1
|
Liu H, Li X, Liu W, Zhang C, Zhang S, Zhou X, Bode AM, Luo X. DHRS2-induced SPHK1 downregulation contributes to the cell growth inhibition by Trichothecin in colorectal carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119846. [PMID: 39284549 DOI: 10.1016/j.bbamcr.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Deregulation of lipid metabolism is one of the most prominent metabolic features in cancer. The activation of sphingolipid metabolic pathways affects the proliferation, invasion, angiogenesis, chemoresistance, and immune escape of tumors, including colorectal cancer (CRC). Dehydrogenase/reductase member 2 (DHRS2), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been reported to participate in the regulation of lipid metabolism and impact on cancer progression. Trichothecin (TCN) is a sesquiterpenoid metabolite originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Studies have shown that TCN exerts a broad-spectrum antitumor activity. METHODS We evaluated the proliferative ability of CRC cells by CCK8 and colony formation assays. A metabolite profiling using liquid chromatography coupled with mass spectrometry (LC/MS) was adopted to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA stability assay and RNA immunoprecipitation (RIP) experiments were applied to determine the post-transcriptional regulation of SPHK1 expression by DHRS2. We used flow cytometry to detect changes in cell cycle and cell apoptosis of CRC cells in the absence or presence of TCN. RESULTS We demonstrate that DHRS2 hampers the sphingosine kinases 1 (SPHK1)/sphingosine 1-phosphate (S1P) metabolic pathway to inhibit CRC cell growth. DHRS2 directly binds to SPHK1 mRNA to accelerate its degradation in a post-transcriptionally regulatory manner. Moreover, we illustrate that SPHK1 downregulation induced by DHRS2 contributes to TCN-induced growth inhibition of CRC. CONCLUSIONS The present study provides a mechanistic connection among metabolic enzymes, metabolites, and the malignant progression of CRC. Moreover, TCN could be developed as a potential pharmacological tool against CRC by the induction of DHRS2 and targeting SPHK1/S1P metabolic pathway.
Collapse
Affiliation(s)
- Huiwen Liu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Wenbin Liu
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Chunhong Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Shuzhao Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xinran Zhou
- Hengyang Medical College, University of South China, Hengyang 421001 Hunan, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; NHC Key Laboratory of Carcinogenesis, the Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
2
|
Alshehri KM, Abdella EM. Development of ternary nanoformulation comprising bee pollen-thymol oil extracts and chitosan nanoparticles for anti-inflammatory and anticancer applications. Int J Biol Macromol 2023; 242:124584. [PMID: 37100316 DOI: 10.1016/j.ijbiomac.2023.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Due to the beneficial nutritional and medicinal characteristics of bee honey and thymol oil as antioxidants, anti-inflammatory agents, and antibacterial agents, they have been used since ancient times. The current study aimed to construct a ternary nanoformulation (BPE-TOE-CSNPs NF) through the immobilization of the ethanolic extract of bee pollen (BPE) with thymol oil extract (TOE) into the matrix of chitosan nanoparticles (CSNPs). The antiproliferative activity of new NF (BPE-TOE-CSNPs) against HepG2 and MCF-7 cells was investigated. The BPE-TOE-CSNPs showed significant inhibitory activity for the production of the inflammatory cytokines in HepG2 and MCF-7, with p < 0.001 for both TNF-α and IL6. Moreover, the encapsulation of the BPE and TOE in CSNPs increased the efficacy of the treatment and the induction of valuable arrests for the S phase of the cell cycle. In addition, the new NF has a great capacity to trigger apoptotic mechanisms through caspase-3 expression upregulation in cancer cells by two-fold among HepG2 cell lines and nine-fold among MCF-7 which appeared to be more susceptible to the nanoformulation. Moreover, the nanoformulated compound has upregulated the expression of caspase-9 and P53 apoptotic mechanisms. This NF may shed light on its pharmacological actions by blocking specific proliferative proteins, inducing apoptosis, and interfering with the DNA replication process.
Collapse
Affiliation(s)
- Kulud M Alshehri
- Department of Biology, Al Baha University, Baljurashi, Saudi Arabia.
| | - Ehab M Abdella
- Department of Biology, Al Baha University, Al Aqiq, Saudi Arabia; Department of Zoology, Faculty of Science, Beni Suaif University, Egypt
| |
Collapse
|
3
|
Guo J, Ye X, Zhao Y, Huang D, Wu Q, Ihsan A, Wang X. NRF-2α and mitophagy underlie enhanced mitochondrial functions and biogenesis induced by T-2 toxin in GH3 cells. Food Chem Toxicol 2023; 174:113687. [PMID: 36863559 DOI: 10.1016/j.fct.2023.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
T-2 toxin is a natural contaminant in grain cereals produced by species of Fusarium. Studies indicate that T-2 toxin can positively affect mitochondrial function, but the underlying mechanism is unclear. In this study, we examined the role of nuclear respiratory factor 2α (NRF-2α) in T-2 toxin-activated mitochondrial biogenesis and the direct target genes of NRF-2α. Furthermore, we investigated T-2 toxin-induced autophagy and mitophagy, and the role of mitophagy in changes in mitochondrial function and apoptosis. It was found that T-2 toxin significantly increased NRF-2α levels and nuclear localization of NRF-2α was induced. NRF-2α deletion significantly increased the production of reactive oxygen species (ROS), abrogated T-2 toxin-induced increases in ATP and mitochondrial complex I activity, and inhibited the mitochondrial DNA copy number. Meanwhile, With chromatin immunoprecipitation sequencing (ChIP-Seq), various novel NRF-2α target genes were identified, such as mitochondrial iron-sulphur subunits (Ndufs 3,7) and mitochondrial transcription factors (Tfam, Tfb1m, and Tfb2m). Some target genes were also involved in mitochondrial fusion and fission (Drp1), mitochondrial translation (Yars2) and splicing (Ddx55), and mitophagy. Further studies showed that T-2 toxin induced Atg5 dependent autophagy and Atg5/PINK1-dependent mitophagy. In addition, mitophagy defects increase ROS production, inhibit ATP levels and the expression of genes related to mitochondrial dynamics, and promote apoptosis in the presence of T-2 toxins. Altogether, these results suggest that NRF-2α plays a critical role in promoting mitochondrial function and biogenesis through regulation of mitochondrial genes, and, interestingly, mitophagy caused by T-2 toxin positively affected mitochondrial function and protected cell survival against T-2 toxin.
Collapse
Affiliation(s)
- Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaochun Ye
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongxia Zhao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Deyu Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Mohamed EE, Abdel-Moneim A, Ahmed OM, Zoheir KM, Eldin ZE, El-Shahawy AA. Anticancer activity of a novel naringin‒dextrin nanoformula: Preparation, characterization, and in vitro induction of apoptosis in human hepatocellular carcinoma cells by inducing ROS generation, DNA fragmentation, and cell cycle arrest. J Drug Deliv Sci Technol 2022; 75:103677. [DOI: 10.1016/j.jddst.2022.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Zhang L, Dong L, Yang L, Luo Y, Chen F. MiR-27a-5p regulates acrylamide-induced mitochondrial dysfunction and intrinsic apoptosis via targeting Btf3 in rats. Food Chem 2022; 368:130816. [PMID: 34416489 DOI: 10.1016/j.foodchem.2021.130816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (AA), a potential carcinogen, is commonly formed in foods rich in carbohydrates at high heat. It is known that AA-induced mitochondrial dysfunction is responsible for its toxicity. Previously we found AA exposure increased miR-27a-5p expression in livers of SD rats. Here, the regulation mechanism of miR-27a-5p in mitochondrial dysfunction was investigated in rat liver cell lines (IAR20) and SD rats. The results showed that the overexpressed miR-27a-5p contributes to modulating mitochondrial dysfunction and Btf3 is identified as its target gene. The knockdown of Btf3 increases the cleaved PARP1 level and the phosphorylation of ATM and p53, which results in mitochondria-dependent apoptosis. Therefore, the miR-27a-5p-Btf3-ATM-p53 axis might play a vital role in the promotion of AA-induced cell apoptosis through disrupting mitochondrial structure and function. This would provide a potential target for the assessment and intervention of AA toxicity.
Collapse
Affiliation(s)
- Lujia Zhang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Liuqing Yang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Qi X, Li M, Zhang XM, Dai XF, Cui J, Li DH, Gu QQ, Lv ZH, Li J. Trichothecin Inhibits Cancer-Related Features in Colorectal Cancer Development by Targeting STAT3. Molecules 2020; 25:molecules25102306. [PMID: 32422984 PMCID: PMC7287781 DOI: 10.3390/molecules25102306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that contributes to cancer progression through multiple processes of cancer development, which makes it an attractive target for cancer therapy. The IL-6/STAT3 pathway is associated with an advanced stage in colorectal cancer patients. In this study, we identified trichothecin (TCN) as a novel STAT3 inhibitor. TCN was found to bind to the SH2 domain of STAT3 and inhibit STAT3 activation and dimerization, thereby blocking STAT3 nuclear translocation and transcriptional activity. TCN did not affect phosphorylation levels of STAT1. TCN significantly inhibited cell growth, arrested cell cycle at the G0/G1 phase, and induced apoptosis in HCT 116 cells. In addition, the capacities of colony formation, migration, and invasion of HCT 116 cells were impaired upon exposure to TCN with or without IL-6 stimulation. In addition, TCN treatment abolished the tube formation of HUVEC cells in vitro. Taken together, these results highlight that TCN inhibits various cancer-related features in colorectal cancer development in vitro by targeting STAT3, indicating that TCN is a promising STAT3 inhibitor that deserves further exploration in the future.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Meng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiao-min Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Xiu-fen Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - Jian Cui
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
| | - De-hai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qian-qun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhi-hua Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.Q.); (M.L.); (X.-m.Z.); (X.-f.D.); (J.C.); (D.-h.L.); (Q.-q.G.)
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (Z.-h.L.); (J.L.); Tel.: +86-532-82032096 (Z.-h.L.); +86-532-82032066 (J.L.)
| |
Collapse
|
7
|
Liao C, Li M, Li X, Li N, Zhao X, Wang X, Song Y, Quan J, Cheng C, Liu J, Bode AM, Cao Y, Luo X. Trichothecin inhibits invasion and metastasis of colon carcinoma associating with SCD-1-mediated metabolite alteration. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158540. [PMID: 31678511 DOI: 10.1016/j.bbalip.2019.158540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Lipid metabolic abnormalities have received intensified concerns and increased de novo synthesis of lipids is recognized as a common feature of many human cancers. Nevertheless, the role of lipid metabolism that confers aggressive properties on human cancers still remains to be revealed. Natural compounds represent an abundant pool of agents for the discovery of novel lead compounds. Trichothecin (TCN) is a sesquiterpenoid originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Here, we assess the association of stearoyl-CoA desaturase 1 (SCD-1) over-expression with malignant progression of colorectal cancer (CRC). Based on this association, the effect of TCN on migration and invasion of colon carcinoma cells closely related to the inhibition of SCD-1 is evaluated. We further demonstrate that reduced production of unsaturated fatty acids (FAs) by blocking SCD-1 activity is beneficial for the anti-invasion effect of TCN. The aim of this study was to clarify the mechanistic connection between metabolite alterations induced by metabolic rewiring and the aggressive tumor phenotype and further develop novel pharmacological tools for the intervention of tumor invasion associated with SCD-1-mediated metabolite alterations.
Collapse
Affiliation(s)
- Chaoliang Liao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xiaoyi Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Yawen Song
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jikai Liu
- School of Pharmacy, South-central University for Nationalities, Wuhan, Hubei 430074, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China; National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
8
|
Luo X, Li N, Zhao X, Liao C, Ye R, Cheng C, Xu Z, Quan J, Liu J, Cao Y. DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2019; 38:300. [PMID: 31291971 PMCID: PMC6617617 DOI: 10.1186/s13046-019-1301-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/28/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer is fundamentally a deregulation of cell growth and proliferation. Cancer cells often have perturbed metabolism that leads to the alteration of metabolic intermediates. Dehydrogenase/reductase member 2 (DHRS2) belongs to short-chain alcohol dehydrogenase/reductase (SDR) superfamily, which is functionally involved in a number of intermediary metabolic processes and in the metabolism of lipid signaling molecules. DHRS2 displays closely association with the inhibition of cell proliferation, migration and quiescence in cancers. METHODS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays were applied to evaluate the proliferative ability of nasopharyngeal carcinoma (NPC) cells. We performed lipid metabolite profiling using gas chromatography coupled with mass spectrometry (GC/MS) to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA sequencing technique combined with differentially expressed genes analysis was applied to identify the expression of genes responsible for the anti-tumor effect of trichothecin (TCN), a natural sesquiterpenoid compound isolated from an endophytic fungus. RESULTS Our current findings reveal that DHRS2 affects lipid metabolite profiling to induce cell cycle arrest and growth inhibition in NPC cells. Furthermore, we demonstrate that TCN is able to induce growth inhibition of NPC in vitro and in vivo by up-regulating DHRS2. CONCLUSIONS Our report suggests that activating DHRS2 to reprogram lipid homeostasis may be a target for the development of targeted therapies against NPC. Moreover, TCN could be exploited for therapeutic gain against NPC by targeting DHRS2 and it may also be developed as a tool to enhance understanding the biological function of DHRS2.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
- Molecular Imaging Research Center of Central South University, Changsha, 410078 Hunan China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Runxin Ye
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
| | - Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
| | - Jikai Liu
- School of Pharmacy, South-central University for Nationalities, Wuhan, 430074 Hubei China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 People’s Republic of China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, 410078 Hunan China
- Molecular Imaging Research Center of Central South University, Changsha, 410078 Hunan China
| |
Collapse
|
9
|
Song H, Fu Y, Wan D, Xia W, Lyu F, Liu L, Shen L. Mytoxin B and Myrothecine A Induce Apoptosis in Human Hepatocarcinoma Cell Line SMMC-7721 via PI3K/Akt Signaling Pathway. Molecules 2019; 24:E2291. [PMID: 31226773 PMCID: PMC6630475 DOI: 10.3390/molecules24122291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022] Open
Abstract
Trichothecene macrolides comprise a class of valuable leading compounds in developing anticancer drugs, however, there are few reports concerning their anticancer mechanisms, especially the anticancer mechanism of the 10,13-cyclotrichothecane derivatives that are found mainly in symbiotic fungi. In vitro anticancer activity of two trichothecene macrolides mytoxin B and myrothecine A against the human hepatocarcinoma cell line SMMC-7721 was investigated in the present study. MTT assay showed that mytoxin B and myrothecine A inhibited the proliferation of SMMC-7721 cells in dose- and time-dependent manners. Annexin V-FITC/PI dual staining assay revealed that mytoxin B and myrothecine A both could induce SMMC-7721 cells apoptosis in a dose-dependent manner. The decreased expression level of anti-apoptotic protein Bcl-2 and the increased expression level of pro-apoptotic protein Bax were observed apparently in Western blot analysis. The reduced ratio of Bcl-2/Bax further confirmed the apoptosis-inducing effect of mytoxin B and myrothecine A on SMMC-7721 cells. Moreover, the expression levels of caspases-3, -8, and -9, and cleaved caspases-3, -8, and -9 were all upregulated in both mytoxin B and myrothecine A-treated cells in Western blot analysis, which indicated that both compounds might induce SMMC-7721 cells apoptosis through not only the death receptor pathway but also the mitochondrial pathway. Finally, mytoxin B and myrothecine A were found to reduce the activity of PI3K/Akt signaling pathway that was similar to the effect of LY294002 (a potent and specific PI3K inhibitor), suggesting that both mytoxin B and myrothecine A might induce SMMC-7721 cells apoptosis via PI3K/Akt pathway.
Collapse
Affiliation(s)
- Huiliang Song
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
| | - Yi Fu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Dan Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Wenjing Xia
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Fengwei Lyu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
| | - Lijun Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Li Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Mitochondrion: A new molecular target and potential treatment strategies against trichothecenes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
12
|
Jin Y, Duan LX, Xu XL, Ge WJ, Li RF, Qiu XJ, Song Y, Cao SS, Wang JG. Mechanism of apoptosis induction in human hepatocellular carcinoma cells following treatment with a gecko peptides mixture. Biomed Rep 2016; 5:73-78. [PMID: 27330750 DOI: 10.3892/br.2016.664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the apoptotic effect and molecular mechanisms of gecko peptides mixture (GPM) on the human liver carcinoma HepG2 cell line in vitro. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed to identify the dose- (0.10, 0.15, 0.20, 0.25 and 0.30 mg/ml) and time-dependent (24, 48 and 72 h) inhibitory effect of GPM on HepG2 cells and their proliferation. Hoechst 33258 staining was carried out to detect the nuclear change coupled with apoptosis induced by GPM. Western blotting was used to evaluate apoptosis-related protein expression changes induced by GPM, including caspase, cytochrome c (Cyt c) and apoptosis-inducing factor (AIF). MTT results showed that GPM significantly inhibited the proliferation of HepG2 cells in a dose- and time-dependent manner. Hoechst 33258 staining demonstrated that GPM induced typical apoptotic morphological changes, while western blotting analysis revealed that GPM increased caspase-3, caspase-9, Cyt c and AIF protein expression levels in HepG2 cells treated with 0.06 or 0.08 mg/ml for 24 h. In conclusion, GPM could induce apoptosis by activating the intrinsic mitochondrial apoptotic pathways.
Collapse
Affiliation(s)
- Ying Jin
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Leng-Xin Duan
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xin-Li Xu
- Department of School Infirmary Pharmacy, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| | - Wen-Jing Ge
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Rui-Fang Li
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiang-Jun Qiu
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Song
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shan-Shan Cao
- Department of Pharmacy, The Third Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jian-Gang Wang
- The Key Laboratory of Pharmacology and Medical Molecular Biology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
13
|
Fu Z, Yang J, Wei Y, Li J. Effects of piceatannol and pterostilbene against β-amyloid-induced apoptosis on the PI3K/Akt/Bad signaling pathway in PC12 cells. Food Funct 2016; 7:1014-23. [DOI: 10.1039/c5fo01124h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Piceatannol and pterostilbene both showed protective effect against Aβ-induced apoptosis in PC12 cells, however, with different PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Zheng Fu
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiufang Yang
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Yangji Wei
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jingming Li
- Center for Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
14
|
Liu L, Wang D, Wang J, Wang S. The Nitric Oxide Prodrug JS-K Induces Ca(2+)-Mediated Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells. J Biochem Mol Toxicol 2015; 30:192-9. [PMID: 26616367 DOI: 10.1002/jbt.21778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiangang Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Shuying Wang
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
15
|
Yekkour A, Tran D, Arbelet-Bonnin D, Briand J, Mathieu F, Lebrihi A, Errakhi R, Sabaou N, Bouteau F. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:148-57. [PMID: 26259183 DOI: 10.1016/j.plantsci.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD.
Collapse
Affiliation(s)
- Amine Yekkour
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France; Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria; Institut National de la Recherche Agronomique d'Algérie, Centre de Recherche polyvalent Mehdi Boualem, Alger, Algeria
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Joël Briand
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France
| | - Ahmed Lebrihi
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France; Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Rafik Errakhi
- Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Nasserdine Sabaou
- Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France.
| |
Collapse
|
16
|
Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Toxicon 2015; 102:14-24. [PMID: 26004494 DOI: 10.1016/j.toxicon.2015.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022]
Abstract
Diplodiosis, a neuromycotoxicosis of cattle and sheep grazing on mouldy cobs infected by Stenocarpella maydis, is considered the last major veterinary mycotoxicosis for which the causative mycotoxin is still unknown. The current study was aimed at characterizing the cell death observed in mouse neuroblastoma (Neuro-2a), Chinese hamster ovary (CHO-K1) and Madin-Darby bovine kidney (MDBK) cell lines exposed to the S. maydis metabolites (i.e. diplodiatoxin and dipmatol) by investigating the roles of necrosis and apoptosis. Necrosis was investigated using the lactate dehydrogenase (LDH) leakage and propidium iodide (PI) flow cytometry assays and apoptosis was evaluated using the caspase-3/7 and Annexin V flow cytometry assays. In addition, transmission electron microscopy (TEM) was used to correlate the cell death pathways observed in this study with their typical morphologies. Both diplodiatoxin and dipmatol (750 μM) induced necrosis and caspase-dependent apoptosis in Neuro-2a, CHO-K1 and MDBK cells. Ultrastructurally, the two mycotoxins induced mitochondrial damage, cytoplasmic vacuolation and nuclear fragmentation in the three cell lines. These findings have laid a foundation for future studies aimed at elucidating in detail the mechanism of action of the S. maydis metabolites.
Collapse
|
17
|
γ-Glutamyl-S-allyl-cysteine inhibits hepatic stellate cell proliferation and collagen secretion via a proapoptotic mechanism. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2453-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Su J, Zhao P, Kong L, Li X, Yan J, Zeng Y, Li Y. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation. PLoS One 2013; 8:e71333. [PMID: 23936501 PMCID: PMC3731298 DOI: 10.1371/journal.pone.0071333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
Constitutive activation of the transcription factor nuclear factor-κB (NF-κB) is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN) is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found that TCN markedly inhibits the growth of cancer cells with constitutively activated NF-κB. TCN induces G0/G1 cell cycle arrest and apoptosis in cancer cells, activating pro-apoptotic proteins, including caspase-3, -8 and PARP-1, and decreasing the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin. Reporter activity assay and target genes expression analysis illustrated that TCN works as a potent inhibitor of the NF-κB signaling pathway. TCN inhibits the phosphorylation and degradation of IκBα and blocks the nuclear translocation of p65, and thus inhibits the expression of NF-κB target genes XIAP, cyclin D1, and Bcl-xL. Though TCN does not directly interfere with IKKβ kinase, it suppresses the phosphorylation of IKKβ. Overexpression of constitutively activated IKKβ aborted TCN induced cancer cell apoptosis, whereas knockdown of endogenous IKKβ with siRNA sensitized cancer cells toward apoptosis induced by TCN. Moreover, TCN showed a markedly weaker effect on normal cells. These findings suggest that TCN may be a potential therapeutic candidate for cancer treatment, targeting NF-κB signaling.
Collapse
Affiliation(s)
- Jia Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peiji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xingyao Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Juming Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- * E-mail:
| |
Collapse
|
19
|
WANG JIAHE, KAN LIANG, SHU LINHUA, WANG NAN, LI NAIJING, ZHANG MENG. Pseudolaric acid B induces apoptosis in U937 human leukemia cells via caspase-9-mediated activation of the mitochondrial death pathway. Mol Med Rep 2013; 8:787-93. [DOI: 10.3892/mmr.2013.1571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/28/2013] [Indexed: 11/05/2022] Open
|
20
|
Hwang JM, Ting WJ, Wu HC, Chen YJ, Tsai FJ, Chen PY, Liu CY, Chou LC, Kuo SC, Huang CY. KHC-4 anti-cancer effects on human PC3 prostate cancer cell line. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:1063-71. [PMID: 22928835 DOI: 10.1142/s0192415x12500784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A bicyclic chemical structure, such as that found in flavonoids, was discovered to have anti-cancer activity. Further synthetic structural modification created a series of 2-phenyl-4-quinolone analogs, especially KHC-4, with the same bicyclic chemical structure. This new structure was reported to have stronger anti-cancer activity. In KHC-4 treatments for 72 h on human prostate cancer PC3 cells, cytotoxic effects (IC(50) =0.1 μM) increased dose dependently, causing Cdk1/cyclin B1 complex activity mannered cell cycle and proliferation. KHC-4 treatments suppressed Bcl-2 and Bcl-xL protein levels and upregulated Bax. At the same concentration, pro-caspase 9 protein was cleaved to an activated form, leading to cell apoptosis. Furthermore, the MMP-2 protein levels also decreased through KHC-4 treatment in PC3. In conclusion, KHC-4 presents great prostate cancer therapeutic effects for cell proliferation inhibition, induction of apoptosis and protection against tumor migration.
Collapse
Affiliation(s)
- Jin-Ming Hwang
- School of Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan , Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|