1
|
Uthra C, Shunmugam S, Nagaraj K, Muralitharan G, Albeshr MF, Velmurugan G. Ultra-fast liquid chromatography detection of β-N-methylamine-l-alanine and its isomers in cycad seeds and cyanobacterial symbionts for neurotoxic risk assessment. Food Chem Toxicol 2025; 202:115503. [PMID: 40318822 DOI: 10.1016/j.fct.2025.115503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The cyanobacterial neurotoxin has been implicated in various neurological disorders, posing a potential global health risk. Initial studies revealed alarming levels of β-N-methylamine-l-alanine (BMAA) in cyanobacteria, particularly in symbiotic species, suggesting widespread exposure. This study aimed to validate the efficacy of ultra-fast liquid chromatography (UFLC) technique for the detection and quantification of BMAA in various samples. Derivatizing agents, including 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and N-(2-aminoethyl) glycine (AEG), were synthesized and confirmed via nuclear magnetic resonance (NMR) spectroscopy to enhance the detection of isomeric neurotoxic compounds. Among the samples analyzed cycad seeds, leaves, male cones, cyanobacterial symbionts, coralloid roots, and processed cycad seed flour BMAA and its isomers (2,4-diaminobutyric acid (2,4-DAB) and AEG) were detected in cycad seeds, cyanobacterial symbionts, and coralloid roots. The retention times for L-BMAA, AEG, and 2,4-DAB were 5.4, 5.6, and 6.1 min, respectively. Quantification revealed lower levels of these toxic isomers in seeds compared to high levels in cyanobacterial symbionts. Furthermore, UFLC methods effectively reduced the levels of neurotoxic compounds in cycad seeds to below detectable limits (6 × 103 ng/mL). This study underscores the utility of UFLC method combined with derivatization for the efficient detection and separation of L-BMAA and its isomers, providing a reliable approach for neurotoxin analysis.
Collapse
Affiliation(s)
- Chandrabose Uthra
- Molecular Evolution Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Sumathy Shunmugam
- National Repository for Microalgae and Cyanobacteria - Marine and Freshwater (NRMC- M & F), Formerly National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Karuppiah Nagaraj
- Department of General Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, 602105, Tamil Nadu, India
| | - Gangatharan Muralitharan
- Molecular Evolution Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India; National Repository for Microalgae and Cyanobacteria - Marine and Freshwater (NRMC- M & F), Formerly National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Gunasekaran Velmurugan
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Yan G, Qiu J, Li A, Wu G, Li M, Zheng X. Spatiotemporal distribution of neurotoxin β-N-methylamino-L-alanine and 2,4-diaminobutyric acid in offshore aquaculture area of Shandong province, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135970. [PMID: 39342849 DOI: 10.1016/j.jhazmat.2024.135970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been widely detected in aquatic environments and got the public's attention due to its potential risk to human neurodegenerative diseases. Three cruises in spring, summer and autumn seasons were carried out in Laizhou Bay (LZB), Sishili Bay (SSLB), Sanggou Bay (SGB), Jiaozhou Bay (JZB) and Haizhou Bay (HZB) in 2023. Results showed that the temporal distribution pattern of BMAA in plankton varied in the survey bays. In LZB, the highest average concentration of BMAA in phytoplankton occurred in spring. The highest average concentration of BMAA in phytoplankton was detected in summer in SSLB, JZB and HZB. However, BMAA was only detected in phytoplankton at the R2 station in SGB in spring. The highest average concentration of BMAA in zooplankton was observed in spring in LZB, SSLB and SGB. Zooplankton accumulated the highest average concentration of BMAA in JZB and HZB in summer and autumn, respectively. The BMAA was widely detected in marine mollusks throughout the investigative period. In addition, Mantel test and RDA analysis results indicated that DIN/DIP strongly impacted on the spatiotemporal distribution of BMAA in phytoplankton, in JZB and SSLB. The spatiotemporal distribution of BMAA in plankton was correlated with temperature and DO in JZB. More field cruises should be conducted to explore the environmental drivers of the neurotoxin BMAA in marine ecosystems in future studies.
Collapse
Affiliation(s)
- Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Kim SY, Kim M, Park K, Hong S. A systematic review on analytical methods of the neurotoxin β-N-methylamino-L-alanine (BMAA), and its causative microalgae and distribution in the environment. CHEMOSPHERE 2024; 366:143487. [PMID: 39395475 DOI: 10.1016/j.chemosphere.2024.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by various microalgal groups, is associated with neurodegenerative diseases and is considered a major environmental factor potentially linked to sporadic amyotrophic lateral sclerosis. This study systematically reviews the analytical methods used to study BMAA in publications from 2019 to the present. It also investigates the causative microalgae of BMAA and its geographical distributions in aquatic ecosystems based on studies conducted since 2003. A comprehensive search using the Web of Science database revealed that hydrolysis for extraction (67%), followed by quantification using LC-MS/MS (LC: 84%; MS/MS: 88%), is the most commonly employed method in BMAA analysis. Among analytical methods, RPLC-MS/MS had the highest percentage (88%) of BMAA-positive results and included a high number of quality control (QC) assessments. Various genera of cyanobacteria and diatoms have been reported to produce BMAA. The widespread geographical distribution of BMAA across diverse ecosystems highlights significant environmental and public health concerns. Notably, BMAA accumulation and biomagnification are likely more potent in marine or brackish water ecosystems than in freshwater ecosystems, potentially amplifying its ecological impacts. Future research should prioritize advanced, sensitive methods, particularly LC-MS/MS with as many QC assessments as possible, and should expand investigations to identify novel microalgal producers and previously uncharted geographical areas, with a special focus on marine or brackish water ecosystems. This effort will enhance our understanding of the environmental distribution and impacts of BMAA.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiho Park
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
6
|
Zhao P, Qiu J, Li A, Yan G, Li M, Ji Y. Matrix Effect of Diverse Biological Samples Extracted with Different Extraction Ratios on the Detection of β-N-Methylamino-L-Alanine by Two Common LC-MS/MS Analysis Methods. Toxins (Basel) 2022; 14:toxins14060387. [PMID: 35737048 PMCID: PMC9230712 DOI: 10.3390/toxins14060387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neurotoxin β-N-methylamino-L-alanine (BMAA) is hypothesized as an important pathogenic factor for neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS-PDC). Comparative study on the accuracy of BMAA analyzed by the regular LC-MS/MS methods is still limited for different biological matrices. In this study, a free-BMAA sample of cyanobacterium and BMAA-containing positive samples of diatom, mussel, scallop, and oyster were extracted with varied extraction ratios (ER) ranging from 1:20 to 1:2000. These extracts were then purified by MCX cartridges. After SPE purification, these different biological samples were analyzed by two common LC-MS/MS analysis methods, a direct analysis without derivatization by a hydrophilic interaction liquid chromatography (HILIC)-MS/MS and pre-column 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization combined with a C18 column. The results suggested that the recoveries of BMAA spiked in the cyanobacterial sample were close to 100% in the total soluble form extracts with the ER of 1:100 (g/mL) and the precipitated bound form extracts with the ER of 1:500. The recommended ER for the precipitated bound form of BMAA in diatoms and the total soluble form of BMAA in mollusks are 1:500 and 1:50, respectively. The quantitative results determined by the AQC derivatization method were lower than those determined by the direct analysis of the HILIC method in diatom and mollusk samples. The results of the HILIC method without the derivatization process were closer to the true value of BMAA in cyanobacteria. This work contributes to the performance of the solid-phase extraction (SPE) purification protocol and the accuracy of BMAA analysis by LC-MS/MS in diverse biological samples.
Collapse
Affiliation(s)
- Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Correspondence: ; Tel.: +86-532-66781935
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (P.Z.); (J.Q.); (G.Y.); (M.L.); (Y.J.)
| |
Collapse
|
7
|
Wang ZQ, Zhang CC. A tRNA t 6A modification system contributes to the sensitivity towards the toxin β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Anabaena sp. PCC 7120. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106121. [PMID: 35180454 DOI: 10.1016/j.aquatox.2022.106121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are oxygen-evolving photosynthetic autotrophs essential for nutrient cycling in the environment. They possess multiple control mechanisms for their cellular activities in order to adapt to the environment. While protein translation is essential for cell survival and adaptation, the regulation and the flexibility of this process are poorly understood in cyanobacteria. β-N-methylamino-L-alanine (BMAA), an amino acid analog proposed as an environmental neurotoxin, is highly toxic to the filamentous diazotrophic cyanobacterium Anabaena PCC 7120. In this study, through genetic analysis of BMAA-resistant mutants, we demonstrate that the system responsible for modification of ANN-decoding tRNAs with N(6)-threonylcarbamoyl adenosine (t6A) is involved in BMAA sensitivity through the control of translation. Both BMAA and inactivation of the t6A biosynthesis pathway affect translational fidelity and ribosome assembly. However, the two factors display either additive effects on translational elongation, or attenuate each other over translational fidelity or the resistance/sensitivity to antibiotics that inhibit different steps of the translational process. BMAA has a broad effect on translation and transcription, and once BMAA enters the cells, the presence of the t6A biosynthesis pathway increases the sensitivity of the cells towards this toxin. BMAA-resistant mutants screening is an effective method for getting insight into the toxic mechanisms of BMAA. In addition, BMAA is a useful tool for probing translational flexibility of cyanobacteria, and the characterization of the corresponding resistant mutants should help us to reveal translational mechanism allowing cyanobacteria to adapt to changing environments.
Collapse
Affiliation(s)
- Zi-Qian Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, People's Republic of China; Institute WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
No β-N-Methylamino-L-alanine (BMAA) Was Detected in Stranded Cetaceans from Galicia (North-West Spain). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), a non-proteinogenic amino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms) microorganisms, has been proposed to be associated with the development of neurodegenerative diseases. At first, BMAA appeared to be ubiquitously present worldwide in various organisms, from aquatic and terrestrial food webs. However, recent studies, using detection methods based on mass spectrometry, instead of fluorescence detection, suggest that the trophic transfer of BMAA is debatable. This study evaluated BMAA in 22 cetaceans of three different species (Phocoena phocoena, n = 8, Delphinus delphis, n = 8, and Tursiops truncatus, n = 6), found stranded in North-West Spain. BMAA analysis of the liver, kidney, or muscle tissues via sensitive liquid chromatography with tandem mass spectrometry did not reveal the presence of this compound or its isomers. The absence recorded in this study highlights the need to better understand the trophic transfer of BMAA and its anatomical distribution in marine mammals.
Collapse
|
9
|
Mantas MJQ, Nunn PB, Ke Z, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2021; 192:112953. [PMID: 34598041 DOI: 10.1016/j.phytochem.2021.112953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, whose worldwide occurrence, especially in water, presents health hazards to humans and animals due to the production of a range of toxins (cyanotoxins). These include the sometimes co-occurring, non-encoded diaminoacid neurotoxins 2,4-diaminobutanoic acid (2,4-DAB) and its structural analogue β-N-methylaminoalanine (BMAA). Knowledge of the biosynthetic pathway for 2,4-DAB, and its role in cyanobacteria, is lacking. The aspartate 4-phosphate pathway is a known route of 2,4-DAB biosynthesis in other bacteria and in some plant species. Another pathway to 2,4-DAB has been described in Lathyrus species. Here, we use bioinformatics analyses to investigate hypotheses concerning 2,4-DAB biosynthesis in cyanobacteria. We assessed the presence or absence of each enzyme in candidate biosynthesis routes, the aspartate 4-phosphate pathway and a pathway to 2,4-DAB derived from S-adenosyl-L-methionine (SAM), in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. In the aspartate 4-phosphate pathway, for the 18 species encoding diaminobutanoate-2-oxo-glutarate transaminase, the co-localisation of genes encoding the transaminase with the downstream decarboxylase or ectoine synthase - often within hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) clusters, NRPS-independent siderophore (NIS) clusters and incomplete ectoine clusters - is compatible with the hypothesis that some cyanobacteria use the aspartate 4-phosphate pathway for 2,4-DAB production. Through this route, in cyanobacteria, 2,4-DAB may be functionally associated with environmental iron-scavenging, via the production of siderophores of the schizokinen/synechobactin type and of some polyamines. In the pathway to 2,4-DAB derived from SAM, eight cyanobacterial species encode homologs of SAM-dependent 3-amino-3-carboxypropyl transferases. Other enzymes in this pathway have not yet been purified or sequenced. Ultimately, the biosynthesis of 2,4-DAB appears to be either restricted to some cyanobacterial species, or there may be multiple and additional routes, and roles, for the synthesis of this neurotoxin.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Ziying Ke
- School of Biological Sciences, Roger Land Building, The King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, United Kingdom; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
10
|
Wang C, Yan C, Qiu J, Liu C, Yan Y, Ji Y, Wang G, Chen H, Li Y, Li A. Food web biomagnification of the neurotoxin β-N-methylamino-L-alanine in a diatom-dominated marine ecosystem in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124217. [PMID: 33129020 DOI: 10.1016/j.jhazmat.2020.124217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) reported in some cyanobacteria and eukaryote microalgae is a cause of concern due to its potential risk of human neurodegenerative diseases. Here, BMAA distribution in phytoplankton, zooplankton, and other marine organisms was investigated in Jiaozhou Bay, China, a diatom-dominated marine ecosystem, during four seasons in 2019. Results showed that BMAA was biomagnified in the food web from phytoplankton to higher trophic levels. Trophic magnification factors (TMFs) for zooplankton, bivalve mollusks, carnivorous crustaceans and carnivorous gastropod mollusks were ca. 4.58, 30.1, 42.5, and 74.4, respectively. Putative identification of β-amino-N-methylalanine (BAMA), an isomer of BMAA, was frequently detected in phytoplankton samples. A total of 56 diatom strains of the genera Pseudo-nitzschia, Thalassiosira, Chaetoceros, Planktoniella, and Minidiscus isolated from the Chinese coast were cultured in the laboratory, among which 21 strains contained BMAA mainly in precipitated bound form at toxin concentrations ranging from 0.11 to 3.95 µg/g dry weight. Only 2,4-diaminobutyric acid (DAB) but not BMAA or BAMA was detected in seven species of bacteria isolated from the gut of gastropod Neverita didyma, suggesting that this benthic vector of BMAA may have accumulated this compound via trophic transfer.
Collapse
Affiliation(s)
- Chao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chen Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Hongju Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
11
|
Samardzic K, Steele JR, Violi JP, Colville A, Mitrovic SM, Rodgers KJ. Toxicity and bioaccumulation of two non-protein amino acids synthesised by cyanobacteria, β-N-Methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), on a crop plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111515. [PMID: 33099142 DOI: 10.1016/j.ecoenv.2020.111515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In order to study the toxicity of the cyanobacterial non-protein amino acids (NPAAs) L-β-N-methylamino-L-alanine (BMAA) and its structural isomer L-2,4-diaminobutyric acid (DAB) in the forage crop plant alfalfa (Medicago sativa), seedlings were exposed to NPAA-containing media for four days. Root growth was significantly inhibited by both treatments. The content of derivatised free and protein-bound BMAA and DAB in seedlings was then analysed by LC-MS/MS. Both NPAAs were detected in free and protein-bound fractions with higher levels detected in free fractions. Compared to shoots, there was approximately tenfold more BMAA and DAB in alfalfa roots. These results suggest that NPAAs might be taken up into crop plants from contaminated irrigation water and enter the food chain. This may present an exposure pathway for NPAAs in humans.
Collapse
Affiliation(s)
- Kate Samardzic
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
| | - Joel R Steele
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Simon M Mitrovic
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
12
|
Prakash V, Kaur H, Kumari A, Kumar M, Bala R, Gupta S. Phytochemicals and biological studies on Cycas revoluta Thunb.: a review. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00520-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
The Proposed Neurotoxin β- N-Methylamino-l-Alanine (BMAA) Is Taken up through Amino-Acid Transport Systems in the Cyanobacterium Anabaena PCC 7120. Toxins (Basel) 2020; 12:toxins12080518. [PMID: 32823543 PMCID: PMC7472364 DOI: 10.3390/toxins12080518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.
Collapse
|
14
|
Luo X, Zhu S, Wang J, Sun J, Bu L, Zhou S. Formation, speciation and toxicity of CX 3R-type disinfection by-products (DBPs) from chlor(am)ination of 2,4-diaminobutyric acid (DAB). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110247. [PMID: 32004943 DOI: 10.1016/j.ecoenv.2020.110247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
2,4-diaminobutyric acid (DAB), a newly identified algal toxins in water, pose a great threat to human health. DAB may react with chlorine or chloramine to produce CX3R-type disinfection by-products (DBPs) during water treatment processes. This study mainly investigated the formation and speciation of DBPs from chlor(am)ination of DAB. The results revealed that haloacetic acids (HAAs), trihalomethanes (THMs) and haloacetonitriles (HANs) were the main kinds of CX3R-type DBPs generated from DAB during chlor(am)ination, of which dichloroacetic acid yielded the highest. The formation and total toxicity of four CX3R-type DBPs from DAB during chloramination was significantly lower than that during chlorination at each Cl2:N molar ratio. However, more formation of Br-THMs and I-THMs were observed during chloramination in the presence of Br-/I-. Futhermore, the effects of chlor(am)ine dosage, solution pH, reaction time, and the concentration of Br- and I- on the formation and speciation of CX3R-type DBPs were also evaluated during chlor(am)ination. The plausible formation pathways of CX3R-type DBPs from DAB were proposed and verified by theoretical calculation. The quantum chemistry calculations indicate that 1N in DAB and 8N in 2,4-diaminochlorobutyric acid (C4H9O2N2Cl) were more likely to be attacked by electrophiles, supporting the proposed pathway schemes.
Collapse
Affiliation(s)
- Xiaofang Luo
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Shumin Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Lingjun Bu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| |
Collapse
|
15
|
Yan B, Liu Z, Huang R, Xu Y, Liu D, Wang W, Zhao Z, Cui F, Shi W. Impact factors on the production of β-methylamino-L-alanine (BMAA) by cyanobacteria. CHEMOSPHERE 2020; 243:125355. [PMID: 31759214 DOI: 10.1016/j.chemosphere.2019.125355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria produce a series of secondary metabolites, one of which is beta-N-methylamino-l-alanine (BMAA). BMAA is considered to be the cause of human neurodegeneration. Compared with other cyanotoxins, the role of BMAA in cyanobacteria remains unclear. To investigate this question, six strains of cyanobacteria were cultured and tested in this experiment with an optimized and validated BMAA determination method. The results show that four strains can produce BMAA. The effects of nutrient levels on the production of BMAA by Anabaena sp. FACHB-418 were studied by changing the initial concentrations of nitrate (NaNO3) and phosphate (K2HPO4) in mediums. Bound BMAA was detected in all samples and the concentrations were within 50-100 ng/g. Free BMAA was presence when the concentration of nitrogen was lower than 1.7 mg/L (121.43 μM). Free BMAA was released from the dead and ruptured cells during the cell decline period, so dissolved BMAA cannot be detectable in the adaptation and logarithmic periods, but could be abundant in the decline periods. Statistical analyses show that free BMAA concentrations were negatively correlated with nitrogen strongly (p = 2.334 × 10-10 and r = -0.842), but positively correlated with phosphorus weakly (p = 0.016 and r = 0.405). Moreover, the results of culture experiments indicated that exogenous BMAA could inhibit the growth of cyanobacteria that cannot produce BMAA, and the effect was enhanced as the concentration of exogenous BMAA increased. This phenomenon implies that the production of BMAA may be the stress response by some cyanobacteria to low nitrogen conditions to kill other cyanobacteria, i.e., their competitors.
Collapse
Affiliation(s)
- Boyin Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiquan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiwei Zhao
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
16
|
Spasic S, Stanojevic M, Nesovic Ostojic J, Kovacevic S, Todorovic J, Dincic M, Nedeljkov V, Prostran M, Lopicic S. Two distinct electrophysiological mechanisms underlie extensive depolarization elicited by 2,4 diaminobutyric acid in leech Retzius neurons. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105398. [PMID: 31891816 DOI: 10.1016/j.aquatox.2019.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that 2,4-DABA, a neurotoxic excitatory amino acid present in virtually all environments, but predominantly in aquatic ecosystems may be a risk factor for development of neurodegenerative diseases in animals and humans. Despite its neurotoxicity and potential environmental importance, mechanisms underlying the excitatory and putative excitotoxic action of 2,4-DABA in neurons are still unexplored. We previously reported on extensive two-stage membrane depolarization and functional disturbances in leech Retzius neurons induced by 2,4-DABA. Current study presents the first detailed look into the electrophysiological processes leading to this depolarization. Intracellular recordings were performed on Retzius neurons of the leech Haemopis sanguisuga using glass microelectrodes and input membrane resistance (IMR) was measured by injecting hyperpolarizing current pulses through these electrodes. Results show that the excitatory effect 2,4-DABA elicits on neurons' membrane potential is dependent on sodium ions. Depolarizing effect of 5·10-3 mol/L 2,4-DABA in sodium-free solution was significantly diminished by 91% reducing it to 3.26 ± 0.62 mV and its two-stage nature was abrogated. In addition to being sodium-dependent, the depolarization of membrane potential induced by this amino acid is coupled with an increase of membrane permeability, as 2,4-DABA decreases IMR by 8.27 ± 1.47 MΩ (67.60%). Since present results highlight the role of sodium ions, we investigated the role of two putative sodium-dependent mechanisms in 2,4-DABA-induced excitatory effect - activation of ionotropic glutamate receptors and the electrogenic transporter for neutral amino acids. Excitatory effect of 5·10-3 mol/L 2,4-DABA was partially blocked by 10-5 mol/L 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) a non-NMDA receptor antagonist as the first stage of membrane depolarization was significantly reduced by 2.59 ± 0.98 mV (40%), whilst second stage remained unaltered. Moreover, involvement of the sodium-dependent transport system for neutral amino acids was investigated by equimolar co-application of 5·10-3 mol/L 2,4-DABA and L-alanine, a competitive inhibitor of this transporter. Although L-alanine exhibited no effect on the first stage of membrane depolarization elicited by 2,4-DABA, it substantially reduced the second stage (the overall membrane depolarization) from 39.63 ± 2.22 mV to 16.28 ± 2.58 mV, by 58.92%. We therefore propose that the electrophysiological effect of 2,4-DABA on Retzius neurons is mediated by two distinct mechanisms, i.e. by activation of ionotropic glutamate receptor that initiates the first stage of membrane depolarization followed by the stimulation of an electrogenic sodium-dependent neutral amino acid transporter, leading to additional influx of positive charge into the cell and the second stage of depolarization.
Collapse
Affiliation(s)
- Svetolik Spasic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia.
| | - Marija Stanojevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Sanjin Kovacevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Jasna Todorovic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Marko Dincic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Vladimir Nedeljkov
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| | - Milica Prostran
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine University of Belgrade, Dr Subotica 1/III, 11000, Belgrade, Serbia
| | - Srdjan Lopicic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Faculty of Medicine University of Belgrade, Dr Subotica 1/II, 11000, Belgrade, Serbia
| |
Collapse
|
17
|
Wang S, Qiu J, Zhao M, Li F, Yu R, Li A. Accumulation and distribution of neurotoxin BMAA in aquatic animals and effect on the behavior of zebrafish in a T-maze test. Toxicon 2020; 173:39-47. [DOI: 10.1016/j.toxicon.2019.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
|
18
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
19
|
Cao Y, Hu S, Gong T, Xian Q, Xu B. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation. WATER RESEARCH 2019; 159:365-374. [PMID: 31112889 DOI: 10.1016/j.watres.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) are two newly identified algal toxins, and they may react with chlorine to undergo decomposition and generate disinfection byproducts (DBPs) during pre-chlorination as well as chlorine disinfection. In this study, the decomposition of BMAA and DAB during chlorination and the consequent DBPs formation were investigated. The BMAA and DAB concentrations in source waters were determined, the decomposition kinetics of BMAA and DAB and the formation of DBPs during chlorination were studied, the formation pathways of DBPs from BMAA and DAB were explored, and the factors which may affect the decomposition and DBPs formation were examined. The results revealed that BMAA and DAB were commonly detected in source waters from Taihu Lake, and the highest level of BMAA reached 230.8 ng/L, while the concentrations of DAB were generally around 2.0 ng/L. The decomposition of BMAA and DAB during chlorination both followed pseudo-first-order decay while the decomposition rate constant of DAB was significantly higher than that of BMAA. Trihalomethanes (THMs), haloacetic acids (HAAs), and haloacetonitriles (HANs) were all generated during the chlorination of BMAA and DAB with relatively high yields. Notably, the THMs, HAAs, and HANs yields of each carbon atom from BMAA and DAB were significantly higher than that from other organic precursors, and the formation of HANs from DAB was significantly higher than that from BMAA. The formation pathways of DBPs from BMAA and DAB were tentatively proposed and verified through theoretical calculations. Of note, the proposed formation pathways of THMs and HAAs from BMAA were similar to that from DAB, while the proposed formation pathways of HANs from BMAA and DAB showed some differences. Chlorine dose, pH and temperature all affected the decomposition of BMAA and DAB and DBPs formation during chlorination.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
20
|
Insufficient evidence for BMAA transfer in the pelagic and benthic food webs in the Baltic Sea. Sci Rep 2019; 9:10406. [PMID: 31320701 PMCID: PMC6639344 DOI: 10.1038/s41598-019-46815-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
The evidence regarding BMAA occurrence in the Baltic Sea is contradictory, with benthic sources appearing to be more important than pelagic ones. The latter is counterintuitive considering that the identified sources of this compound in the food webs are pelagic primary producers, such as diatoms, dinoflagellates, and cyanobacteria. To elucidate BMAA distribution, we analyzed BMAA in the pelagic and benthic food webs in the Northern Baltic Proper. As potential sources, phytoplankton communities were used. Pelagic food chain was represented by zooplankton, mysids and zooplanktivorous fish, whereas benthic invertebrates and benthivorous fish comprised the benthic chain. The trophic structure of the system was confirmed by stable isotope analysis. Contrary to the reported ubiquitous occurrence of BMAA in the Baltic food webs, only phytoplankton, zooplankton and mysids tested positive, whereas no measurable levels of this compound occurred in the benthic invertebrates and any of the tested fish species. These findings do not support the widely assumed occurrence and transfer of BMAA to the top consumers in the Baltic food webs. More controlled experiments and field observations are needed to understand the transfer and possible transformation of BMAA in the food web under various environmental settings.
Collapse
|
21
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
22
|
Spasić S, Lopičić S, Stanojević M, Ostojić JN, Kovačević S, Nedeljkov V, Prostran M. EXTENSIVE EXCITATORY EFFECTS OF 2,4 - DIAMINOBUTYRIC ACID ON LEECH RETZIUS NEURONS. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
23
|
Ubiquity of the neurotoxin β-N-methylamino-L-alanine and its isomers confirmed by two different mass spectrometric methods in diverse marine mollusks. Toxicon 2018; 151:129-136. [DOI: 10.1016/j.toxicon.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
24
|
Foss AJ, Chernoff N, Aubel MT. The analysis of underivatized β-Methylamino-L-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS. Toxicon 2018; 152:150-159. [PMID: 30102919 DOI: 10.1016/j.toxicon.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
β-Methylamino-L-alanine (BMAA) has been identified as the potential cause of the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) observed in the Chamorro people of Guam. The principal hypothesis for BMAA exposure and intoxication relies on the biomagnification of BMAA in flying fox specimens ingested by the Chamorro people. Although high levels of BMAA were quantitated in flying fox specimens utilizing liquid chromatography-fluorescence (LC-FL), there have not been any confirmatory analyses conducted to date. Therefore, a method for the tissue homogenization, extraction and direct analysis of BMAA (including BAMA, 2,4-DAB and AEG) was utilized. The approach was applied to mammalian dried skin and hair from various rodent species (negative controls) and archived flying fox (Pteropus mariannus mariannus) specimens. A positive control sample of homogenized mussel (Mytelius edulis) with native BMAA was used to verify the method. It was determined that the direct analysis using HILIC MS/MS required additional quality control in order to allow for the confident identification of BMAA due to the near co-elution of BAMA. BMAA was not present above 0.2 μg g-1 (free fraction) or 2.8 μg g-1 (total fraction) in the flying fox specimens. While analysis did not result in BMAA detection in flying fox or negative control samples, the positive control sample and spiked samples were successfully detected.
Collapse
Affiliation(s)
- Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Neil Chernoff
- Developmental Biology Division, National Health and Environmental Effects Research Lab, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Mark T Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| |
Collapse
|
25
|
Spasic S, Stanojevic M, Nesovic Ostojic J, Kovacevic S, Prostran M, Lopicic S. Extensive depolarization and lack of recovery of leech Retzius neurons caused by 2,4 diaminobutyric acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:269-275. [PMID: 29679946 DOI: 10.1016/j.aquatox.2018.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
In this paper we present, for the first time, a detailed account of electrophysiological effects of 2,4-diaminobutyric acid (2,4-DABA). 2,4-DABA is a neurotoxic non-protein amino acid produced by Cyanobacteria with a possible link to neurodegenerative disorders in animals and humans. Intracellular recordings were performed on Retzius nerve cells of the leech Haemopis sanguisuga using glass microelectrodes filled with 3 mol/L KCl. Our results show that 2,4-DABA is an excitatory amino acid, causing membrane depolarization in a concentration-dependent manner. The most prominent depolarizations of 39.63±2.22 mV and 47.05±4.33 mV, induced by 5×10-3 and 10-2 mol/L 2,4-DABA respectively, are several times larger than maximal depolarizations induced by either Glutamate, Aspartate, β-N-methylamino-alanine (BMAA) or β-N-oxalylamino-alanine (BOAA) on our model. These 2,4-DABA induced depolarizations evolve through two distinct stages, which is a novel phenomenon in electrical cell activity upon application of an excitatory amino acid, at least on our model. Involvement of two separate mechanisms, suggested by the two stage phenomenon, is discussed in the paper. We also provide evidence that 2,4-DABA induces irreversible functional disturbances in neurons in a concentration-dependent manner, since only half of the cells recovered normal electrical activity after application of 5×10-3 mol/L 2,4-DABA, and none recovered after application of 10-2 mol/L 2,4-DABA. Effects of both L-2,4-DABA and DL-2,4-DABA were tested and are not significantly different.
Collapse
Affiliation(s)
- S Spasic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - M Stanojevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - J Nesovic Ostojic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - S Kovacevic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia
| | - M Prostran
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty University of Belgrade, Dr Subotica 1/III, 11000 Belgrade, Serbia
| | - S Lopicic
- Institute for Pathological Physiology "Ljubodrag Buba Mihailovic", Medical Faculty University of Belgrade, Dr Subotica 1/II, 11000 Belgrade, Serbia.
| |
Collapse
|
26
|
Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans. Toxins (Basel) 2018; 10:toxins10020083. [PMID: 29443939 PMCID: PMC5848184 DOI: 10.3390/toxins10020083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.
Collapse
|
27
|
Nunn PB, Codd GA. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2017; 144:253-270. [PMID: 29059579 DOI: 10.1016/j.phytochem.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK.
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, DD1 5EH, UK; School of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
28
|
Regueiro J, Negreira N, Carreira-Casais A, Pérez-Lamela C, Simal-Gándara J. Dietary exposure and neurotoxicity of the environmental free and bound toxin β- N -methylamino- l -alanine. Food Res Int 2017; 100:1-13. [DOI: 10.1016/j.foodres.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
29
|
Tan VX, Mazzocco C, Varney B, Bodet D, Guillemin TA, Bessede A, Guillemin GJ. Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes. Neurotox Res 2017; 33:55-61. [PMID: 28852990 DOI: 10.1007/s12640-017-9787-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.
Collapse
Affiliation(s)
- Vanessa X Tan
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Bianca Varney
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Tristan A Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Gilles J Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
30
|
Baker TC, Tymm FJM, Murch SJ. Assessing Environmental Exposure to β-N-Methylamino-L-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods. Neurotox Res 2017. [PMID: 28643233 DOI: 10.1007/s12640-017-9764-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.
Collapse
Affiliation(s)
- Teesha C Baker
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Fiona J M Tymm
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
31
|
Chernoff N, Hill DJ, Diggs DL, Faison BD, Francis BM, Lang JR, Larue MM, Le TT, Loftin KA, Lugo JN, Schmid JE, Winnik WM. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:1-47. [PMID: 28598725 PMCID: PMC6503681 DOI: 10.1080/10937404.2017.1297592] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer's disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.
Collapse
Affiliation(s)
- N. Chernoff
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. J. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - D. L. Diggs
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - B. D. Faison
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, Washington, DC, USA
| | - B. M. Francis
- Department of Entomology, University of Illinois, Champaign-Urbana, IL, USA
| | - J. R Lang
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - M. M. Larue
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | - T.-T. Le
- Oak Ridge Institute for Science and Education Internship/Research Participation Program at the U.S. Environmental Protection Agency, NHEERL, Research Triangle Park, NC, USA
| | | | - J. N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - J. E. Schmid
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| | - W. M. Winnik
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA
| |
Collapse
|
32
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
33
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Bláhová L, Kohoutek J, Kadlecová E, Kozáková L, Bláha L. Assessment of non-derivatized β-N-methylamino-l-alanine (BMAA) neurotoxin in free form in urine of patients with nonspecific neurological symptoms. Toxicon 2017; 133:48-57. [PMID: 28428069 DOI: 10.1016/j.toxicon.2017.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/12/2022]
Abstract
The beta-N-methylamino-l-alanine (BMAA) is a non-proteinogenic amino acid discussed to be produced by cyanobacteria forming harmful blooms. Since BMAA is suspected etiological agent in neurodegenerative diseases, there is a need to study and validate whether and in what concentrations can BMAA be present in human tissues. The aim of the present study was to validate analytical and extraction procedures for quantification of non-derivatized BMAA in the urine using liquid chromatography and commercial ELISA Kit. The study was focused on BMAA in different forms - dissolved, protein associated and total. The validated protocol included SPE followed by HILIC MS/MS for analyses of non-derivatized free form of BMAA with a limit of quantification 20 ng/mL. The methods for other BMAA forms (i.e. protein-associated and total) were also assessed but high matrix interferences did not allow their implementation. The method was used for analyses of free BMAA in 23 urine samples from healthy volunteers and psychiatric patients suffering from nonspecific neurological symptoms. Traces of BMAA were suspectedly detected in a single urine sample but they were not unequivocally proved according to all conservative analytical criteria. BMAA was also not confirmed in a repeatedly collected sample from the same person. The evaluated commercial BMAA ELISA Kit (Abraxis) was not suitable for determination of BMAA in extracted urine samples because of systematically highly false positive results. In agreement with recent findings, analyses of BMAA appear to methodologically challenging, and further research on BMAA in human tissues (or its precursors with potency to form BMAA under natural conditions or - eventually - during sample processing) is needed to clarify its potential ethiological role in neurodegenerative diseases.
Collapse
Affiliation(s)
- L Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - J Kohoutek
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic
| | - E Kadlecová
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Kozáková
- Psychiatric Hospital Písek, Vladislavova 490, CZ39701 Písek, Czech Republic
| | - L Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, Building A29, CZ62500 Brno, Czech Republic.
| |
Collapse
|
35
|
Chen YT, Chen WR, Liu ZQ, Lin TF. Reaction Pathways and Kinetics of a Cyanobacterial Neurotoxin β-N-Methylamino-L-Alanine (BMAA) during Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1303-1311. [PMID: 28075568 DOI: 10.1021/acs.est.6b03553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA), a probable cause of the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC), or Alzheimer's disease, has been identified in more than 20 cyanobacterial genera. However, its removal and fate in drinking water has never been reported before. In this study, the reaction of BMAA with chlorine, a common drinking-water oxidant/disinfectant, was investigated. A liquid chromatograph coupled with a triple quadrupole mass spectrometer was employed to quantify BMAA and its intermediates. Upon chlorination, four chlorinated intermediates, each with one or two chlorines, were identified. The disappearance of BMAA caused by chlorine follows a second-order reaction, with the rate constant k1 is 5.0 × 104 M-1 s-1 at pH ∼7.0. The chlorinated intermediates were found to further react with free chlorine, exhibiting a second-order rate constant k3 = 16.8 M-1 s-1. After all free chlorine was consumed, the chlorinated intermediates autodecomposed slowly with a first order rate constant k2 = 0.003 min-1; when a reductant was added, these chlorinated intermediates were then reduced back to BMAA. The results as described shed a useful light on the reactivity, appearance, and removal of BMAA in the chlorination process of a drinking-water system.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University , Tainan City 70101, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University , Tainan City 70101, Taiwan
| | - Zhi-Quan Liu
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University , Tainan City 70101, Taiwan
| | - Tsair-Fuh Lin
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University , Tainan City 70101, Taiwan
| |
Collapse
|
36
|
Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry. Anal Bioanal Chem 2016; 409:1481-1491. [PMID: 27909777 DOI: 10.1007/s00216-016-0091-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL-1 proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL-1 was attained, which was equivalent to 16 ng g-1 dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.
Collapse
|
37
|
Li A, Song J, Hu Y, Deng L, Ding L, Li M. New Typical Vector of Neurotoxin β-N-Methylamino-l-Alanine (BMAA) in the Marine Benthic Ecosystem. Mar Drugs 2016; 14:md14110202. [PMID: 27827914 PMCID: PMC5128745 DOI: 10.3390/md14110202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) has been identified as an environmental factor triggering neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and Alzheimer's disease (AD). We investigated the possible vectors of BMAA and its isomers 2,4-diaminobutyric acid (DAB) and N-2(aminoethyl)glycine (AEG) in marine mollusks collected from the Chinese coast. Sixty-eight samples of marine mollusks were collected along the Chinese coast in 2016, and were analyzed by an HILIC-MS/MS (hydrophilic interaction liquid chromatography with tandem quadrupole mass spectrometer) method without derivatization. BMAA was detected in a total of five samples from three species: Neverita didyma, Solen strictus, and Mytilus coruscus. The top three concentrations of free-form BMAA (0.99~3.97 μg·g-1 wet weight) were detected in N. didyma. DAB was universally detected in most of the mollusk samples (53/68) with no species-specific or regional differences (0.051~2.65 μg·g-1 wet weight). No AEG was detected in any mollusk samples tested here. The results indicate that the gastropod N. didyma might be an important vector of the neurotoxin BMAA in the Chinese marine ecosystem. The neurotoxin DAB was universally present in marine bivalve and gastropod mollusks. Since N. didyma is consumed by humans, we suggest that the origin and risk of BMAA and DAB toxins in the marine ecosystem should be further investigated in the future.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jialiang Song
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Longji Deng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ling Ding
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Meihui Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
38
|
Porojan C, Mitrovic SM, Yeo DCJ, Furey A. Overview of the potent cyanobacterial neurotoxin β-methylamino-L-alanine (BMAA) and its analytical determination. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1570-1586. [PMID: 27652898 DOI: 10.1080/19440049.2016.1217070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blue-green algae are responsible for the production of different types of toxins which can be neurotoxic, hepatotoxic, cytotoxic and dermatotoxic and that can affect both aquatic and terrestrial life. Since its discovery the neurotoxin β-methylamino-L-alanine (BMAA) has been a cause for concern, being associated with the neurodegenerative disease amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC). The initial focus was on Guam where it was observed that a high number of people were affected by the ALS/PDC complex. Subsequently, researchers were surprised to find levels of BMAA in post mortem brains from Canadian patients who also suffered from ALS/PDC. Recent research demonstrates that BMAA has been found at different levels in the aquatic food web in the brackish waters of the Baltic Sea. There is emerging evidence to suggest that sand-borne algae from Qatar can also contain BMAA. Furthermore, there is now concern because BMAA has been found not only in warmer regions of the world but also in temperate regions like Europe. The aim of this review is to focus on the methods of extraction and analysis of the neurotoxic non-protein amino acid BMAA. We also consider the neurotoxicity, aetiology, and diverse sources and routes of exposure to BMAA. In recent years, different methods have been developed for the analysis of BMAA. Some of these use HPLC-FD, UPLC-UV, UPLC-MS and LC-MS/MS using samples that have been derivatised or underivatised. To date the LC-MS/MS approach is the most widely used analytical technique as it is the most selective and sensitive method for BMAA determination.
Collapse
Affiliation(s)
- Cristina Porojan
- a Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences , Cork Institute of Technology , Cork , Ireland
| | - Simon M Mitrovic
- b Freshwater & Invasion Biology Laboratory, Department of Biological Sciences , National University of Singapore , Singapore.,c School of the Environment , University of Technology , Sydney , NSW , Australia
| | - Darren C J Yeo
- b Freshwater & Invasion Biology Laboratory, Department of Biological Sciences , National University of Singapore , Singapore
| | - Ambrose Furey
- a Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences , Cork Institute of Technology , Cork , Ireland
| |
Collapse
|
39
|
Réveillon D, Séchet V, Hess P, Amzil Z. Production of BMAA and DAB by diatoms (Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and, Thalassiosira pseudonana) and bacteria isolated from a diatom culture. HARMFUL ALGAE 2016; 58:45-50. [PMID: 28073457 DOI: 10.1016/j.hal.2016.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Microalgae have previously been reported to contain β-N-methylamino-l-alanine (BMAA), and the global presence of these primary producers has been associated with the widespread occurrence of BMAA in marine organisms. It has been repeatedly shown that filter-feeding bivalves accumulate phytoplankton species and their toxins. In this study, the concentrations of total soluble BMAA and DAB as a function of growth phase were observed for four non-axenic diatom species (i.e. Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and Thalassiosira pseudonana). These strains had previously been shown to contain BMAA using a highly selective HILIC-MS/MS method. BMAA cell quota appeared to be species-specific, however, highest BMAA concentrations were always obtained during the stationary growth phase, for all four species, suggesting that BMAA is a secondary metabolite. While DAB was detected in a bacterial culture isolated from a culture of P. tricornutum, the presence or absence of a bacterial population did not influence production of BMAA and DAB by P. tricornutum, i.e. no significant difference was noted for BMAA and DAB production between axenic and non-axenic cultures. The presence of DAB in bacteria had previously been shown, and raised the question as to whether DAB observed in many species of microalgae may arise from the non-axenic culture conditions or from the microalgae themselves.
Collapse
Affiliation(s)
- Damien Réveillon
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Véronique Séchet
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Zouher Amzil
- Ifremer, Laboratoire Phycotoxines, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
40
|
Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A, Rydberg S. BMAA extraction of cyanobacteria samples: which method to choose? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:338-50. [PMID: 26304815 DOI: 10.1007/s11356-015-5266-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/17/2015] [Indexed: 05/03/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin reportedly produced by cyanobacteria, diatoms and dinoflagellates, is proposed to be linked to the development of neurological diseases. BMAA has been found in aquatic and terrestrial ecosystems worldwide, both in its phytoplankton producers and in several invertebrate and vertebrate organisms that bioaccumulate it. LC-MS/MS is the most frequently used analytical technique in BMAA research due to its high selectivity, though consensus is lacking as to the best extraction method to apply. This study accordingly surveys the efficiency of three extraction methods regularly used in BMAA research to extract BMAA from cyanobacteria samples. The results obtained provide insights into possible reasons for the BMAA concentration discrepancies in previous publications. In addition and according to the method validation guidelines for analysing cyanotoxins, the TCA protein precipitation method, followed by AQC derivatization and LC-MS/MS analysis, is now validated for extracting protein-bound (after protein hydrolysis) and free BMAA from cyanobacteria matrix. BMAA biological variability was also tested through the extraction of diatom and cyanobacteria species, revealing a high variance in BMAA levels (0.0080-2.5797 μg g(-1) DW).
Collapse
Affiliation(s)
- Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Alfred Burian
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar e da Atmosfera, 1449 006, Lisbon, Portugal
| | | | - Anna Godhe
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden.
| |
Collapse
|
41
|
Roy-Lachapelle A, Solliec M, Sauvé S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 2015; 407:5487-501. [DOI: 10.1007/s00216-015-8722-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
42
|
Fan H, Qiu J, Fan L, Li A. Effects of growth conditions on the production of neurotoxin 2,4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5943-51. [PMID: 25354443 DOI: 10.1007/s11356-014-3766-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/22/2014] [Indexed: 05/03/2023]
Abstract
Neurotoxins β-N-methylamino-L-alanine (BMAA) and its isomer 2,4-diaminobutyric acid (DAB) have been reported previously in diverse strains of cyanobacteria. In this study, BMAA and DAB were analyzed for two strains of Microcystis aeruginosa incubated with four different levels of phosphate, nitrate, illumination, and temperature, respectively, in order to explore the effects of growth factors on toxin-producing ability of cyanobacteria. Both toxins were also screened in 17 cyanobacterial strains cultured with BG-11 medium and conventional illumination and temperature conditions, and in three field phytoplankton samples collected from different lakes in China. All samples were analyzed using a liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) system coupled with a hydrophilic interaction liquid chromatography (HILIC) column. Results showed that no BMAA was detected in any of the cyanobacterial strains grown under our laboratory culture conditions, or in any of the field samples. Production of DAB in M. aeruginosa was significantly enhanced by extreme concentrations of nutrient and physical factors. Various concentrations of DAB were also present in most cultured samples (13 of 17) of cyanobacteria and were not species specific. This is the first time to report the production of DAB in M. aeruginosa cultured under alterative conditions in laboratory. Occurrence of DAB in most of the strains examined here means that consideration should be given to the presence of this compound in freshwater environment in China.
Collapse
Affiliation(s)
- Hua Fan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | | | | | | |
Collapse
|
43
|
Improved detection of β-N-methylamino-l-alanine using N-hydroxysuccinimide ester of N-butylnicotinic acid for the localization of BMAA in blue mussels (Mytilus edulis). Anal Bioanal Chem 2015; 407:3743-50. [DOI: 10.1007/s00216-015-8597-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
44
|
McGorum BC, Pirie RS, Glendinning L, McLachlan G, Metcalf JS, Banack SA, Cox PA, Codd GA. Grazing livestock are exposed to terrestrial cyanobacteria. Vet Res 2015; 46:16. [PMID: 25828258 PMCID: PMC4342207 DOI: 10.1186/s13567-015-0143-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/06/2015] [Indexed: 01/09/2023] Open
Abstract
While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in all samples tested, including 6 plant washings, 1 soil sample and ileal contents from 2 grazing horses. Further work was performed to test the hypothesis that ingestion of cyanotoxins contributes to the pathogenesis of some currently unexplained diseases of grazing horses, including equine grass sickness (EGS), equine motor neuron disease (EMND) and hepatopathy. Phormidium population density was significantly higher on EGS fields than on control fields. The cyanobacterial neurotoxic amino acid 2,4-diaminobutyric acid (DAB) was detected in plant washings from EGS fields, but worst case scenario estimations suggested the dose would be insufficient to cause disease. Neither DAB nor the cyanobacterial neurotoxins β-N-methylamino-L-alanine and N-(2-aminoethyl) glycine were detected in neural tissue from 6 EGS horses, 2 EMND horses and 7 control horses. Phormidium was present in low numbers on plants where horses had unexplained hepatopathy. This study did not yield evidence linking known cyanotoxins with disease in grazing horses. However, further study is warranted to identify and quantify toxins produced by cyanobacteria on livestock fields, and determine whether, under appropriate conditions, known or unknown cyanotoxins contribute to currently unexplained diseases in grazing livestock.
Collapse
|
45
|
Réveillon D, Abadie E, Séchet V, Brient L, Savar V, Bardouil M, Hess P, Amzil Z. Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon. Mar Drugs 2014; 12:5441-67. [PMID: 25405857 PMCID: PMC4245540 DOI: 10.3390/md12115441] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA.
Collapse
Affiliation(s)
- Damien Réveillon
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Eric Abadie
- Ifremer (French Research Institute for the Exploitation of the Seas), Laboratoire Environnement Ressources du Languedoc Roussillon (LER-LR) F-34203 Sète, France.
| | - Véronique Séchet
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Luc Brient
- UMR Eco-Bio-Université de Rennes I, F-35042 Rennes, France.
| | - Véronique Savar
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Michèle Bardouil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Philipp Hess
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Zouher Amzil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
46
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
47
|
Combes A, El Abdellaoui S, Vial J, Lagrange E, Pichon V. Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-l-alanine in brain tissues. Anal Bioanal Chem 2014; 406:4627-36. [DOI: 10.1007/s00216-014-7872-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/10/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022]
|
48
|
Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins (Basel) 2014; 6:1109-38. [PMID: 24662480 PMCID: PMC3968380 DOI: 10.3390/toxins6031109] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work.
Collapse
|
49
|
Al-Sammak MA, Hoagland KD, Cassada D, Snow DD. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins (Basel) 2014; 6:488-508. [PMID: 24476710 PMCID: PMC3942747 DOI: 10.3390/toxins6020488] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 11/17/2022] Open
Abstract
Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.
Collapse
Affiliation(s)
- Maitham Ahmed Al-Sammak
- Environmental Health, Occupational Health, & Toxicology, Tropical Biological Researches Unit, College of Science, University of Baghdad, Baghdad 10071, Iraq; E-Mail:
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Kyle D. Hoagland
- School of Natural Resources, University of Nebraska, Lincoln, NE 68583, USA; E-Mail:
| | - David Cassada
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Daniel D. Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1-402-472-7539; Fax: +1-402-472-9599
| |
Collapse
|
50
|
Jiang L, Eriksson J, Lage S, Jonasson S, Shams S, Mehine M, Ilag LL, Rasmussen U. Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS One 2014; 9:e84578. [PMID: 24392143 PMCID: PMC3879315 DOI: 10.1371/journal.pone.0084578] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease is a neurological disorder linked to environmental exposure to a non-protein amino acid, β-N-methylamino-L-alanine (BMAA). The only organisms reported to be BMAA-producing, are cyanobacteria--prokaryotic organisms. In this study, we demonstrate that diatoms--eukaryotic organisms--also produce BMAA. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry revealed the occurrence of BMAA in six investigated axenic diatom cultures. BMAA was also detected in planktonic field samples collected on the Swedish west coast that display an overrepresentation of diatoms relative to cyanobacteria. Given the ubiquity of diatoms in aquatic environments and their central role as primary producers and the main food items of zooplankton, the use of filter and suspension feeders as livestock fodder dramatically increases the risk of human exposure to BMAA-contaminated food.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Johan Eriksson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Sara Jonasson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Shiva Shams
- Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre - Fondazione Edmund Mach, Trento, Italy
| | - Martin Mehine
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Leopold L. Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|