1
|
Pravadali-Cekic S, Vojvodic A, Violi JP, Mitrovic SM, Rodgers KJ, Bishop DP. Simultaneous Analysis of Cyanotoxins β-N-methylamino-L-alanine (BMAA) and Microcystins-RR, -LR, and -YR Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Molecules 2023; 28:6733. [PMID: 37764509 PMCID: PMC10537148 DOI: 10.3390/molecules28186733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
β-N-methylamino-L-alanine (BMAA) and its isomers, 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)-glycine (AEG), along with microcystins (MCs)-RR, -LR, and -YR (the major MC congeners), are cyanotoxins that can cause detrimental health and environmental impacts during toxic blooms. Currently, there are no reverse-phase (RP) LC-MS/MS methods for the simultaneous detection and quantification of BMAA, its isomers, and the major MCs in a single analysis; therefore, multiple analyses are required to assess the toxic load of a sample. Here, we present a newly developed and validated method for the detection and quantification of BMAA, 2,4-DAB, AEG, MC-LR, MC-RR, and MC-YR using RP LC-MS/MS. Method validation was performed, assessing linearity (r2 > 0.996), accuracy (>90% recovery for spiked samples), precision (7% relative standard deviation), and limits of detection (LODs) and quantification (LOQs) (ranging from 0.13 to 1.38 ng mL-1). The application of this combined cyanotoxin analysis on a culture of Microcystis aeruginosa resulted in the simultaneous detection of 2,4-DAB (0.249 ng mg-1 dry weight (DW)) and MC-YR (4828 ng mg-1 DW). This study provides a unified method for the quantitative analysis of BMAA, its isomers, and three MC congeners in natural environmental samples.
Collapse
Affiliation(s)
- Sercan Pravadali-Cekic
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| | - Aleksandar Vojvodic
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| | - Jake P. Violi
- School of Chemistry, University of New South Wales, Sydney, NSW 2033, Australia;
| | - Simon M. Mitrovic
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.M.M.); (K.J.R.)
| | - Kenneth J. Rodgers
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (S.M.M.); (K.J.R.)
| | - David P. Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), University of Technology Sydney, Sydney, NSW 2007, Australia; (S.P.-C.)
| |
Collapse
|
2
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
3
|
Panda D, Dash BP, Manickam S, Boczkaj G. Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. MASS SPECTROMETRY REVIEWS 2022; 41:766-803. [PMID: 33624883 DOI: 10.1002/mas.21689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
There has been a rising concern regarding the harmful impact of biotoxins, source of origin, and the determination of the specific type of toxin. With numerous reports on their extensive spread, biotoxins pose a critical challenge to figure out their parent groups, metabolites, and concentration. In that aspect, liquid chromatography-mass spectrometry (LC-MS) based analysis paves the way for its accurate identification and quantification. The biotoxins are ideally categorized as phytotoxins, mycotoxins, shellfish-toxins, ciguatoxins, cyanotoxins, and bacterial toxins such as tetrodotoxins. Considering the diverse nature of biotoxins, both low-resolution mass spectrometry (LRMS) and high-resolution mass spectrometry (HRMS) methods have been implemented for their detection. The sample preparation strategy for complex matrix usually includes "QuEChERS" extraction or solid-phase extraction coupled with homogenization and centrifugation. For targeted analysis of biotoxins, the LRMS consisting of a tandem mass spectrometer operating in multiple reaction monitoring mode has been widely implemented. With the help of the reference standard, most of the toxins were accurately quantified. At the same time, the suspect screening and nontarget screening approach are facilitated by the HRMS platforms during the absence of reference standards. Significant progress has also been made in sampling device employment, utilizing novel sample preparation strategies, synthesizing toxin standards, employing hybrid MS platforms, and the associated data interpretation. This critical review attempts to elucidate the progress in LC-MS based analysis in the determination of biotoxins while pointing out major challenges and suggestions for future development.
Collapse
Affiliation(s)
- Debabrata Panda
- Center of Excellence (CoE), Fakir Mohan University, Nuapadhi, Odisha, India
| | - Bisnu P Dash
- Department of Bioscience and Biotechnology, Fakir Mohan University, Nuapadhi, Odisha, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
4
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
5
|
Metcalf JS, Banack SA, Wessel RA, Lester M, Pim JG, Cassani JR, Cox PA. Toxin Analysis of Freshwater Cyanobacterial and Marine Harmful Algal Blooms on the West Coast of Florida and Implications for Estuarine Environments. Neurotox Res 2020; 39:27-35. [PMID: 32683648 PMCID: PMC7904716 DOI: 10.1007/s12640-020-00248-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Recent marine and freshwater algal and cyanobacterial blooms in Florida have increased public concern and awareness of the risks posed by exposure to these organisms. In 2018, Lake Okeechobee and the Caloosahatchee river, on the west coast of Florida, experienced an extended bloom of Microcystis spp. and a bloom of Karenia brevis in the coastal waters of the Gulf of Mexico that coincided in the Fort Myers area. Samples from the Caloosahatchee at Fort Myers into Pine Island Sound and up to Boca Grande were collected by boat. High concentrations of microcystin-LR were detected in the cyanobacterial bloom along with brevetoxins in the marine samples. Furthermore, β-N-methylamino-L-alanine (BMAA) and isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobuytric acid (DAB) were detected in marine diatoms and dinoflagellates, and cyanobacteria of freshwater origin. High freshwater flows pushed the cyanobacterial bloom to barrier island beaches and Microcystis and microcystins could be detected into the marine environment at a salinity of 41 mS/cm. For comparison, in 2019 collections of Dapis (a new generic segregate from Lyngbya) mats from Sarasota showed high concentrations of BMAA, suggesting the possibility of long-term exposure of residents to BMAA. The findings highlight the potential for multiple, potentially toxic blooms to co-exist and the possible implications for human and animal health.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Jackson, WY, 83001, USA.
| | - S A Banack
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| | - R A Wessel
- Sanibel-Captiva Conservation Foundation, Sanibel, FL, 33957, USA
| | - M Lester
- Path of Wellness Holistic Health, Lexington, GA, 30648, USA
| | - J G Pim
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - J R Cassani
- Calusa Waterkeeper, Inc., PO Box 1165, Fort Myers, FL, 33902, USA
| | - P A Cox
- Brain Chemistry Labs, Jackson, WY, 83001, USA
| |
Collapse
|
6
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
7
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
8
|
Vo Duy S, Munoz G, Dinh QT, Tien Do D, Simon DF, Sauvé S. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry. PLoS One 2019; 14:e0220698. [PMID: 31386693 PMCID: PMC6684067 DOI: 10.1371/journal.pone.0220698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA), suspected to trigger neurodegenerative diseases, can be produced during cyanobacterial bloom events and subsequently affect ecosystems and water sources. Some of its isomers including β-amino-N-methylalanine (BAMA), N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid (DAB) may show different toxicities than BMAA. Here, we set out to provide a fast and sensitive method for the monitoring of AEG, BAMA, DAB and BMAA in surface waters. A procedure based on aqueous derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was investigated for this purpose. Under optimized conditions, a small aqueous sample aliquot (5 mL) was spiked with BMAA-d3 internal standard, subjected to FMOC-Cl derivatization, centrifuged, and analyzed. The high-throughput instrumental method (10 min per sample) involved on-line pre-concentration and desalting coupled to ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). Chromatographic gradient and mobile phases were adjusted to obtain suitable separation of the 4 isomers. The method limits of detection were in the range of 2-5 ng L-1. In-matrix validation parameters including linearity range, accuracy, precision, and matrix effects were assessed. The method was applied to surface water samples (n = 82) collected at a large spatial scale in lakes and rivers in Canada. DAB was found in >70% of samples at variable concentrations (<3-1,900 ng L-1), the highest concentrations corresponding to lake samples in cyanobacterial bloom periods. BMAA was only reported (110 ng L-1) at one HAB-impacted location. This is one of the first studies to report on the profiles of AEG, BAMA, DAB, and BMAA in background and impacted surface waters.
Collapse
Affiliation(s)
- Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dat Tien Do
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Rutkowska M, Płotka-Wasylka J, Majchrzak T, Wojnowski W, Mazur-Marzec H, Namieśnik J. Recent trends in determination of neurotoxins in aquatic environmental samples. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Scott L, Downing T. Dose-Dependent Adult Neurodegeneration in a Rat Model After Neonatal Exposure to β-N-Methylamino-l-Alanine. Neurotox Res 2019; 35:711-723. [DOI: 10.1007/s12640-019-9996-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
|
11
|
Foss AJ, Chernoff N, Aubel MT. The analysis of underivatized β-Methylamino-L-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS. Toxicon 2018; 152:150-159. [PMID: 30102919 DOI: 10.1016/j.toxicon.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
β-Methylamino-L-alanine (BMAA) has been identified as the potential cause of the amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) observed in the Chamorro people of Guam. The principal hypothesis for BMAA exposure and intoxication relies on the biomagnification of BMAA in flying fox specimens ingested by the Chamorro people. Although high levels of BMAA were quantitated in flying fox specimens utilizing liquid chromatography-fluorescence (LC-FL), there have not been any confirmatory analyses conducted to date. Therefore, a method for the tissue homogenization, extraction and direct analysis of BMAA (including BAMA, 2,4-DAB and AEG) was utilized. The approach was applied to mammalian dried skin and hair from various rodent species (negative controls) and archived flying fox (Pteropus mariannus mariannus) specimens. A positive control sample of homogenized mussel (Mytelius edulis) with native BMAA was used to verify the method. It was determined that the direct analysis using HILIC MS/MS required additional quality control in order to allow for the confident identification of BMAA due to the near co-elution of BAMA. BMAA was not present above 0.2 μg g-1 (free fraction) or 2.8 μg g-1 (total fraction) in the flying fox specimens. While analysis did not result in BMAA detection in flying fox or negative control samples, the positive control sample and spiked samples were successfully detected.
Collapse
Affiliation(s)
- Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA.
| | - Neil Chernoff
- Developmental Biology Division, National Health and Environmental Effects Research Lab, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Mark T Aubel
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL, 32177, USA
| |
Collapse
|
12
|
Beri J, Kirkwood KI, Muddiman DC, Bereman MS. A novel integrated strategy for the detection and quantification of the neurotoxin β-N-methylamino-L-alanine in environmental samples. Anal Bioanal Chem 2018; 410:2597-2605. [PMID: 29455280 DOI: 10.1007/s00216-018-0930-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
We describe a set of new tools for the detection and quantification of β-N-methylamino-L-alanine (BMAA) which includes a novel stable isotope-labeled BMAA standard (13C3,15N2) and a chip-based capillary electrophoresis mass spectrometry platform for separation and detection. Baseline resolution of BMAA from its potentially confounding structural isomers N-2-aminoethylglycine (AEG) and 2,4-diaminobutyric acid (2,4-DAB) is achieved using the chip-based CE-MS system in less than 1 min. Detection and linearity of response are demonstrated across > 3.5 orders of dynamic range using parallel reaction monitoring (PRM). The lower limit of detection and quantification were calculated for BMAA detection at 40 nM (4.8 ng/mL) and 400 nM (48 ng/mL), respectively. Finally, the strategy was applied to detect BMAA in seafood samples purchased at a local market in Raleigh, NC where their harvest location was known. BMAA was detected in a sea scallop sample. Because the BMAA/stable isotope-labeled 13C3,15N2-BMAA (SIL-BMAA) ratio in the scallop sample was below the limit of quantification, a semiquantitative analysis of BMAA content was carried out, and BMAA content was estimated to be approximately 820 ng BMAA/1 g of wet scallop tissue. Identification was verified by high mass measurement accuracy of precursor (< 5 ppm) and product ions (< 10 ppm), comigration with SIL-BMAA spike-in standard, and conservation of ion abundance ratios for product ions between BMAA and SIL-BMAA. Interestingly, BMAA was not identified in the free protein fraction but only detected after protein hydrolysis which suggests that BMAA is tightly bound by and/or incorporated into proteins. Graphical abstract Utilization of novel 13C3,15N2-BMAA and chip-based CE-MS/MS for detection and quantification of BMAA in environmental samples.
Collapse
Affiliation(s)
- Joshua Beri
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael S Bereman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
van Onselen R, Downing T. BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon 2018; 143:74-80. [DOI: 10.1016/j.toxicon.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 02/08/2023]
|
14
|
Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans. Toxins (Basel) 2018; 10:toxins10020083. [PMID: 29443939 PMCID: PMC5848184 DOI: 10.3390/toxins10020083] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino-N-methyl-alanine (BAMA) and N-(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.
Collapse
|
15
|
Scott LL, Downing TG. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases. Toxins (Basel) 2017; 10:E22. [PMID: 29286334 PMCID: PMC5793109 DOI: 10.3390/toxins10010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Although cyanobacterial β-N-methylamino-l-alanine (BMAA) has been implicated in the development of Alzheimer's Disease (AD), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS), no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
16
|
Scott LL, Downing TG. Β-N-Methylamino-L-Alanine (BMAA) Toxicity Is Gender and Exposure-Age Dependent in Rats. Toxins (Basel) 2017; 10:E16. [PMID: 29280981 PMCID: PMC5793103 DOI: 10.3390/toxins10010016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cyanobacterial β-N-methylamino-L-alanine (BMAA) has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS) or Parkinson's Disease (PD). We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats' natural passive defense mechanism, and potential memory deficits and changes to the rat's natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3-7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.
Collapse
Affiliation(s)
- Laura Louise Scott
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| | - Timothy Grant Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77 000, Port Elizabeth 6031, South Africa.
| |
Collapse
|
17
|
Regueiro J, Negreira N, Carreira-Casais A, Pérez-Lamela C, Simal-Gándara J. Dietary exposure and neurotoxicity of the environmental free and bound toxin β- N -methylamino- l -alanine. Food Res Int 2017; 100:1-13. [DOI: 10.1016/j.foodres.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
18
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
19
|
Popova AA, Koksharova OA. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems. BIOCHEMISTRY (MOSCOW) 2017; 81:794-805. [PMID: 27677549 DOI: 10.1134/s0006297916080022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.
Collapse
Affiliation(s)
- A A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
20
|
Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry. Anal Bioanal Chem 2016; 409:1481-1491. [PMID: 27909777 DOI: 10.1007/s00216-016-0091-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL-1 proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL-1 was attained, which was equivalent to 16 ng g-1 dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.
Collapse
|
21
|
Porojan C, Mitrovic SM, Yeo DCJ, Furey A. Overview of the potent cyanobacterial neurotoxin β-methylamino-L-alanine (BMAA) and its analytical determination. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1570-1586. [PMID: 27652898 DOI: 10.1080/19440049.2016.1217070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blue-green algae are responsible for the production of different types of toxins which can be neurotoxic, hepatotoxic, cytotoxic and dermatotoxic and that can affect both aquatic and terrestrial life. Since its discovery the neurotoxin β-methylamino-L-alanine (BMAA) has been a cause for concern, being associated with the neurodegenerative disease amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC). The initial focus was on Guam where it was observed that a high number of people were affected by the ALS/PDC complex. Subsequently, researchers were surprised to find levels of BMAA in post mortem brains from Canadian patients who also suffered from ALS/PDC. Recent research demonstrates that BMAA has been found at different levels in the aquatic food web in the brackish waters of the Baltic Sea. There is emerging evidence to suggest that sand-borne algae from Qatar can also contain BMAA. Furthermore, there is now concern because BMAA has been found not only in warmer regions of the world but also in temperate regions like Europe. The aim of this review is to focus on the methods of extraction and analysis of the neurotoxic non-protein amino acid BMAA. We also consider the neurotoxicity, aetiology, and diverse sources and routes of exposure to BMAA. In recent years, different methods have been developed for the analysis of BMAA. Some of these use HPLC-FD, UPLC-UV, UPLC-MS and LC-MS/MS using samples that have been derivatised or underivatised. To date the LC-MS/MS approach is the most widely used analytical technique as it is the most selective and sensitive method for BMAA determination.
Collapse
Affiliation(s)
- Cristina Porojan
- a Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences , Cork Institute of Technology , Cork , Ireland
| | - Simon M Mitrovic
- b Freshwater & Invasion Biology Laboratory, Department of Biological Sciences , National University of Singapore , Singapore.,c School of the Environment , University of Technology , Sydney , NSW , Australia
| | - Darren C J Yeo
- b Freshwater & Invasion Biology Laboratory, Department of Biological Sciences , National University of Singapore , Singapore
| | - Ambrose Furey
- a Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences , Cork Institute of Technology , Cork , Ireland
| |
Collapse
|
22
|
Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 2016; 56:269-283. [DOI: 10.1016/j.neuro.2016.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
|
23
|
Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A, Rydberg S. BMAA extraction of cyanobacteria samples: which method to choose? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:338-50. [PMID: 26304815 DOI: 10.1007/s11356-015-5266-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/17/2015] [Indexed: 05/03/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin reportedly produced by cyanobacteria, diatoms and dinoflagellates, is proposed to be linked to the development of neurological diseases. BMAA has been found in aquatic and terrestrial ecosystems worldwide, both in its phytoplankton producers and in several invertebrate and vertebrate organisms that bioaccumulate it. LC-MS/MS is the most frequently used analytical technique in BMAA research due to its high selectivity, though consensus is lacking as to the best extraction method to apply. This study accordingly surveys the efficiency of three extraction methods regularly used in BMAA research to extract BMAA from cyanobacteria samples. The results obtained provide insights into possible reasons for the BMAA concentration discrepancies in previous publications. In addition and according to the method validation guidelines for analysing cyanotoxins, the TCA protein precipitation method, followed by AQC derivatization and LC-MS/MS analysis, is now validated for extracting protein-bound (after protein hydrolysis) and free BMAA from cyanobacteria matrix. BMAA biological variability was also tested through the extraction of diatom and cyanobacteria species, revealing a high variance in BMAA levels (0.0080-2.5797 μg g(-1) DW).
Collapse
Affiliation(s)
- Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Alfred Burian
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar e da Atmosfera, 1449 006, Lisbon, Portugal
| | | | - Anna Godhe
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden.
| |
Collapse
|
24
|
Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model. J Toxicol 2015; 2015:739746. [PMID: 26604922 PMCID: PMC4641925 DOI: 10.1155/2015/739746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups.
Collapse
|
25
|
van Onselen R, Cook NA, Phelan RR, Downing TG. Bacteria do not incorporate β-N-methylamino-l-alanine into their proteins. Toxicon 2015; 102:55-61. [DOI: 10.1016/j.toxicon.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
|
26
|
Roy-Lachapelle A, Solliec M, Sauvé S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 2015; 407:5487-501. [DOI: 10.1007/s00216-015-8722-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
27
|
Berntzon L, Ronnevi L, Bergman B, Eriksson J. Detection of BMAA in the human central nervous system. Neuroscience 2015; 292:137-47. [DOI: 10.1016/j.neuroscience.2015.02.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
|
28
|
Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS, Powell J, Cox PA, Stommel E. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins (Basel) 2015; 7:322-36. [PMID: 25643180 PMCID: PMC4344626 DOI: 10.3390/toxins7020322] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/12/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association.
Collapse
Affiliation(s)
| | - Tracie Caller
- Cheyenne Regional Medical Group, Cheyenne, WY 82001, USA.
| | - Patricia Henegan
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | - James Haney
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Amanda Murby
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - James S Metcalf
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - James Powell
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Paul Alan Cox
- Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA.
| | - Elijah Stommel
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| |
Collapse
|
29
|
Réveillon D, Abadie E, Séchet V, Brient L, Savar V, Bardouil M, Hess P, Amzil Z. Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon. Mar Drugs 2014; 12:5441-67. [PMID: 25405857 PMCID: PMC4245540 DOI: 10.3390/md12115441] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA.
Collapse
Affiliation(s)
- Damien Réveillon
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Eric Abadie
- Ifremer (French Research Institute for the Exploitation of the Seas), Laboratoire Environnement Ressources du Languedoc Roussillon (LER-LR) F-34203 Sète, France.
| | - Véronique Séchet
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Luc Brient
- UMR Eco-Bio-Université de Rennes I, F-35042 Rennes, France.
| | - Véronique Savar
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Michèle Bardouil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Philipp Hess
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Zouher Amzil
- Ifremer (French Research Institute for the Exploitation of the Seas), Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
30
|
Delzor A, Couratier P, Boumédiène F, Nicol M, Druet-Cabanac M, Paraf F, Méjean A, Ploux O, Leleu JP, Brient L, Lengronne M, Pichon V, Combès A, El Abdellaoui S, Bonneterre V, Lagrange E, Besson G, Bicout DJ, Boutonnat J, Camu W, Pageot N, Juntas-Morales R, Rigau V, Masseret E, Abadie E, Preux PM, Marin B. Searching for a link between the L-BMAA neurotoxin and amyotrophic lateral sclerosis: a study protocol of the French BMAALS programme. BMJ Open 2014; 4:e005528. [PMID: 25180055 PMCID: PMC4156816 DOI: 10.1136/bmjopen-2014-005528] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is the most common motor neurone disease. It occurs in two forms: (1) familial cases, for which several genes have been identified and (2) sporadic cases, for which various hypotheses have been formulated. Notably, the β-N-methylamino-L-alanine (L-BMAA) toxin has been postulated to be involved in the occurrence of sporadic ALS. The objective of the French BMAALS programme is to study the putative link between L-BMAA and ALS. METHODS AND ANALYSIS The programme covers the period from 1 January 2003 to 31 December 2011. Using multiple sources of ascertainment, all the incident ALS cases diagnosed during this period in the area under study (10 counties spread over three French regions) were collected. First, the standardised incidence ratio will be calculated for each municipality under concern. Then, by applying spatial clustering techniques, overincidence and underincidence zones of ALS will be sought. A case-control study, in the subpopulation living in the identified areas, will gather information about patients' occupations, leisure activities and lifestyle habits in order to assess potential risk factors to which they are or have been exposed. Specimens of drinking water, food and biological material (brain tissue) will be examined to assess the presence of L-BMAA in the environment and tissues of ALS cases and controls. ETHICS AND DISSEMINATION The study has been reviewed and approved by the French ethical committee of the CPP SOOM IV (Comité de Protection des Personnes Sud-Ouest & Outre-Mer IV). The results will be published in peer-reviewed journals and presented at national and international conferences.
Collapse
Affiliation(s)
- Aurélie Delzor
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Philippe Couratier
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Farid Boumédiène
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Marie Nicol
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Michel Druet-Cabanac
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - François Paraf
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Annick Méjean
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Olivier Ploux
- Interdisciplinary Laboratory for Tomorrow's Energy Pack (LIED), CNRS UMR 8236, University Paris Diderot-Paris 7, Paris, France
| | - Jean-Philippe Leleu
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| | - Luc Brient
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Marion Lengronne
- UMR 6553 ECOBIO, Ecosystems—Biodiversity—Evolution, University Rennes I, Rennes, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Saïda El Abdellaoui
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR ESPCI-ParisTech-CNRS 8231 CBI, Paris, France
- University Sorbonne, University Pierre and Marie Curie (UPMC), Paris, France
| | - Vincent Bonneterre
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
| | - Emmeline Lagrange
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Gérard Besson
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - Dominique J Bicout
- Environment and Health Prediction in Populations (EPSP), CNRS-TIMC-IMAG UMR 5525 UJF-Grenoble 1, Grenoble, France
- Biomathematics and Epidemiology, Environment and Health Prediction in Populations (EPSP), VetAgro Sup, Marcy-l'Etoile, France
| | - Jean Boutonnat
- Department of Neurology, University Hospital of Grenoble, Grenoble, France
| | - William Camu
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Nicolas Pageot
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Raul Juntas-Morales
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Valérie Rigau
- Motoneuron Diseases: Neuroinflammation and Therapy, INSERM UMR 1051, Neurosciences Institute, Montpellier, France
- Department of Neurology, ALS Center, University Hospital Gui de Chauliac, Montpellier, France
| | - Estelle Masseret
- UMR 5119 ECOSYM, Ecology of Coastal Marine Systems, UM2-CNRS-IRD-Ifremer-UM1, University Montpellier II, Montpellier, France
| | - Eric Abadie
- Environment Resources Laboratory/Languedoc-Roussillon, Ifremer, Sète, France
| | - Pierre-Marie Preux
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
- Department of Neurology, ALS Center, University Hospital Dupuytren, Limoges, France
| | - Benoît Marin
- Tropical Neuroepidemiology, INSERM UMR 1094, Limoges, France
- University of Limoges, School of Medicine, Institute of Neuroepidemiology and Tropical Neurology, Centre national de la recherche scientifique FR 3503 GEIST, Limoges, France
| |
Collapse
|
31
|
Banack SA, Metcalf JS, Bradley WG, Cox PA. Detection of cyanobacterial neurotoxin β-N-methylamino-l-alanine within shellfish in the diet of an ALS patient in Florida. Toxicon 2014; 90:167-73. [PMID: 25123936 DOI: 10.1016/j.toxicon.2014.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/30/2014] [Accepted: 07/30/2014] [Indexed: 01/13/2023]
Abstract
Cyanobacteria produce the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA), which in contaminated marine waters has been found to accumulate in shellfish. Exposure to BMAA has been associated with an increased risk of neurodegenerative disease. Analysis of blinded samples found BMAA to be present in neuroproteins of individuals who died from ALS and ALS/PDC, but generally not in the brains of patients who died of causes unrelated to neurodegeneration or Huntington's disease, an autosomal dominant neurodegenerative disease. We here report support for a link between a patient with ALS and chronic exposure to the cyanobacterial neurotoxin BMAA via shellfish consumption. The patient had frequently eaten lobsters collected in Florida Bay for approximately 30 years. LC-MS/MS analysis of two lobsters which this ALS patient had placed in his freezer revealed BMAA at concentrations of 27 and 4 μg/g, respectively, as well as the presence of 2,4-diaminobutyric acid (DAB), a BMAA isomer. Two additional lobsters recently collected from Florida Bay also contained the neurotoxins BMAA and DAB. These data suggest that invertebrates collected in water where cyanobacterial blooms are present, if consumed, may result in direct human exposure to these neurotoxic amino acids. The data support the assertion that prolonged exposure to BMAA may have played a role in the etiology of ALS in this patient.
Collapse
Affiliation(s)
| | - James S Metcalf
- Institute for Ethnomedicine, Box 3464, Jackson Hole, WY 83001, USA.
| | - Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Paul Alan Cox
- Institute for Ethnomedicine, Box 3464, Jackson Hole, WY 83001, USA.
| |
Collapse
|
32
|
Glover WB, Mash DC, Murch SJ. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids 2014; 46:2553-9. [PMID: 25096519 DOI: 10.1007/s00726-014-1812-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022]
Abstract
N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding.
Collapse
Affiliation(s)
- W Broc Glover
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
33
|
Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins (Basel) 2014; 6:1109-38. [PMID: 24662480 PMCID: PMC3968380 DOI: 10.3390/toxins6031109] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work.
Collapse
|
34
|
Al-Sammak MA, Hoagland KD, Cassada D, Snow DD. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins (Basel) 2014; 6:488-508. [PMID: 24476710 PMCID: PMC3942747 DOI: 10.3390/toxins6020488] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 11/17/2022] Open
Abstract
Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.
Collapse
Affiliation(s)
- Maitham Ahmed Al-Sammak
- Environmental Health, Occupational Health, & Toxicology, Tropical Biological Researches Unit, College of Science, University of Baghdad, Baghdad 10071, Iraq; E-Mail:
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Kyle D. Hoagland
- School of Natural Resources, University of Nebraska, Lincoln, NE 68583, USA; E-Mail:
| | - David Cassada
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Daniel D. Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1-402-472-7539; Fax: +1-402-472-9599
| |
Collapse
|
35
|
McCarron P, Logan AC, Giddings SD, Quilliam MA. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry. AQUATIC BIOSYSTEMS 2014; 10:5. [PMID: 25120905 PMCID: PMC4130116 DOI: 10.1186/2046-9063-10-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/04/2014] [Indexed: 05/03/2023]
Abstract
Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications.
Collapse
Affiliation(s)
- Pearse McCarron
- National Research Council Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada
| | - Alan C Logan
- CAMNR, 23679 Calabasas Road Suite 542, Calabasas, CA 91302, USA
| | - Sabrina D Giddings
- National Research Council Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada
| | - Michael A Quilliam
- National Research Council Canada, Measurement Science and Standards, Biotoxin Metrology, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
36
|
Dietary BMAA exposure in an amyotrophic lateral sclerosis cluster from southern France. PLoS One 2013; 8:e83406. [PMID: 24349504 PMCID: PMC3862759 DOI: 10.1371/journal.pone.0083406] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/10/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary exposure to the cyanotoxin BMAA is suspected to be the cause of amyotrophic lateral sclerosis in the Western Pacific Islands. In Europe and North America, this toxin has been identified in the marine environment of amyotrophic lateral sclerosis clusters but, to date, only few dietary exposures have been described. OBJECTIVES We aimed at identifying cluster(s) of amyotrophic lateral sclerosis in the Hérault district, a coastal district from Southern France, and to search, in the identified area(s), for the existence of a potential dietary source of BMAA. METHODS A spatio-temporal cluster analysis was performed in the district, considering all incident amyotrophic lateral sclerosis cases identified from 1994 to 2009 by our expert center. We investigated the cluster area with serial collections of oysters and mussels that were subsequently analyzed blind for BMAA concentrations. RESULTS We found one significant amyotrophic lateral sclerosis cluster (p = 0.0024), surrounding the Thau lagoon, the most important area of shellfish production and consumption along the French Mediterranean coast. BMAA was identified in mussels (1.8 µg/g to 6.0 µg/g) and oysters (0.6 µg/g to 1.6 µg/g). The highest concentrations of BMAA were measured during summer when the highest picocyanobacteria abundances were recorded. CONCLUSIONS While it is not possible to ascertain a direct link between shellfish consumption and the existence of this ALS cluster, these results add new data to the potential association of BMAA with sporadic amyotrophic lateral sclerosis, one of the most severe neurodegenerative disorder.
Collapse
|
37
|
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples. Toxicon 2013; 76:316-25. [DOI: 10.1016/j.toxicon.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
|
38
|
Dunlop RA, Cox PA, Banack SA, Rodgers KJ. The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS One 2013; 8:e75376. [PMID: 24086518 PMCID: PMC3783393 DOI: 10.1371/journal.pone.0075376] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/17/2013] [Indexed: 12/25/2022] Open
Abstract
Mechanisms of protein misfolding are of increasing interest in the aetiology of neurodegenerative diseases characterized by protein aggregation and tangles including Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Lewy Body Dementia (LBD), and Progressive Supranuclear Palsy (PSP). Some forms of neurodegenerative illness are associated with mutations in genes which control assembly of disease related proteins. For example, the mouse sticky mutation sti, which results in undetected mischarging of tRNAAla with serine resulting in the substitution of serine for alanine in proteins causes cerebellar Purkinje cell loss and ataxia in laboratory animals. Replacement of serine 422 with glutamic acid in tau increases the propensity of tau aggregation associated with neurodegeneration. However, the possibility that environmental factors can trigger abnormal folding in proteins remains relatively unexplored. We here report that a non-protein amino acid, β-N-methylamino-L-alanine (BMAA), can be misincorporated in place of l-serine into human proteins. We also report that this misincorporation can be inhibited by l-serine. Misincorporation of BMAA into human neuroproteins may shed light on putative associations between human exposure to BMAA produced by cyanobacteria and an increased incidence of ALS.
Collapse
Affiliation(s)
- Rachael Anne Dunlop
- Cell Biology Group, School of Medical and Molecular Biosciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Paul Alan Cox
- Institute for Ethnomedicine, Jackson Hole, Wyoming, United States of America
| | - Sandra Anne Banack
- Institute for Ethnomedicine, Jackson Hole, Wyoming, United States of America
| | - Kenneth John Rodgers
- Cell Biology Group, School of Medical and Molecular Biosciences, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail:
| |
Collapse
|
39
|
Field NC, Metcalf JS, Caller TA, Banack SA, Cox PA, Stommel EW. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD. Toxicon 2013; 70:179-83. [PMID: 23660330 DOI: 10.1016/j.toxicon.2013.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 04/23/2013] [Indexed: 12/14/2022]
Abstract
Most amyotrophic lateral sclerosis (ALS) cases occur sporadically. Some environmental triggers have been implicated, including beta-methylamino-L-alanine (BMAA), a cyanobacteria produced neurotoxin. This study aimed to identify environmental risk factors common to three sporadic ALS patients who lived in Annapolis, Maryland, USA and developed the disease within a relatively short time and within close proximity to each other. A questionnaire was used to identify potential risk factors for ALS among the cohort of patients. One common factor among the ALS patients was the frequent consumption of blue crab. Samples of blue crab from the patients' local fish market were tested for BMAA using LC-MS/MS. BMAA was identified in these Chesapeake Bay blue crabs. We conclude that the presence of BMAA in the Chesapeake Bay food web and the lifetime consumption of blue crab contaminated with BMAA may be a common risk factor for sporadic ALS in all three patients.
Collapse
Affiliation(s)
- Nicholas C Field
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
40
|
Metcalf JS, Banack SA, Kotut K, Krienitz L, Codd GA. Amino acid neurotoxins in feathers of the Lesser Flamingo, Phoeniconaias minor. CHEMOSPHERE 2013; 90:835-9. [PMID: 23123117 DOI: 10.1016/j.chemosphere.2012.09.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 05/03/2023]
Abstract
The Lesser Flamingo (Phoeniconaias minor) is known to use cyanobacteria (primarily Arthrospira) as a major food source in the East African Rift Valley lakes. Periodically, mass mortalities have occurred, associated with the cyanobacterial toxins (cyanotoxins), microcystins and anatoxin-a. Deposition of these cyanotoxins into P. minor feathers has been shown to occur, consistent with the presence of cyanotoxins in the livers, stomach and faecal contents after dietary intake. As cyanobacteria have been shown to also produce the neurotoxins β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), stored wing feathers, previously recovered from flamingos which had been exposed to microcystins and anatoxin-a and had subsequently died, were analysed for these neurotoxic amino acids. Trace amounts of BMAA were detected in extracts from Lake Nakuru flamingo feathers, with DAB also present at concentrations between 3.5 and 8.5 μg g(-1) dry weight in feathers from both lakes. Toxin recovery by solid-phase extraction of feather digests was tested with spiked deuterated BMAA and showed good recovery when analysed by LC-MS/MS (80-94%). This is the first report of these neurotoxic amino acids in birds. We discuss the origin and significance of DAB, alongside other cyanotoxins of dietary origin, in the feathers of the Lesser Flamingo.
Collapse
Affiliation(s)
- J S Metcalf
- Institute for Ethnomedicine, Box 3464, Jackson, WY 83001, USA.
| | | | | | | | | |
Collapse
|
41
|
Jiang L, Johnston E, Aberg KM, Nilsson U, Ilag LL. Strategy for quantifying trace levels of BMAA in cyanobacteria by LC/MS/MS. Anal Bioanal Chem 2012. [PMID: 23180086 DOI: 10.1007/s00216-012-6550-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is an amino acid that is putatively associated with the pathology of amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS-PDC) disease. It raises serious health risk concerns since cyanobacteria are ubiquitous thus making human exposure almost inevitable. The identification and quantification of BMAA in cyanobacteria is challenging because it is present only in trace amounts and occurs alongside structurally similar compounds such as BMAA isomers. This work describes an enhanced liquid chromatography/tandem mass spectrometry platform that can distinguish BMAA from its isomers β-amino-N-methyl-alanine, N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid, thus ensuring confident identification of BMAA. The method's sensitivity was improved fourfold by a post-column addition of acetonitrile. The instrument and method limits of detection were shown to be 4.2 fmol/injection (or 0.5 pg/one column) and 0.1 μg/g dry weight of cyanobacteria, respectively. The quantification method uses synthesized deuterated BMAA as an internal standard and exhibits good linearity, accuracy, and precision. Matrix effects were also investigated, revealing an ion enhancement of around 18 %. A lab-cultured cyanobacterial sample (Leptolyngbya PCC73110) was analyzed and shown to contain about 0.73 μg/g dry weight BMAA. The isomer AEG, whose chromatographic properties closely resemble those of BMAA, was also detected. These results highlight the importance of distinguishing BMAA from its isomers for reliable identification as well as providing a sensitive and accurate quantification method for measuring trace levels of BMAA in cyanobacterial samples.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Banack SA, Metcalf JS, Jiang L, Craighead D, Ilag LL, Cox PA. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth. PLoS One 2012; 7:e49043. [PMID: 23145061 PMCID: PMC3492184 DOI: 10.1371/journal.pone.0049043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/05/2012] [Indexed: 11/18/2022] Open
Abstract
Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.
Collapse
Affiliation(s)
| | - James S. Metcalf
- Institute for Ethnomedicine, Jackson, Wyoming, United States of America
| | - Liying Jiang
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Derek Craighead
- Craighead Beringia South, Kelly, Wyoming, United States of America
| | - Leopold L. Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Paul Alan Cox
- Institute for Ethnomedicine, Jackson, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
43
|
Faassen EJ, Gillissen F, Lürling M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 2012; 7:e36667. [PMID: 22570736 PMCID: PMC3343013 DOI: 10.1371/journal.pone.0036667] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/12/2012] [Indexed: 11/27/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been considered a serious health threat because of its putative role in multiple neurodegenerative diseases. First reports on BMAA concentrations in cyanobacteria were alarming: nearly all cyanobacteria were assumed to contain high BMAA concentrations, implying ubiquitous exposure. Recent studies however question this presence of high BMAA concentrations in cyanobacteria. To assess the real risk of BMAA to human health, this discrepancy must be resolved. We therefore tested whether the differences found could be caused by the analytical methods used in different studies. Eight cyanobacterial samples and two control samples were analyzed by three commonly used methods: HPLC-FLD analysis and LC-MS/MS analysis of both derivatized and underivatized samples. In line with published results, HPLC-FLD detected relatively high BMAA concentrations in some cyanobacterial samples, while both LC-MS/MS methods only detected BMAA in the positive control (cycad seed sarcotesta). Because we could eliminate the use of different samples and treatments as causal factors, we demonstrate that the observed differences were caused by the analytical methods. We conclude that HPLC-FLD overestimated BMAA concentrations in some cyanobacterial samples due to its low selectivity and propose that BMAA might be present in (some) cyanobacteria, but in the low µg/g or ng/g range instead of the high µg/g range as sometimes reported before. We therefore recommend to use only selective and sensitive analytical methods like LC-MS/MS for BMAA analysis. Although possibly present in low concentrations in cyanobacteria, BMAA can still form a health risk. Recent evidence on BMAA accumulation in aquatic food chains suggests human exposure through consumption of fish and shellfish which expectedly exceeds exposure through cyanobacteria.
Collapse
Affiliation(s)
- Elisabeth J Faassen
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|
44
|
Jiang L, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL. Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 2012; 403:1719-30. [PMID: 22526645 DOI: 10.1007/s00216-012-5966-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/25/2022]
Abstract
Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, β-N-methylamino-L-alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, β-amino-N-methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.
Collapse
Affiliation(s)
- Liying Jiang
- Department of Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Holtcamp W. The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A110-6. [PMID: 22382274 PMCID: PMC3295368 DOI: 10.1289/ehp.120-a110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
46
|
Li A, Fan H, Ma F, McCarron P, Thomas K, Tang X, Quilliam MA. Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 2012; 137:1210-9. [PMID: 22249403 DOI: 10.1039/c2an15887f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A liquid chromatography-mass spectrometry (LC-MS/MS) method using hydrophilic interaction liquid chromatography (HILIC) was developed for the analysis of neurotoxins β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), using multiple reaction monitoring (MRM) scan mode. Oasis-MCX and Strata-X-C polymeric cation-exchange cartridges were used to clean extracts of cyanobacterial cultures, including two strains of Microcystis aeruginosa and one strain of Nostoc sp. The performance of the solid-phase extraction (SPE) cartridges for BMAA and DAB were evaluated using mixed standards and spiked cyanobacterial extracts, which demonstrated recoveries of BMAA and DAB ranging from 66% to 91%. Matrix effects in LC-MS/MS were evaluated, and while there was no effect on BMAA quantitation, suppression of DAB was found. Full scan (Q1) and enhanced product ion (EPI) monitoring showed that the DAB suppression may be due to closely eluting compounds, including lysine, histidine, arginine and three other compounds with [M + H](+) m/z of 88, 164 and 191. The procedures developed allow the sensitive and effective analysis of trace BMAA and DAB levels in cyanobacteria. While DAB was confirmed to be present, no BMAA was found in the cyanobacterial samples tested in the present study.
Collapse
Affiliation(s)
- Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cohen SA. Analytical techniques for the detection of α-amino-β-methylaminopropionic acid. Analyst 2012; 137:1991-2005. [DOI: 10.1039/c2an16250d] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Baptista MS, Cianca RC, Lopes VR, Almeida CMR, Vasconcelos VM. Determination of the non protein amino acid β-N-methylamino-l-alanine in estuarine cyanobacteria by capillary electrophoresis. Toxicon 2011; 58:410-4. [DOI: 10.1016/j.toxicon.2011.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/27/2011] [Accepted: 08/16/2011] [Indexed: 12/01/2022]
|
49
|
Downing S, Banack S, Metcalf J, Cox P, Downing T. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine. Toxicon 2011; 58:187-94. [DOI: 10.1016/j.toxicon.2011.05.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 11/28/2022]
|