1
|
Kim SY, Kim M, Park K, Hong S. A systematic review on analytical methods of the neurotoxin β-N-methylamino-L-alanine (BMAA), and its causative microalgae and distribution in the environment. CHEMOSPHERE 2024; 366:143487. [PMID: 39395475 DOI: 10.1016/j.chemosphere.2024.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by various microalgal groups, is associated with neurodegenerative diseases and is considered a major environmental factor potentially linked to sporadic amyotrophic lateral sclerosis. This study systematically reviews the analytical methods used to study BMAA in publications from 2019 to the present. It also investigates the causative microalgae of BMAA and its geographical distributions in aquatic ecosystems based on studies conducted since 2003. A comprehensive search using the Web of Science database revealed that hydrolysis for extraction (67%), followed by quantification using LC-MS/MS (LC: 84%; MS/MS: 88%), is the most commonly employed method in BMAA analysis. Among analytical methods, RPLC-MS/MS had the highest percentage (88%) of BMAA-positive results and included a high number of quality control (QC) assessments. Various genera of cyanobacteria and diatoms have been reported to produce BMAA. The widespread geographical distribution of BMAA across diverse ecosystems highlights significant environmental and public health concerns. Notably, BMAA accumulation and biomagnification are likely more potent in marine or brackish water ecosystems than in freshwater ecosystems, potentially amplifying its ecological impacts. Future research should prioritize advanced, sensitive methods, particularly LC-MS/MS with as many QC assessments as possible, and should expand investigations to identify novel microalgal producers and previously uncharted geographical areas, with a special focus on marine or brackish water ecosystems. This effort will enhance our understanding of the environmental distribution and impacts of BMAA.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiho Park
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Bal P, Sinam G, Yahavi C, Singh SP, Jena S, Pant AB, Barik SK. A UPLC-MS/MS method for quantification of β-N-methylamino-L-alanine (BMAA) in Cycas sphaerica roxb. and its use in validating efficacy of a traditional BMAA removal method. Toxicon 2024; 238:107566. [PMID: 38151204 DOI: 10.1016/j.toxicon.2023.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The presence of neurotoxin β-N-Methylamino-L-alanine (BMAA) in the seeds of Cycas sphaerica is reported for first time. We developed a UPLC-MS/MS method for BMAA quantification by derivatizing with dansyl chloride. The method successfully differentiated L-BMAA from its structural isomer 2,4-diaminobutyric acid (DAB). The extracting mixture 0.1M TCA: ACN 4:1 v/v had a recovery level of >95%. The method is a high throughput sensitive chromatographic technique with 16.42 ng g-1 Limit of Quantification. BMAA was present in the endosperm of C. sphaerica, and was not detected in the leaves and pith. Washing of seeds in running cold water for 48 h reduced BMAA content by 86%. The local communities also treat the seeds under running cold water, but only for 24 h. The results of the study thus validated the traditional BMAA removal process through cold water treatment, but recommend for increase in the treatment period to 48 h or more.
Collapse
Affiliation(s)
- Pankajini Bal
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Geetgovind Sinam
- Plant Ecology & Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, India.
| | | | | | - Satyanarayan Jena
- Plant Genetic Resources & Improvement Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Aditya Bhushan Pant
- Systems Toxicology & Health Risk Assessment, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Saroj Kanta Barik
- Department of Botany, North-Eastern Hill University, Shillong, India.
| |
Collapse
|
3
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
4
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
5
|
Abbes S, Vo Duy S, Munoz G, Dinh QT, Simon DF, Husk B, Baulch HM, Vinçon-Leite B, Fortin N, Greer CW, Larsen ML, Venkiteswaran JJ, Martínez Jerónimo FF, Giani A, Lowe CD, Tromas N, Sauvé S. Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins (Basel) 2022; 14:251. [PMID: 35448860 PMCID: PMC9026818 DOI: 10.3390/toxins14040251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neurotoxic alkaloid β-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), β-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon’s signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.
Collapse
Affiliation(s)
- Safa Abbes
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Barry Husk
- BlueLeaf Inc., Drummondville, QC J2B 5E9, Canada;
| | - Helen M. Baulch
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada;
| | | | - Nathalie Fortin
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Charles W. Greer
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Megan L. Larsen
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | - Jason J. Venkiteswaran
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | | | - Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Chris D. Lowe
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| |
Collapse
|
6
|
Absence of Cyanotoxins in Llayta, Edible Nostocaceae Colonies from the Andes Highlands. Toxins (Basel) 2020; 12:toxins12060382. [PMID: 32526918 PMCID: PMC7354591 DOI: 10.3390/toxins12060382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023] Open
Abstract
Edible Llayta are cyanobacterial colonies consumed in the Andes highlands. Llayta and four isolated cyanobacteria strains were tested for cyanotoxins (microcystin, nodularin, cylindrospermopsin, saxitoxin and β-N-methylamino-L-alanine-BMAA) using molecular and chemical methods. All isolates were free of target genes involved in toxin biosynthesis. Only DNA from Llayta amplified the mcyE gene. Presence of microcystin-LR and BMAA in Llayta extracts was discarded by LC/MS analyses. The analysed Llayta colonies have an incomplete microcystin biosynthetic pathway and are a safe food ingredient.
Collapse
|
7
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
8
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
9
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
10
|
Braga AC, Lage S, Pacheco M, Rydberg S, Costa PR. Native (Ruditapes decussatus) and non-indigenous (R. philippinarum) shellfish species living in sympatry: Comparison of regulated and non-regulated biotoxins accumulation. MARINE ENVIRONMENTAL RESEARCH 2017; 129:147-155. [PMID: 28527836 DOI: 10.1016/j.marenvres.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The native Ruditapes decussatus and the non-indigenous Ruditapes philippinarum are an important target of shellfish industries. The aim of this study was to compare an invader with a native species living in sympatry in the view of marine biotoxins accumulation. Samples were analysed for regulated and non-regulated biotoxins. The consistently occurrence of okadaic acid-group toxins and BMAA, may cause human health problems and economical losses. A strong positive relationship was observed between species, with significantly higher DSP toxicity in R. decussatus. Similar toxin profiles dominated by DTX3 in both species suggests similar metabolic pathways. Lower DSP toxicity in R. philippinarum may favour their cultivation, but a tendency for higher levels of the non-regulated BMAA was observed, indicating risks for consumers that are not monitored. This study highlights the need to better understand the physiological responses and adaptations allowing similar species exposed to the same conditions to present different toxicity levels.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Pedro R Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
11
|
Methods for the Chemical Analysis of β-N-Methylamino-L-A lanine: What Is Known and What Remains to Be Determined. Neurotox Res 2017; 33:184-191. [PMID: 28474174 DOI: 10.1007/s12640-017-9744-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-canonical amino acid implicated as a cause for amyotrophic lateral sclerosis/parkinsonism dementia complex and potentially other neurodegenerative diseases. As interest in this molecule has increased, there has been a proliferation of methods along with a plethora of opinions as to the superiority of some methods over others. We analyzed the literature with reference to BMAA and its naturally occurring isomers, N-(2-aminoethyl) glycine (AEG) and 2,4 diaminobutyric acid (DAB). A comparison of methods, results, and critiques reveal that a single method has been approved by the AOAC but several different methods provide comparable BMAA quantification concentrations in similar tissues. We also describe a productive way to move forward as technology improves and changes.
Collapse
|
12
|
Popova AA, Koksharova OA. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems. BIOCHEMISTRY (MOSCOW) 2017; 81:794-805. [PMID: 27677549 DOI: 10.1134/s0006297916080022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.
Collapse
Affiliation(s)
- A A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
13
|
Quantitative determination of the neurotoxin β-N-methylamino-L-alanine (BMAA) by capillary electrophoresis-tandem mass spectrometry. Anal Bioanal Chem 2016; 409:1481-1491. [PMID: 27909777 DOI: 10.1007/s00216-016-0091-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
Recent reports of the widespread occurrence of the neurotoxin β-N-methylamino-L-alanine (BMAA) in cyanobacteria and particularly seafood have raised concerns for public health. LC-MS/MS is currently the analytical method of choice for BMAA determinations but incomplete separation of isomeric and isobaric compounds, matrix suppression and conjugated forms are plausible limitations. In this study, capillary electrophoresis (CE) coupled with MS/MS has been developed as an alternative method for the quantitative determination of free BMAA. Using a bare fused silica capillary, a phosphate buffer (250 mM, pH 3.0) and UV detection, it was possible to separate BMAA from four isomers, but the limit of detection (LOD) of 0.25 μg mL-1 proved insufficient for analysis of typical samples. Coupling the CE to a triple quadrupole MS was accomplished using a custom sheath-flow interface. The best separation was achieved with a 5 M formic acid in water/acetonitrile (9:1) background electrolyte. Strong acid hydrolysis of lyophilized samples was used to release BMAA from conjugated forms. Field-amplified stacking after injection was achieved by lowering sample ionic strength with a cation-exchange cleanup procedure. Quantitation was accomplished using isotope dilution with deuterium-labelled BMAA as internal standard. An LOD for BMAA in solution of 0.8 ng mL-1 was attained, which was equivalent to 16 ng g-1 dry mass in samples using the specified extraction procedure. This was comparable with LC-MS/MS methods. The method displayed excellent resolution of amino acid isomers and had no interference from matrix components. The presence of BMAA in cycad, mussel and lobster samples was confirmed by CE-MS/MS, but not in an in-house cyanobacterial reference material, with quantitative results agreeing with those from LC-MS/MS. Graphical Abstract CE-MS separation and detection of BMAA, its isomers and the internal standard BMAA-d3.
Collapse
|
14
|
Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A, Rydberg S. BMAA extraction of cyanobacteria samples: which method to choose? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:338-50. [PMID: 26304815 DOI: 10.1007/s11356-015-5266-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/17/2015] [Indexed: 05/03/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin reportedly produced by cyanobacteria, diatoms and dinoflagellates, is proposed to be linked to the development of neurological diseases. BMAA has been found in aquatic and terrestrial ecosystems worldwide, both in its phytoplankton producers and in several invertebrate and vertebrate organisms that bioaccumulate it. LC-MS/MS is the most frequently used analytical technique in BMAA research due to its high selectivity, though consensus is lacking as to the best extraction method to apply. This study accordingly surveys the efficiency of three extraction methods regularly used in BMAA research to extract BMAA from cyanobacteria samples. The results obtained provide insights into possible reasons for the BMAA concentration discrepancies in previous publications. In addition and according to the method validation guidelines for analysing cyanotoxins, the TCA protein precipitation method, followed by AQC derivatization and LC-MS/MS analysis, is now validated for extracting protein-bound (after protein hydrolysis) and free BMAA from cyanobacteria matrix. BMAA biological variability was also tested through the extraction of diatom and cyanobacteria species, revealing a high variance in BMAA levels (0.0080-2.5797 μg g(-1) DW).
Collapse
Affiliation(s)
- Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Alfred Burian
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar e da Atmosfera, 1449 006, Lisbon, Portugal
| | | | - Anna Godhe
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654, Stockholm, Sweden.
| |
Collapse
|
15
|
Baptista MS, Vasconcelos RGW, Ferreira PC, Almeida CMR, Vasconcelos VM. Assessment of the non-protein amino acid BMAA in Mediterranean mussel Mytilus galloprovincialis after feeding with estuarine cyanobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12501-10. [PMID: 25903181 DOI: 10.1007/s11356-015-4516-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/07/2015] [Indexed: 05/03/2023]
Abstract
To determine whether 2-amino-3-methylaminopropanoic acid (BMAA) could be taken up by marine organisms from seawater or their diet mussels Mytilus galloprovincialis, collected from the North Atlantic Portuguese shore, were exposed to seawater doped with BMAA standard (for up to 48 h) or fed with cyanobacteria (for up to 15 days). Mussels were able to uptake BMAA when exposed to seawater. Mussels fed with cyanobacteria Synechocystis salina showed a rise in BMAA concentration during feeding and a decline in concentration during the subsequent depuration period. Cells from the gills and hepatopancreas of mussels fed with S. salina showed lessened metabolic activity in mussels fed for longer periods of time. A hot acidic digestion (considered to account for total BMAA) was compared with a proteolytic digestion, using pepsin, trypsin and chymotrypsin. The latter was able to extract from mussels approximately 30% of total BMAA. Implications for BMAA trophic transfers in marine ecosystems are discussed.
Collapse
Affiliation(s)
- Mafalda S Baptista
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Universityof Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal,
| | | | | | | | | |
Collapse
|
16
|
Capillary electrophoresis determination of non-protein amino acids as quality markers in foods. J Chromatogr A 2015; 1428:97-114. [PMID: 26233255 DOI: 10.1016/j.chroma.2015.07.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022]
Abstract
Non-protein amino acids mainly exist in food as products formed during food processing, as metabolic intermediates or as additives to increase nutritional and functional properties of food. This fact makes their analysis and determination an attractive field in food science since they can give interesting information on the quality and safety of foods. This article presents a comprehensive review devoted to describe the latest advances in the development of (achiral and chiral) analytical methodologies by capillary electrophoresis and microchip capillary electrophoresis for the analysis of non-protein amino acids in a variety of food samples. Most relevant information related to sample treatment, experimental separation and detection conditions, preconcentration strategies and limits of detection will be provided.
Collapse
|
17
|
Roy-Lachapelle A, Solliec M, Sauvé S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 2015; 407:5487-501. [DOI: 10.1007/s00216-015-8722-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
18
|
Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins (Basel) 2014; 6:1109-38. [PMID: 24662480 PMCID: PMC3968380 DOI: 10.3390/toxins6031109] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022] Open
Abstract
The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work.
Collapse
|
19
|
Faassen EJ, Gillissen F, Lürling M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 2012; 7:e36667. [PMID: 22570736 PMCID: PMC3343013 DOI: 10.1371/journal.pone.0036667] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/12/2012] [Indexed: 11/27/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been considered a serious health threat because of its putative role in multiple neurodegenerative diseases. First reports on BMAA concentrations in cyanobacteria were alarming: nearly all cyanobacteria were assumed to contain high BMAA concentrations, implying ubiquitous exposure. Recent studies however question this presence of high BMAA concentrations in cyanobacteria. To assess the real risk of BMAA to human health, this discrepancy must be resolved. We therefore tested whether the differences found could be caused by the analytical methods used in different studies. Eight cyanobacterial samples and two control samples were analyzed by three commonly used methods: HPLC-FLD analysis and LC-MS/MS analysis of both derivatized and underivatized samples. In line with published results, HPLC-FLD detected relatively high BMAA concentrations in some cyanobacterial samples, while both LC-MS/MS methods only detected BMAA in the positive control (cycad seed sarcotesta). Because we could eliminate the use of different samples and treatments as causal factors, we demonstrate that the observed differences were caused by the analytical methods. We conclude that HPLC-FLD overestimated BMAA concentrations in some cyanobacterial samples due to its low selectivity and propose that BMAA might be present in (some) cyanobacteria, but in the low µg/g or ng/g range instead of the high µg/g range as sometimes reported before. We therefore recommend to use only selective and sensitive analytical methods like LC-MS/MS for BMAA analysis. Although possibly present in low concentrations in cyanobacteria, BMAA can still form a health risk. Recent evidence on BMAA accumulation in aquatic food chains suggests human exposure through consumption of fish and shellfish which expectedly exceeds exposure through cyanobacteria.
Collapse
Affiliation(s)
- Elisabeth J Faassen
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|