. A. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sonia Żółtowska- Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology Poznan University of Technology, Poznan, Poland
| |
Collapse
|
10
|
Presence of azaspiracids in bivalve molluscs from Northern Spain. Toxicon 2017; 137:135-143. [DOI: 10.1016/j.toxicon.2017.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 11/19/2022]
|
11
|
Kim JH, Tillmann U, Adams NG, Krock B, Stutts WL, Deeds JR, Han MS, Trainer VL. Identification of Azadinium species and a new azaspiracid from Azadinium poporum in Puget Sound, Washington State, USA. HARMFUL ALGAE 2017; 68:152-167. [PMID: 28962976 DOI: 10.1016/j.hal.2017.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.
Collapse
Affiliation(s)
- Joo-Hwan Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Urban Tillmann
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Nicolaus G Adams
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Myung-Soo Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Vera L Trainer
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| |
Collapse
|
12
|
Tillmann U, Jaén D, Fernández L, Gottschling M, Witt M, Blanco J, Krock B. Amphidoma languida (Amphidomatacea, Dinophyceae) with a novel azaspiracid toxin profile identified as the cause of molluscan contamination at the Atlantic coast of southern Spain. HARMFUL ALGAE 2017; 62:113-126. [PMID: 28118886 DOI: 10.1016/j.hal.2016.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Azaspiracids (AZA) are a group of food poisoning phycotoxins that are known to accumulate in shellfish. They are produced by some species of the planktonic dinophycean taxon Amphidomataceae. Azaspiracids have been first discovered in Ireland but are now reported in shellfish from numerous global sites thus showing a wide distribution. In shellfish samples collected in 2009 near Huelva (Spain), AZA was also found along the Andalusian Atlantic coast for the first time. Analysis using LC-MS/MS revealed the presence of two different AZA analogues in different bivalve shellfish species (Chamelea gallina, Cerastoderma edule, Donax trunculus, and Solen vagina). In a number of samples, AZA levels exceeded the EU regulatory level of 160μg AZA-1 eq. kg-1 (reaching maximum levels of >500μg AZA-1 eq. kg-1 in Chamelea gallina and >250μg AZA-1 eq. kg-1 in Donax trunculus) causing closures of some local shellfish production areas. One dinophyte strain established from the local plankton during the AZA contamination period and determined as Amphidoma languida was in fact toxigenic, and its AZA profile disclosed it as the causative species: it contained AZA-2 as the main compound and the new compound AZA-43 initially detected in the shellfish. AZA-43 had the same mass as AZA-3, but produced different collision induced dissociation (CID) spectra. High resolution mass spectrometric measurements indicated that there is an unsaturation in the H, I ring system of AZA-43 distinguishing it from the classical AZA such as AZA-1, -2, and -3. Furthermore, the Spanish strain was different from the previously reported AZA profile of the species that consist of AZA-38 and AZ-39. In molecular phylogenetics, the Andalusian strain formed a monophyletic group together with other strains of Am. languida, but ITS sequences data revealed surprisingly high intragenomic variability. The first Andalusian case of AZA contamination of shellfish above the EU regulatory limit reported here clearly revealed the risk of azaspiracid poisoning (AZP) for this area and also for the Atlantic coast of Iberia and North Africa. The present study underlines the need for continuous monitoring of AZA and the organisms producing such toxins.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - David Jaén
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Ctra. Punta Umbría-Cartaya, km 12, 21459 Cartaya, Spain
| | - Lourdes Fernández
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Ctra. Punta Umbría-Cartaya, km 12, 21459 Cartaya, Spain
| | - Marc Gottschling
- Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig-Maximilians-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | - Matthias Witt
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Juan Blanco
- Centro de Investigacións Mariñas, Apdo 13. 36620 Vilanova de Arousa, Spain
| | - Bernd Krock
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| |
Collapse
|
13
|
Marine Toxins Analysis for Consumer Protection. RECENT ADVANCES IN THE ANALYSIS OF MARINE TOXINS 2017. [DOI: 10.1016/bs.coac.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Doerr B, O'Halloran J, O'Brien N, van Pelt F. Investigation of the genotoxic potential of the marine biotoxins azaspiracid 1-3. Toxicon 2016; 121:61-69. [PMID: 27576062 DOI: 10.1016/j.toxicon.2016.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/26/2022]
Abstract
Azaspiracids (AZAs) are the most recently discovered group of biotoxins and are the cause of azaspiracid shellfish poisoning (AZP) in humans. To date over thirty analogues have been identified. However, toxicological studies of AZAs are limited due to the lack of availability of toxins and toxin standards. Most data available are on acute toxicity and there are no data available on genotoxicity of AZAs. This study presents an integrated approach investigating the genotoxic potential of AZA1-3 in cell culture systems using the Comet assay combined with assays to provide information on possible apoptotic processes, cytotoxicity and changes in cell number. Results demonstrate a time and dose dependent increase in DNA fragmentation in most cell lines, indicating a genotoxic effect of AZA1-3. However, a significant reduction in cell number and a clear shift from early to late apoptosis was observed for all analogues in Jurkat T cells and HepG-2 cells; CaCo-2 cells did not show a clear apoptotic profile. Late apoptotic/necrotic cells correlate well with the percentage of tail DNA for all analogues in all three cell lines. All data taken together indicate that AZA1-3 is not genotoxic per se and demonstrate apoptotic/necrotic processes to be involved to some extent in AZAs toxicity. The sensitivities of cell lines and the different potencies of AZA1-3 are in agreement with the literature available. The order of sensitivity for all three AZAs tested in the present study is, in increasing order, CaCo-2 cells < HepG-2 cells < Jurkat T cells. The order of potency of AZA1-3 varies among the cell lines.
Collapse
Affiliation(s)
- Barbara Doerr
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| | - John O'Halloran
- Environmental Research Institute, University College Cork, Cork, Ireland; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| | - Frank van Pelt
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
15
|
Luo Z, Krock B, Mertens KN, Price AM, Turner RE, Rabalais NN, Gu H. Morphology, molecular phylogeny and azaspiracid profile of Azadinium poporum (Dinophyceae) from the Gulf of Mexico. HARMFUL ALGAE 2016; 55:56-65. [PMID: 28073547 DOI: 10.1016/j.hal.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Azadinium poporum produces a variety of azaspiracids and consists of several ribotypes, but information on its biogeography is limited. A strain of A. poporum (GM29) was incubated from a Gulf of Mexico sediment sample. Strain GM29 was characterized by a plate pattern of po, cp, x, 4', 3a, 6″, 6C, 5S, 6‴, 2⁗, a distinct ventral pore at the junction of po and the first two apical plates, and a lack of an antapical spine, thus fitting the original description of A. poporum. The genus Azadinium has not been reported in waters of the United States of America before this study. Molecular phylogeny, based on large subunit ribosomal DNA (LSU rDNA) and internal transcribed spacer (ITS) sequences, reveals that strain GM29 is nested within the well-resolved A. poporum complex, but forms a sister clade either to ribotype B (ITS) or ribotype C (LSU). It is, therefore, designated as a new ribotype, termed as ribotype D. LSU and ITS sequences similarity among different ribotypes of A. poporum ranges from 95.4% to 98.2%, and from 97.1% to 99.2% respectively, suggesting that the LSU fragment is a better candidate for molecular discrimination. Azaspiracid profiles were analyzed using LC-MS/MS and demonstrate that strain GM29 produces predominantly AZA-2 with an amount of 45fg/cell. The results suggest that A. poporum has a wide distribution and highlights the risk potential of azaspiracid intoxication in the United States.
Collapse
Affiliation(s)
- Zhaohe Luo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Third Institute of Oceanography, SOA, Xiamen 361005, China
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Kenneth Neil Mertens
- Research Unit for Palaeontology, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Andrea Michelle Price
- Department of Geography, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, Canada H3A OB9
| | - Robert Eugene Turner
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nancy N Rabalais
- Louisiana Universities Marine Consortium, Chauvin, LA 70344, USA
| | - Haifeng Gu
- Third Institute of Oceanography, SOA, Xiamen 361005, China.
| |
Collapse
|
16
|
Tillmann U, Borel CM, Barrera F, Lara R, Krock B, Almandoz GO, Witt M, Trefault N. Azadinium poporum from the Argentine Continental Shelf, Southwestern Atlantic, produces azaspiracid-2 and azaspiracid-2 phosphate. HARMFUL ALGAE 2016; 51:40-55. [PMID: 28003061 DOI: 10.1016/j.hal.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 06/06/2023]
Abstract
The marine dinophycean genus Azadinium has been identified as the primary source of azaspiracids (AZA), a group of lipophilic phycotoxins known to accumulate in shellfish. Blooms of Azadinium in the southern Atlantic off Argentina have been described from the 1990s, but due to a lack of cultures, the diversity of South-Atlantic Azadinium has not yet been fully explored and their toxin production potential is completely unknown. During a spring 2010 research cruise covering the El Rincón (ER) estuarine system (North Patagonian coast, Argentina, Southwestern Atlantic) a search was conducted for the presence of Azadinium. Although neither Azadinium cells nor AZA in field plankton samples were detected, 10 clonal strains of Azadinium poporum were successfuly established by incubation of sediment samples. Argentinean A. poporum were more variable in size and shape than the type description but conformed to it by the presence of multiple pyrenoids with starch sheath, in plate pattern and arrangement, and in the position of the ventral pore located on the left side of the pore plate. In contrast to all previous description of A. poporum, isolates of the Argentinean A. poporum possessed a distinct field of pores on the second antapical plate. Conspecificity of the Argentinean isolates with A. poporum was confirmed by molecular phylogeny of concatenated ITS and LSU rDNA sequences, where all Argentinean isolates together with some Chinese A. poporum strains formed a well-supported ribotype clade within A. poporum. All isolates produced AZA with the same profile, consisting of AZA-2 as the major compound and, to a lesser extent, its phosphated form. This is the first report of a phosphated marine algal toxin. This first confirmation of the presence of AZA producing Azadinium in the Argentinean coastal area underlines the risk of AZA shellfish contamination episodes in the Southwestern Atlantic region.
Collapse
Affiliation(s)
- Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - C Marcela Borel
- Instituto Geológico del Sur (CONICET - Universidad Nacional del Sur), Departamento de Geología, Laboratorio de Palinología, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Facundo Barrera
- Instituto Argentino de Oceanografía, Biogeoquímica Marina, IADO - CONICET, Camino la Carrindanga km 7,5 c.c. 804, B8000FWB, Bahía Blanca, Argentina
| | - Rubén Lara
- Instituto Argentino de Oceanografía, Biogeoquímica Marina, IADO - CONICET, Camino la Carrindanga km 7,5 c.c. 804, B8000FWB, Bahía Blanca, Argentina
| | - Bernd Krock
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Gastón O Almandoz
- División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina
| | - Matthias Witt
- Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Nicole Trefault
- Centro de Genómica y Bioinformática, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| |
Collapse
|
17
|
Kilcoyne J, McCarron P, Hess P, Miles CO. Effects of Heating on Proportions of Azaspiracids 1-10 in Mussels (Mytilus edulis) and Identification of Carboxylated Precursors for Azaspiracids 5, 10, 13, and 15. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10980-10987. [PMID: 26631586 DOI: 10.1021/acs.jafc.5b04609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Azaspiracids (AZAs) are marine biotoxins that induce human illness following the consumption of contaminated shellfish. European Union regulation stipulates that only raw shellfish are tested, yet shellfish are often cooked prior to consumption. Analysis of raw and heat-treated mussels (Mytilus edulis) naturally contaminated with AZAs revealed significant differences (up to 4.6-fold) in AZA1-3 (1-3) and 6 (6) values due to heat-induced chemical conversions. Consistent with previous studies, high levels of 3 and 6 were detected in some samples that were otherwise below the limit of quantitation before heating. Relative to 1, in heat-treated mussels the average (n = 40) levels of 3 (range, 11-502%) and 6 (range, 3-170%) were 62 and 31%, respectively. AZA4 (4) (range, <1-27%), AZA5 (5) (range, 1-21%), and AZA8 (8) (range, 1-27%) were each ∼5%, whereas AZA7 (7), AZA9 (9), and AZA10 (10) (range, <1-8%) were each under 1.5%. Levels of 5, 10, AZA13 (13), and AZA15 (15) increased after heating, leading to the identification of novel carboxylated AZA precursors in raw shellfish extracts, which were shown by deuterium labeling to be precursors for 5, 10, 13, and 15.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, Co. Galway, Ireland
| | - Pearse McCarron
- Measurement Science and Standards, National Research Council Canada , Halifax, Nova Scotia B3H 3Z1, Canada
| | - Philipp Hess
- Laboratoire Phycotoxines, Ifremer , Rue de l'Ile d'Yeu, 44311 Nantes, France
| | | |
Collapse
|
18
|
Krock B, Tillmann U, Potvin É, Jeong HJ, Drebing W, Kilcoyne J, Al-Jorani A, Twiner MJ, Göthel Q, Köck M. Structure Elucidation and in Vitro Toxicity of New Azaspiracids Isolated from the Marine Dinoflagellate Azadinium poporum. Mar Drugs 2015; 13:6687-702. [PMID: 26528990 PMCID: PMC4663548 DOI: 10.3390/md13116687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two strains of Azadinium poporum, one from the Korean West coast and the other from the North Sea, were mass cultured for isolation of new azaspiracids. Approximately 0.9 mg of pure AZA-36 (1) and 1.3 mg of pure AZA-37 (2) were isolated from the Korean (870 L) and North Sea (120 L) strains, respectively. The structures were determined to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (1) and 3-hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (2) by ¹H- and (13)C-NMR. Using the Jurkat T lymphocyte cell toxicity assay, (1) and (2) were found to be 6- and 3-fold less toxic than AZA-1, respectively.
Collapse
Affiliation(s)
- Bernd Krock
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Urban Tillmann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Éric Potvin
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hae Jin Jeong
- School of Earth and Environmental Science, Seoul National University, Seoul 151-747, Korea; E-Mail:
| | - Wolfgang Drebing
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland; E-Mail:
| | - Ahmed Al-Jorani
- Department of Natural Sciences, University of Michigan, Dearborn, MI 48202, USA; E-Mails: (A.A.-J.); (M.J.T.)
| | - Michael J. Twiner
- Department of Natural Sciences, University of Michigan, Dearborn, MI 48202, USA; E-Mails: (A.A.-J.); (M.J.T.)
| | - Qun Göthel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Matthias Köck
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| |
Collapse
|
19
|
Samdal IA, Løvberg KE, Briggs LR, Kilcoyne J, Xu J, Forsyth CJ, Miles CO. Development of an ELISA for the Detection of Azaspiracids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7855-7861. [PMID: 26245830 DOI: 10.1021/acs.jafc.5b02513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Azaspiracids (AZAs) are a group of biotoxins that cause food poisoning in humans. These toxins are produced by small marine dinoflagellates such as Azadinium spinosum and accumulate in shellfish. Ovine polyclonal antibodies were produced and used to develop an ELISA for quantitating AZAs in shellfish, algal cells, and culture supernatants. Immunizing antigens were prepared from synthetic fragments of the constant region of AZAs, while plate coating antigen was prepared from AZA-1. The ELISA provides a sensitive and rapid analytical method for screening large numbers of samples. It has a working range of 0.45-8.6 ng/mL and a limit of quantitation for total AZAs in whole shellfish at 57 μg/kg, well below the maximum permitted level set by the European Commission. The ELISA has good cross-reactivity to AZA-1-10, -33, and -34 and 37-epi-AZA-1. Naturally contaminated Irish mussels gave similar results whether they were cooked or uncooked, indicating that the ELISA also detects 22-carboxy-AZA metabolites (e.g., AZA-17 and AZA-19). ELISA results showed excellent correlation with LC-MS/MS analysis, both for mussel extract spiked with AZA-1 and for naturally contaminated Irish mussels. The assay is therefore well suited to screening for AZAs in shellfish samples intended for human consumption, as well as for studies on AZA metabolism.
Collapse
Affiliation(s)
- Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Lyn R Briggs
- AgResearch, Ruakura, East Street, Private Bag 3123, Hamilton, New Zealand
| | - Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, County Galway, Ireland
| | - Jianyan Xu
- Department of Chemistry, University of Minnesota-Twin Cities , Minneapolis, Minnesota 55455, United States
| | - Craig J Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
20
|
Kilcoyne J, Twiner MJ, McCarron P, Crain S, Giddings SD, Foley B, Rise F, Hess P, Wilkins AL, Miles CO. Structure Elucidation, Relative LC-MS Response and In Vitro Toxicity of Azaspiracids 7-10 Isolated from Mussels (Mytilus edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5083-5091. [PMID: 25909151 DOI: 10.1021/acs.jafc.5b01320] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Azaspiracids (AZAs) are marine biotoxins produced by dinoflagellates that can accumulate in shellfish, which if consumed can lead to poisoning events. AZA7-10, 7-10, were isolated from shellfish and their structures, previously proposed on the basis of only LC-MS/MS data, were confirmed by NMR spectroscopy. Purified AZA4-6, 4-6, and 7-10 were accurately quantitated by qNMR and used to assay cytotoxicity with Jurkat T lymphocyte cells for the first time. LC-MS(MS) molar response studies performed using isocratic and gradient elution in both selected ion monitoring and selected reaction monitoring modes showed that responses for the analogues ranged from 0.3 to 1.2 relative to AZA1, 1. All AZA analogues tested were cytotoxic to Jurkat T lymphocyte cells in a time- and concentration-dependent manner; however, there were distinct differences in their EC50 values, with the potencies for each analogue being: AZA6 > AZA8 > AZA1 > AZA4 ≈ AZA9 > AZA5 ≈ AZA10. This data contributes to the understanding of the structure-activity relationships of AZAs.
Collapse
Affiliation(s)
- Jane Kilcoyne
- †Marine Institute, Rinville, Oranmore, County Galway, Ireland
- ‡School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Michael J Twiner
- §School of Medicine, Wayne State University, Detroit, Michigan 48202, United States
| | - Pearse McCarron
- ⊥Measurement Science and Standards, Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Sheila Crain
- ⊥Measurement Science and Standards, Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Sabrina D Giddings
- ⊥Measurement Science and Standards, Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Barry Foley
- ‡School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Frode Rise
- ∥Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Philipp Hess
- ▽Ifremer, Laboratoire Phycotoxines, Rue de l'Ile d'Yeu, 44311 Nantes, France
| | | | - Christopher O Miles
- ○Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo Norway
- #Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo Norway
| |
Collapse
|
21
|
O'Driscoll D, Škrabáková Z, James KJ. Confirmation of extensive natural distribution of azaspiracids in the tissue compartments of mussels (Mytilus edulis). Toxicon 2014; 92:123-8. [DOI: 10.1016/j.toxicon.2014.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
22
|
Kilcoyne J, Nulty C, Jauffrais T, McCarron P, Herve F, Foley B, Rise F, Crain S, Wilkins AL, Twiner MJ, Hess P, Miles CO. Isolation, structure elucidation, relative LC-MS response, and in vitro toxicity of azaspiracids from the dinoflagellate Azadinium spinosum. JOURNAL OF NATURAL PRODUCTS 2014; 77:2465-2474. [PMID: 25356854 DOI: 10.1021/np500555k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 μg of 3 and 250 μg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute , Rinville, Oranmore, Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCarron P, Giddings SD, Reeves KL, Hess P, Quilliam MA. A mussel (Mytilus edulis) tissue certified reference material for the marine biotoxins azaspiracids. Anal Bioanal Chem 2014; 407:2985-96. [PMID: 25335820 DOI: 10.1007/s00216-014-8250-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022]
Abstract
Azaspiracids (AZAs) are lipophilic biotoxins produced by marine algae that can contaminate shellfish and cause human illness. The European Union (EU) regulates the level of AZAs in shellfish destined for the commercial market, with liquid chromatography-mass spectrometry (LC-MS) being used as the official reference method for regulatory analysis. Certified reference materials (CRMs) are essential tools for the development, validation, and quality control of LC-MS methods. This paper describes the work that went into the planning, preparation, characterization, and certification of CRM-AZA-Mus, a tissue matrix CRM, which was prepared as a wet homogenate from mussels (Mytilus edulis) naturally contaminated with AZAs. The homogeneity and stability of CRM-AZA-Mus were evaluated, and the CRM was found to be fit for purpose. Extraction and LC-MS/MS methods were developed to accurately certify the concentrations of AZA1 (1.16 mg/kg), AZA2 (0.27 mg/kg), and AZA3 (0.21 mg/kg) in the CRM. Quantitation methods based on standard addition and matrix-matched calibration were used to compensate for the matrix effects in LC-MS/MS. Other toxins present in this CRM at lower levels were also measured with information values reported for okadaic acid, dinophysistoxin-2, yessotoxin, and several spirolides.
Collapse
Affiliation(s)
- Pearse McCarron
- National Research Council of Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada,
| | | | | | | | | |
Collapse
|
24
|
Mohamed GA, Abd-Elrazek AE, Hassanean HA, Youssef DT, van Soest R. New compounds from the Red Sea marine sponge Echinoclathria gibbosa. PHYTOCHEMISTRY LETTERS 2014; 9:51-58. [DOI: 10.1016/j.phytol.2014.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Rodríguez LP, Vilariño N, Louzao MC, Dickerson TJ, Nicolaou KC, Frederick MO, Botana LM. Microsphere-based immunoassay for the detection of azaspiracids. Anal Biochem 2013; 447:58-63. [PMID: 24215909 DOI: 10.1016/j.ab.2013.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
Azaspiracids (AZAs) are a group of lipophilic toxins discovered in mussels from Ireland in 1995 following a human poisoning incident. Nowadays the regulatory limit for AZAs in many countries is set at 160 μg of azaspiracid equivalents per kilogram of shellfish meat. In this work a microsphere-based immunoassay has been developed for the detection of AZAs using a Luminex system. This method is based on the competition between AZA-2 immobilized onto the surface of microspheres and free AZAs for the interaction with a monoclonal anti-azaspiracid antibody (mAb 8F4). In this inhibition immunoassay the amount of mAb 8F4 bound to AZA-2 microspheres was quantified using a phycoerythrin-labeled anti-mouse antibody, and the fluorescence was measured with a Luminex analyzer. Simple acetate/methanol or methanol extractions yielded final extracts with no matrix interferences and adequate recovery rates of 86.5 and 75.8%, respectively. In summary, this work presents a sensitive and easily performed screening method capable of detecting AZAs at concentrations below the range of the European regulatory limit using a microsphere/flow cytometry system.
Collapse
Affiliation(s)
- Laura P Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Tobin J Dickerson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA; Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX 77030, USA
| | - Michael O Frederick
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
26
|
Percopo I, Siano R, Rossi R, Soprano V, Sarno D, Zingone A. A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov. JOURNAL OF PHYCOLOGY 2013; 49:950-966. [PMID: 27007318 DOI: 10.1111/jpy.12104] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/24/2013] [Indexed: 06/05/2023]
Abstract
A new photosynthetic planktonic marine dinoflagellate, Azadinium dexteroporum sp. nov., is described from the Gulf of Naples (South Tyrrhenian Sea, Mediterranean Sea). The plate formula of the species, Po, cp, X, 4', 3a, 6″, 6C, 5?S, 6‴ and 2″″, is typical for this recently described genus. Azadinium dexteroporum is the smallest rep-resentative of the genus (8.5 μm average length, 6.2 μm average width) and shares the presence of a small antapical spine with the type species A. spinosum and with A. polongum. However, it differs from all other Azadinium species for the markedly asymmetrical Po plate and the position of the ventral pore, which is located at the right posterior end of the Po plate. Another peculiarity of A. dexteroporum is the pronounced concavity of the second intercalary plate (2a), which appears collapsed with respect to the other plates. Phylogenetic analyses based on the large subunit 28S rDNA (D1/D2) and the internal transcribed spacer (ITS rDNA) support the attribution of A. dexteroporum to the genus Azadinium and its separation from the other known species. LC/MS-TOF analysis shows that Azadinium dex-teroporum produces azaspiracids in low amounts. Some of them have the same molecular weight as known compounds such as azaspiracid-3 and -7 and Compound 3 from Amphidoma languida, as well as similar fragmentation patterns in some cases. This is the first finding of a species producing azapiracids in the Mediterranean Sea.
Collapse
Affiliation(s)
- Isabella Percopo
- Taxonomy and Identification of Marine Phytoplankton Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Raffaele Siano
- IFREMER, Centre de Brest, DYNECO/Pelagos, ZI de la Pointe du Diable CS 170, Plouzané, 29280, France
| | - Rachele Rossi
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, Naples, 80055, Italy
| | - Vittorio Soprano
- Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, Naples, 80055, Italy
| | - Diana Sarno
- Taxonomy and Identification of Marine Phytoplankton Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Adriana Zingone
- Ecology and Evolution of Plankton Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| |
Collapse
|
27
|
Jauffrais T, Kilcoyne J, Herrenknecht C, Truquet P, Séchet V, Miles CO, Hess P. Dissolved azaspiracids are absorbed and metabolized by blue mussels (Mytilus edulis). Toxicon 2013; 65:81-9. [DOI: 10.1016/j.toxicon.2013.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
|
28
|
Jauffrais T, Marcaillou C, Herrenknecht C, Truquet P, Séchet V, Nicolau E, Tillmann U, Hess P. Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum. Toxicon 2012; 60:582-95. [DOI: 10.1016/j.toxicon.2012.04.351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
|
29
|
Twiner MJ, Hanagriff JC, Butler S, Madhkoor AK, Doucette GJ. Induction of Apoptosis Pathways in Several Cell Lines following Exposure to the Marine Algal Toxin Azaspiracid. Chem Res Toxicol 2012; 25:1493-501. [DOI: 10.1021/tx3001785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Twiner
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
48128, United States
- Marine
Biotoxins Program, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, South Carolina 29412, United
States
| | - Joshua C. Hanagriff
- Marine
Biotoxins Program, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, South Carolina 29412, United
States
| | - Suzanne Butler
- Marine
Biotoxins Program, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, South Carolina 29412, United
States
| | - Ahmed K. Madhkoor
- Marine
Biotoxins Program, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, South Carolina 29412, United
States
| | - Gregory J. Doucette
- Marine
Biotoxins Program, National Oceanic and Atmospheric Administration/National Ocean Service, Charleston, South Carolina 29412, United
States
| |
Collapse
|
30
|
Jauffrais T, Kilcoyne J, Séchet V, Herrenknecht C, Truquet P, Hervé F, Bérard JB, Nulty C, Taylor S, Tillmann U, Miles CO, Hess P. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors. Mar Drugs 2012; 10:1360-1382. [PMID: 22822378 PMCID: PMC3397445 DOI: 10.3390/md10061360] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022] Open
Abstract
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.
Collapse
Affiliation(s)
- Thierry Jauffrais
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Véronique Séchet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Philippe Truquet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Fabienne Hervé
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Cíara Nulty
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Sarah Taylor
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany;
| | | | - Philipp Hess
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| |
Collapse
|
31
|
Kilcoyne J, Keogh A, Clancy G, LeBlanc P, Burton I, Quilliam MA, Hess P, Miles CO. Improved isolation procedure for azaspiracids from shellfish, structural elucidation of azaspiracid-6, and stability studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2447-2455. [PMID: 22329755 DOI: 10.1021/jf2048788] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Azaspiracids are a group of lipophilic polyether toxins produced by the small dinoflagellate Azadinium spinosum. They may accumulate in shellfish and can result in illnesses when consumed by humans. Research into analytical methods, chemistry, metabolism, and toxicology of azaspiracids has been severely constrained by the scarcity of high-purity azaspiracids. Consequently, since their discovery in 1995, considerable efforts have been made to develop methods for the isolation of azaspiracids in sufficient amounts and purities for toxicological studies, in addition to the preparation of standard reference materials. A seven-step procedure was improved for the isolation of azaspiracids-1-3 (1, 2, and 3) increasing recoveries 2-fold as compared to previous methods and leading to isolation of sufficiently purified azaspiracid-6 (6) for structural determination by NMR spectroscopy. The procedure, which involved a series of partitioning and column chromatography steps, was performed on 500 g of Mytilus edulis hepatopancreas tissue containing ~14 mg of 1. Overall yields of 1 (52%), 2 (43%), 3 (43%), and 6 (38%) were good, and purities were confirmed by NMR spectroscopy. The structure of 6 was determined by one- and two-dimensional NMR spectroscopy and mass spectrometry. The stability of 6 relative to 1 was also assessed in three solvents in a short-term study that demonstrated the greatest stability in aqueous acetonitrile.
Collapse
Affiliation(s)
- Jane Kilcoyne
- Marine Institute, Renville, Oranmore, County Galway, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Twiner MJ, El-Ladki R, Kilcoyne J, Doucette GJ. Comparative Effects of the Marine Algal Toxins Azaspiracid-1, -2, and -3 on Jurkat T Lymphocyte Cells. Chem Res Toxicol 2012; 25:747-54. [DOI: 10.1021/tx200553p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael J. Twiner
- Department
of Natural Sciences, University of Michigan—Dearborn, Dearborn, Michigan,
United States
| | - Racha El-Ladki
- Department
of Natural Sciences, University of Michigan—Dearborn, Dearborn, Michigan,
United States
| | - Jane Kilcoyne
- Marine Institute, Renville, Oranmore, Co. Galway, Ireland
| | - Gregory J. Doucette
- Marine Biotoxins Program, NOAA/National Ocean Service, Charleston, South Carolina,
United States
| |
Collapse
|
33
|
Quantitative analysis of azaspiracids in Azadinium spinosum cultures. Anal Bioanal Chem 2012; 403:833-46. [DOI: 10.1007/s00216-012-5849-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
34
|
Potvin É, Jeong HJ, Kang NS, Tillmann U, Krock B. First Report of the Photosynthetic Dinoflagellate Genus Azadinium in the Pacific Ocean: Morphology and Molecular Characterization of Azadinium cf. poporum. J Eukaryot Microbiol 2011; 59:145-56. [DOI: 10.1111/j.1550-7408.2011.00600.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Éric Potvin
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Nam Seon Kang
- School of Earth and Environmental Sciences; College of Natural Sciences; Seoul National University; Seoul; 151-747; Korea
| | - Urban Tillmann
- Alfred Wegener Institute; Am Handelshafen 12; Bremerhaven; D-27570; Germany
| | - Bernd Krock
- Alfred Wegener Institute; Am Handelshafen 12; Bremerhaven; D-27570; Germany
| |
Collapse
|
35
|
Nzoughet JK, Grant IR, Prodöhl PA, Hamilton JT, Botana LM, Elliott CT. Evidence of Methylobacterium spp. and Hyphomicrobium sp. in azaspiracid toxin contaminated mussel tissues and assessment of the effect of azaspiracid on their growth. Toxicon 2011; 58:619-22. [DOI: 10.1016/j.toxicon.2011.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
|
36
|
O'Driscoll D, Skrabáková Z, O'Halloran J, van Pelt FNAM, James KJ. Mussels increase xenobiotic (azaspiracid) toxicity using a unique bioconversion mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3102-3108. [PMID: 21401083 DOI: 10.1021/es103612c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Azaspiracid Poisoning (AZP) is a human toxic syndrome which is associated with the consumption of bivalve shellfish. Unlike other shellfish, mussels contain a large array of azaspiracid analogs, many of which are suspected bioconversion products. These studies were conducted to elucidate the metabolic pathways of azaspiracid (AZA1) in the blue mussel (Mytilus edulis) and revealed that the main biotransformation product was the more toxic demethyl analog, AZA3. To elucidate the mechanism of this C-demethylation, an unprecedented xenobiotic bioconversion step in shellfish, AZA1 was fed to mussels that contained no detectable azaspiracids. Triple quadrupole mass spectrometry (MS) and high resolution Orbitrap MS were used to determine the uptake of AZA1 and the toxin profiles in three tissue compartments of mussels. The second most abundant bioconversion product was identified as AZA17, a carboxyl analog of AZA3, which is a key intermediate in the formation of AZA3. Also, two pairs of isomeric hydroxyl analogs, AZA4/AZA5 and AZA7/AZA8, have been confirmed as bioconversion products for the first time. Ultra high resolution (100 k) MS studies showed that the most probable structural assignment for AZA17 is 22-carboxy-AZA3 and a mechanism for its facile decarboxylation to form AZA3 has been proposed.
Collapse
Affiliation(s)
- Daniel O'Driscoll
- PROTEOBIO (Mass Spectrometry Centre), Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
37
|
Aasen JAB, Espenes A, Miles CO, Samdal IA, Hess P, Aune T. Combined oral toxicity of azaspiracid-1 and yessotoxin in female NMRI mice. Toxicon 2011; 57:909-17. [PMID: 21426911 DOI: 10.1016/j.toxicon.2011.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 11/16/2022]
Abstract
For many years, the presence of yessotoxins (YTXs) in shellfish has contributed to the outcome of the traditional mouse bioassay and has on many occasions caused closure of shellfisheries. Since YTXs do not appear to cause diarrhoea in man and exert low oral toxicity in animal experiments, it has been suggested that they should be removed from regulation. Before doing so, it is important to determine whether the oral toxicity of YTXs is enhanced when present together with shellfish toxins known to cause damage to the gastrointestinal tract. Consequently, mice were given high doses of YTX, at 1 or 5 mg/kg body weight, either alone or together with azaspiracid-1 (AZA1) at 200 μg/kg. The latter has been shown to induce damage to the small intestine at this level. The combined exposure caused no clinical effects, and no pathological changes were observed in internal organs. These results correspond well with the very low levels of YTX detected in internal organs by means of LC-MS/MS and ELISA after dosing. Indeed, the very low absorption of YTX when given alone remained largely unchanged when YTX was administered in combination with AZA1. Thus, the oral toxicity of YTX is not enhanced in the presence of sub-lethal levels of AZA1.
Collapse
Affiliation(s)
- John A B Aasen
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
38
|
Botana LM, Vilariño N, Alfonso A, Vale C, Louzao C, Elliott CT, Campbell K, Botana AM. The problem of toxicity equivalent factors in developing alternative methods to animal bioassays for marine-toxin detection. Trends Analyt Chem 2010. [DOI: 10.1016/j.trac.2010.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Ando H, Ueoka R, Okada S, Fujita T, Iwashita T, Imai T, Yokoyama T, Matsumoto Y, van Soest RWM, Matsunaga S. Penasins A-E, long-chain cytotoxic sphingoid bases, from a marine sponge Penares sp. JOURNAL OF NATURAL PRODUCTS 2010; 73:1947-1950. [PMID: 20949915 DOI: 10.1021/np1003565] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Five sphingoid bases, penasin A (1), penasin B (2), and a mixture of penasins C-E (3-5), were identified from a marine sponge Penares sp. as cytotoxic constituents. The structure of the common polar head part was assigned by analysis of the NMR data, whereas the structures of the long aliphatic chains including the locations of double bond(s) and a branched methyl group were determined by analysis of tandem FABMS and (13)C NMR data together with the GC-MS analysis of ozonolysis products. The absolute configuration of the headgroup was defined for the mixture of 3-5 by the modified Mosher method. Penasins exhibit moderate cytotoxicity against HeLa and P388 cells.
Collapse
Affiliation(s)
- Hideki Ando
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kilcoyne J, Fux E. Strategies for the elimination of matrix effects in the liquid chromatography tandem mass spectrometry analysis of the lipophilic toxins okadaic acid and azaspiracid-1 in molluscan shellfish. J Chromatogr A 2010; 1217:7123-30. [DOI: 10.1016/j.chroma.2010.09.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/23/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022]
|
41
|
Iwamoto M, Shimizu H, Muramatsu I, Oiki S. A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett 2010; 584:3995-9. [PMID: 20699099 DOI: 10.1016/j.febslet.2010.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
Abstract
A cytotoxic peptide, polytheonamide B (pTB), from marine sponge was examined for cytotoxic spectrum and specific activity to mammalian cells was demonstrated. pTB is composed of alternative D- and L-amino acid residues throughout the 48-mer peptide. This suggests the formation of a β-helix similar to gramicidin channels. Planar bilayer experiments revealed that pTB forms monovalent cation-selective channels, being compatible with the inner pore diameter of ∼4Å for a β-helical structure. pTB penetrated vectorially into the membrane, formed a channel by means of a single molecule, and remained in the membrane. These functional properties may account for specific cytotoxic activity.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | | | | | | |
Collapse
|
42
|
Furey A, O'Doherty S, O'Callaghan K, Lehane M, James KJ. Azaspiracid poisoning (AZP) toxins in shellfish: Toxicological and health considerations. Toxicon 2010; 56:173-90. [DOI: 10.1016/j.toxicon.2009.09.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
43
|
Abstract
Five major human toxic syndromes caused by the consumption of shellfish contaminated by algal toxins are presented. The increased risks to humans of shellfish toxicity from the prevalence of harmful algal blooms (HABs) may be a consequence of large-scale ecological changes from anthropogenic activities, especially increased eutrophication, marine transport and aquaculture, and global climate change. Improvements in toxin detection methods and increased toxin surveillance programmes are positive developments in limiting human exposure to shellfish toxins.
Collapse
|
44
|
López-Rivera A, O’Callaghan K, Moriarty M, O’Driscoll D, Hamilton B, Lehane M, James K, Furey A. First evidence of azaspiracids (AZAs): A family of lipophilic polyether marine toxins in scallops (Argopecten purpuratus) and mussels (Mytilus chilensis) collected in two regions of Chile. Toxicon 2010; 55:692-701. [DOI: 10.1016/j.toxicon.2009.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
45
|
Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. EXPERIENTIA SUPPLEMENTUM 2010; 100:65-122. [PMID: 20358682 DOI: 10.1007/978-3-7643-8338-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Diversity, Salt Requirement, and Antibiotic Production of Actinobacteria Isolated from Marine Sponges. ACTA ACUST UNITED AC 2010. [DOI: 10.3209/saj.saj240101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Takishima S, Ishiyama A, Iwatsuki M, Otoguro K, Yamada H, Omura S, Kobayashi H, van Soest RWM, Matsunaga S. Merobatzelladines A and B, anti-infective tricyclic guanidines from a marine sponge Monanchora sp. Org Lett 2009; 11:2655-8. [PMID: 19469518 DOI: 10.1021/ol9006794] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Merobatzelladines A (1) and B (2) have been isolated from a marine sponge Monanchora sp. as antibacterial constituents. Their structures including relative stereochemistry were determined by interpretation of spectral data. The absolute stereochemistry of merobatzelladine B (2) was elucidated after introduction of the fourth ring system preinstalled with a secondary hydroxyl group to which the modified Mosher method was applied. Merobatzelladines exhibit moderate anti-infective activity against a bacterium and protozoa.
Collapse
Affiliation(s)
- Shunsuke Takishima
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|