1
|
Thapa A, Tran H, Ragnarsson L, Keramidas A, Herzig V, Brinkwirth N, Deuis JR, Vetter I. A hydrophobic loop of the spider-venom peptide Tl1a drives activity at Na V1.8. Eur J Pharmacol 2025:177751. [PMID: 40414593 DOI: 10.1016/j.ejphar.2025.177751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/29/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Voltage-gated sodium (NaVs) channels are pore-forming transmembrane proteins that regulate the influx of sodium ions across cell membranes. Spider venoms are a rich source of NaV-modulating peptides with high selectivity and potency, making them important tools for understanding NaV structure and function. NaV1.8 is tetrodotoxin-resistant, expressed in the peripheral nervous system and contributes to the propagation of action potentials in nociceptive neurons, making it a potential therapeutic target for pain. We identified Tl1a, a 36 amino acid residue peptide isolated from the crude venom of the Peruvian tarantula species, Thrixopelma longicolli, as a modulator of NaV1.8. Tl1a was synthesized using solid-phase peptide synthesis, and activity was assessed using automated whole-cell patch-clamp recordings. Tl1a inhibited NaV1.8 peak current (IC50 210 nM), delayed the kinetics of activation, inhibited fast inactivation, and caused a persistent current as well as a depolarising shift in the voltage dependence of activation (ΔV1/2 +11 mV). Tl1a inhibited peak current with similar potency at NaV1.5 (IC50 282 nM) and KV2.1 (IC50 156 nM) and was 8-fold selective over the tetrodotoxin-sensitive NaV1.4 (IC50 1769 nM), NaV1.1 (2201 nM) and 6-fold selective over NaV1.7 (IC50 1278 nM) channels. Tl1a analogues with an increased number of charged amino acids in loop 4 of the peptide lost activity at NaV1.8 due to altered interactions with the domain IV S3-S4 extracellular loop. The results of this work contribute to a better understanding of the structure-activity relationships at tetrodotoxin-resistant NaV channels and may be useful for the future rational design of selective NaV1.8 peptide modulators.
Collapse
Affiliation(s)
- Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Hue Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | | | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
2
|
Krämer J, Lüddecke T, Harms D, Hurka S, Predel R. Toxins under a Rock: Proteo-transcriptomic analysis reveals the venom composition of the Pseudoscorpion Ammogarypus lawrencei (Pseudoscorpiones: Garypidae). Toxicon 2025; 263:108417. [PMID: 40389065 DOI: 10.1016/j.toxicon.2025.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Pseudoscorpions represent one of the venomous animal groups least investigated with respect to their venom composition. So far, the venom of only a few species of these tiny arachnids has been analyzed, among which only the cosmopolitan species Chelifer cancroides and the Australian Synsphyronus apimelus have been investigated in more detail. Here, we advance the current understanding on pseudoscorpion toxins by unveiling the venom composition of the African species Ammogarypus lawrencei via proteo-transcriptomics-guided venomics. Belonging to the same family as S. apimelus whose venom was analyzed solely by a transcriptomic approach, we found the highest similarities between putative venom compounds in these species. Instead of an enzyme-rich venom predicted for S. apimelus, we found the venom of A. lawrencei to be dominated by Cysteine-rich peptides (CRPs). Many of these peptides show moderate similarity to neurotoxins found primarily in other arachnids, although a large proportion could not be annotated in more detail due to their high sequence disparity. Enzymes are a minor component in the venom of A. lawrencei and classified mostly as peptidases and triacylglycerol lipases, likely fulfilling a predigestive function or acting as spreading factors. Lastly, we identified a range of linear and putatively antimicrobial peptides in the A. lawrencei venom, which seem to be unrelated to the previously identified checacin-type linear peptides identified in the venom of C. cancroides. Our study provides valuable insights into the molecular diversity encoded in pseudoscorpion venom glands and identifies a range of novel biomolecules with putative translational potential.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicherstrasse 47b, D-50674, Cologne, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt a. Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Danilo Harms
- Section Arachnida & Myriapoda, Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz, 3 20146, Hamburg, Germany
| | - Sabine Hurka
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt a. Main, Germany; Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany; BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Ohlebergsweg 12, 35392, Giessen, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicherstrasse 47b, D-50674, Cologne, Germany
| |
Collapse
|
3
|
Yin W, You Y, Tembrock LR, Zhang M, Li Z, Zheng Y, Zhao Y, Yang Z. Transcriptomic and proteomic analyses reveals the diverse venom composition of the spider Neoscona shillongensis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104289. [PMID: 40049557 DOI: 10.1016/j.ibmb.2025.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 05/12/2025]
Abstract
Neoscona shillongensis (Araneidae), also known as the Shillong orb-weaving spider, is a species that constructs a typically shaped round web, is inactive during the daytime and comes out at dusk to forage, primarily preying on flying insects such as mosquitoes, flies, and moths. This spider serves as an important natural enemy of agricultural and forest pests. Neoscona shillongensis primarily uses its web to capture prey, but its venom also plays a crucial role in subduing and processing prey. To date, no research has been conducted on the composition of N. shillongensis venom. In This study, conducted high-throughput sequencing on the venom gland transcriptome and the venom gland extract proteome. A cDNA library of the venom gland tissue of N. shillongensis was constructed, yielding over 62 million reads, which were assembled into 90,481 sequences, predicting 171 toxin-like sequences, including 94 peptide toxins and 77 protein toxins. Furthermore, proteomic analyses of the venom gland extract samples identified 53 peptides and proteins, including 23 peptide toxins and 30 enzymes or proteins such as acetylcholinesterase, hyaluronidase, and astacin-like metalloproteases. The results revealed that the toxin composition of N. shillongensis is diverse and complex. This study provides essential baseline data for further research on the evolution and physiological activity of spider venom, as well as the potential development of pharmaceutical compounds therefrom.
Collapse
Affiliation(s)
- Wenhao Yin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China
| | - Yongming You
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mengmeng Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China
| | - Zhi Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China
| | - Yulin Zheng
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China.
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research & Development, College of Pharmacy, Dali University, Dali, Yunnan, 671000, China; National Local Joint Engineering Research Centre for the Development of Medicinal Specialty Insects, Dali University, Dali, Yunnan, 671000, China.
| |
Collapse
|
4
|
Zhou X, Chen H, Peng S, Si Y, Wang G, Yang L, Zhou Q, Lu M, Xie Q, He X, Wu M, Xiao X, Luo X, Feng X, Wang W, Luo S, Li Y, Qin J, Chen M, Zhang Q, Hu W, Liang S, Hou T, Liu Z. Inherent fast inactivation particle of Nav channels as a new binding site for a neurotoxin. EMBO J 2025:10.1038/s44318-025-00438-9. [PMID: 40263599 DOI: 10.1038/s44318-025-00438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Neurotoxins derived from animal venoms are indispensable tools for probing the structure and function of voltage-gated sodium (Nav) channels. Utilizing a novel centipede peptide toxin called rpTx1, we show that the "inherent inactivation particle" of Nav channels represents a binding site for a neurotoxin. The toxin comprises two functional domains: one for cell penetration and one for modulating Nav channel activity. After crossing the cell membrane, rpTx1 preferentially binds to and stabilizes the IFMT motif (the conserved core region of the fast inactivation particle in mammalian Nav channels) in the unbound state, preventing this motif from associating with its receptor site and thereby inhibiting the fast inactivation of Nav channels. This competition between rpTx1 and the receptor site for interacting with the IFMT motif may account for the higher activity of rpTx1 on Nav1.8 than on other Nav subtypes, given the weaker relative affinity between the receptor site and the IFMT motif of Nav1.8. Overall, this study should promote the investigation of the intracellular modulation of Nav channels by neurotoxins.
Collapse
Affiliation(s)
- Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, 310058, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, Hunan Provincial Center for Disease Control and Prevention, Changsha 410000, China
| | - Yuxin Si
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Gaoang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Li Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Qing Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Qiaoling Xie
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xi He
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Wenxing Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Sen Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiaxin Qin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Qianqian Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Weijun Hu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Antunes A, Montnach J, Khakh K, Lopez L, Thomas B, Ribeiro Oliveira-Mendes B, Jaquillard L, Servent D, Béroud R, Cohen CJ, Benoit E, De Waard M. The venom of Cyriopagopus schmidti spider contains a natural huwentoxin-IV analogue with unexpected improved analgesic potential. Front Pharmacol 2025; 16:1566312. [PMID: 40276610 PMCID: PMC12019880 DOI: 10.3389/fphar.2025.1566312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 04/26/2025] Open
Abstract
The venom of Cyriopagopus schmidti spider has been extensively investigated, thereby allowing the identification of numerous new natural peptides. Many of these peptides are active on ion channels and several of them occur from post-translational processing. In order to further identify new entities, we screened this venom against five different human voltage-gated sodium (hNav) channels. We illustrate the unusual richness of this venom in targeting this wide variety of hNav channels. We confirm the identity of previously discovered peptides active on these ion channels type (huwentoxin (HwTx)-I, HwTx-II and HwTx-IV), indicating the efficacy of the screening process by automated patch-clamp. We also identified a novel analogue of HwTx-IV that differs by the absence of amidation and the presence of an extra C-terminal Gly residue. Interestingly, this analogue is less potent than HwTx-IV itself in blocking hNav1.7 in cell lines, but turns out to be significantly more potent in TTX-sensitive dorsal root ganglia neurons. Because of this unexpected finding, this novel analogue turns out to be a more potent analgesic than HwTx-IV itself without presenting most of the Nav1.6-related toxic effects of HwTx-IV.
Collapse
Affiliation(s)
- Aurélie Antunes
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- Smartox Biotechnology, Saint-Egrève, France
- Nantes Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l’institut du thorax, Nantes, France
| | - Jérôme Montnach
- Nantes Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l’institut du thorax, Nantes, France
| | - Kuldip Khakh
- Department of Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Ludivine Lopez
- Nantes Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l’institut du thorax, Nantes, France
| | | | - Barbara Ribeiro Oliveira-Mendes
- Nantes Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l’institut du thorax, Nantes, France
| | | | - Denis Servent
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Rémy Béroud
- Smartox Biotechnology, Saint-Egrève, France
- Smartbioscience-Peptide, Saint-Egrève, France
| | - Charles J. Cohen
- Department of Biology, Xenon Pharmaceuticals, Burnaby, BC, Canada
| | - Evelyne Benoit
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), Service d’Ingénierie Moléculaire pour la Santé (SIMoS), EMR Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Michel De Waard
- Smartox Biotechnology, Saint-Egrève, France
- Nantes Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l’institut du thorax, Nantes, France
- LabEx “Ion Channels, Science and Therapeutics”, Valbonne, France
| |
Collapse
|
6
|
Yan YY, Wang K, Wang JT, Han QQ, Zhang Z, Yu N, Liu ZW. Peptide neurotoxins affecting insect voltage-gated calcium channels and possessing insecticidal toxicity: Two ω-Atypitoxins from Calommata signata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106279. [PMID: 40015871 DOI: 10.1016/j.pestbp.2024.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025]
Abstract
Spider peptide toxins, as potent insecticides, distinguish them from current insecticides, and thus expand the range of viable molecular targets of insecticides in insect pests. This study reports the isolation of two neurotoxic peptides, ω-Atyptoxin-Cs2a (Cs2a) and ω-Atyptoxin-Cs2b (Cs2b), from the venom gland of the burrowing spider Calommata signata. These peptides exhibit strong insecticidal activity against two insect pests with agricultural importance, Nilaparvata lugens and Spodoptera frugiperda. Both toxins demonstrated rapid and significant lethality, with LD50 values of 1.083 ± 0.120 nmol/g and 0.949 ± 0.079 nmol/g for N. lugens and 1.035 ± 0.114 nmol/g and 0.998 ± 0.081 nmol/g for S. frugiperda within 24 h. Using the whole-cell patch-clamp electrophysiology, Cs2a and Cs2b were identified as inhibitors of high-voltage-activated calcium channels in cockroach DUM neurons, with IC50 values of 0.504 ± 0.078 μM and 0.411 ± 0.053 μM, respectively. These findings show that Cs2a and Cs2b are effective calcium channel blockers with potential to develop bioinsecticides, offering selective toxicity toward insect pests.
Collapse
Affiliation(s)
- Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Ting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Qian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406656. [PMID: 39248322 PMCID: PMC11558128 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
|
8
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
9
|
Chow CY, King GF. Shining a Light on Venom-Peptide Receptors: Venom Peptides as Targeted Agents for In Vivo Molecular Imaging. Toxins (Basel) 2024; 16:307. [PMID: 39057947 PMCID: PMC11281729 DOI: 10.3390/toxins16070307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular imaging has revolutionised the field of biomedical research by providing a non-invasive means to visualise and understand biochemical processes within living organisms. Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling, and they are implicated in diverse pathological conditions, making them an attractive target in the field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards ion channels, rendering them ideal agents for molecular imaging applications. In this review, we illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development and clinical translation of venom peptides as nerve-targeted imaging agents.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australia Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Wang K, Yan Y, Huang L, Sun H, Yu N, Liu Z. Insecticidal activity of the spider neurotoxin PPTX-04 through modulating insect voltage-gated sodium channel. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105853. [PMID: 38685212 DOI: 10.1016/j.pestbp.2024.105853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/02/2024]
Abstract
Ion channels on cell membrane are molecular targets of more than half peptide neurotoxins from spiders. From Pardosa pseudoannulata, a predatory spider on a range of insect pests, we characterized a peptide neurotoxin PPTX-04 with an insecticidal activity. PPTX-04 showed high toxicity to Nilaparvata lugens, a main prey of P. pseudoannulata, and the toxicity was not affected by the resistance to etofenprox (IUPAC chemical name:1-ethoxy-4-[2-methyl-1-[(3-phenoxyphenyl)methoxy]propan-2-yl]benzene, purity: 99%). On N. lugens voltage-gated sodium channel NlNav1 expressed in Xenopus oocytes, PPTX-04 prolonged the channel opening and induced tail currents, which is similar to pyrethroid insecticides. However, PPTX-04 potency on NlNav1 was not affected by mutations conferring pyrethroid resistance in insects, which revealed that PPTX-04 and pyrethroids should act on different receptors in NlNav1. In contrast, two mutations at the extracellular site 4 significantly reduced PPTX-04 potency, which indicated that PPTX-04 would act on a potential receptor containing the site 4 in NlNav1. The result from the molecular docking supported the conclusion that the binding pocket of PPTX-04 in NlNav1 should contain the site 4. In summary, PPTX-04 had high insecticidal activity through acting on a distinct receptor site in insect Nav, and was a potential resource to control insect pests and manage resistance to pyrethroids.
Collapse
Affiliation(s)
- Kan Wang
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Yan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Huang
- Department of Applied Microbiology, Jiangsu Lixiahe District Institute of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Microbiology, Yangzhou 225007, China
| | - Huahua Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 30071, China
| | - Na Yu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Vasileva ID, Samgina TY, Lebedev AT. Mass Spectrometric De Novo Sequencing of Natural Peptides. Methods Mol Biol 2024; 2758:61-75. [PMID: 38549008 DOI: 10.1007/978-1-0716-3646-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Natural peptides secreted under stress conditions by many organisms are bioactive molecules with a broad spectrum of activities. These molecules could become potential models for novel pharmaceuticals, to which bacteria, according to modern scientific concepts, do not have and cannot develop resistance. Taking this into consideration, it is necessary to clarify the amino acid sequences of such peptides. Here we describe our approach to de novo sequencing of amphibians' skin secretion peptides.
Collapse
|
12
|
Xiao X, Luo X, Huang C, Feng X, Wu M, Lu M, Kuang J, Peng S, Guo Y, Zhang Z, Hu Z, Zhou X, Chen M, Liu Z. Transcriptome analysis reveals the peptide toxins diversity of Macrothele palpator venom. Int J Biol Macromol 2023; 253:126577. [PMID: 37648132 DOI: 10.1016/j.ijbiomac.2023.126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.
Collapse
Affiliation(s)
- Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xiaoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cuiling Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xujun Feng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Meijing Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minjuan Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jiating Kuang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Siyi Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yingmei Guo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zixuan Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua College, Huaihua, Hunan 418008, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
13
|
Hernandez Duran L, Wilson DT, Rymer TL. Exploring behavioral traits over different contexts in four species of Australian funnel-web spiders. Curr Zool 2023; 69:766-774. [PMID: 37876639 PMCID: PMC10591153 DOI: 10.1093/cz/zoac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 10/26/2023] Open
Abstract
Australian funnel-web spiders are arguably the most venomous spiders in the world, with much research focusing on this aspect of their biology. However, other aspects related to their life history, ecology and behaviour have been overlooked. For the first time, we assessed repeatability, namely risk-taking behaviour, aggressiveness and activity in the contexts of predation, conspecific tolerance and exploration of a new territory in four species of Australian funnel-web spiders: two are closely related, Hadronyche valida and H. infensa, and two have overlapping distributions but occupy different habitats, H. cerberea and Atrax robustus. We also compared behaviors between species. At the species level, we found that H. valida showed consistency in risk-taking behavior when exposed to a predator stimulus, aggressiveness against conspecifics, and exploration of a new territory. In contrast, in the other species, only A. robustus showed repeatability in the context of exploration of a new territory. These results suggest that some behavioral traits are likely more flexible than others, and that the repeatability of behaviors may be species-specific in funnel-webs. When we compared species, we found differences in risk-taking behavior and defensiveness. This study provides novel insights to understanding variation in behavioral traits within and between species of funnel-web spiders, suggesting that some behavioral traits are likely context and/or species dependent, as a result of their evolutionary history. These findings provide key insights for understanding the ecological role of behavior and venom deployment in venomous animals, and a greater understanding of behavior in these medically significant and iconic spiders that are of conservation concern.
Collapse
Affiliation(s)
- Linda Hernandez Duran
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P.O. Box 6811, Cairns, QLD 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, QLD 4870, Australia
| |
Collapse
|
14
|
Dongol Y, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Structure-function and rational design of a spider toxin Ssp1a at human voltage-gated sodium channel subtypes. Front Pharmacol 2023; 14:1277143. [PMID: 38034993 PMCID: PMC10682951 DOI: 10.3389/fphar.2023.1277143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
de Jesus-López E, Cuéllar-Balleza L, Díaz-Peña LF, Luna-Vázquez FJ, Ibarra-Alvarado C, García-Arredondo JA. Vasodilator activity of Poecilotheria ornata venom involves activation of the NO/cGMP pathway and inhibition of calcium influx to vascular smooth muscle cells. Toxicon X 2023; 19:100159. [PMID: 37251689 PMCID: PMC10220391 DOI: 10.1016/j.toxcx.2023.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Tarantula venoms may be a natural source of new vasodilator components useful in pharmacological research. Moreover, biological function data of the venoms are important to enhance the knowledge about the biodiversity and evolution of these species. The present study aims to describe the vasodilatory activity induced by the venom of Poecilotheria ornata on isolated rat aortic rings. This venom induced a vasodilator activity that was significantly reduced after incubation with L-NAME or ODQ. Measurements of nitrite concentrations on rat aorta homogenates showed that the venom significantly increased the basal levels. Moreover, the venom attenuates the contraction induced by calcium. These results suggest that P. ornata venom contains a mixture of vasodilator components that act through the activation of the nitric oxide/cGMP pathway, as well as, through an endothelium-independent mechanism that involves the calcium influx into vascular smooth muscle cells.
Collapse
Affiliation(s)
- Enrique de Jesus-López
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - Luis Cuéllar-Balleza
- Aracnario, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, 76230, Juriquilla, Querétaro, Mexico
| | - Luis Fernando Díaz-Peña
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - Francisco Javier Luna-Vázquez
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - César Ibarra-Alvarado
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| | - José Alejandro García-Arredondo
- Departamento de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, 76010, Querétaro, Mexico
| |
Collapse
|
16
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
17
|
Ho TNT, Turner A, Pham SH, Nguyen HT, Nguyen LTT, Nguyen LT, Dang TT. Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 2023; 230:107173. [PMID: 37211058 DOI: 10.1016/j.toxicon.2023.107173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Greater levels of insect resistance and constraints on the use of current pesticides have recently led to increased crop losses in agricultural production. Further, the health and environmental impacts of pesticides now restrict their application. Biologics based on peptides are gaining popularity as efficient crop protection agents with low environmental toxicity. Cysteine-rich peptides (whether originated from venoms or plant defense substances) are chemically stable and effective as insecticides in agricultural applications. Cysteine-rich peptides fulfill the stability and efficacy requirements for commercial uses and provide an environmentally benign alternative to small-molecule insecticides. In this article, cysteine-rich insecticidal peptide classes identified from plants and venoms will be highlighted, focusing on their structural stability, bioactivity and production.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - A Turner
- Molecular Biology Department, University of Texas, 100 E 24th St. Austin, USA
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 an Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Ho TNT, Pham SH, Nguyen LTT, Nguyen HT, Nguyen LT, Dang TT. Insights into the synthesis strategies of plant-derived cyclotides. Amino Acids 2023:10.1007/s00726-023-03271-8. [PMID: 37142771 DOI: 10.1007/s00726-023-03271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.
Collapse
Affiliation(s)
- Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Son H Pham
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam
| | - Linh T T Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam
| | - Ha T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Luan T Nguyen
- National Key Laboratory of Polymer and Composite Materials, Department of Energy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
Animal toxins: As an alternative therapeutic target following ischemic stroke condition. Life Sci 2023; 317:121365. [PMID: 36640901 DOI: 10.1016/j.lfs.2022.121365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Globally, Ischemic stroke (IS) has become the second leading cause of mortality and chronic disability. The process of IS has triggered by the blockages of blood vessels to form clots in the brain which initiates multiple interactions with the key signaling pathways, counting excitotoxicity, acidosis, ionic imbalance, inflammation, oxidative stress, and neuronal dysfunction of cells, and ultimately cells going under apoptosis. Currently, FDA has approved only tissue plasminogen activator therapy, which is effective against IS with few limitations. However, the mechanism of excitotoxicity and acidosis has spurred the investigation of a potential candidate for IS therapy. Acid-sensing ion channels (ASICs) and Voltage-gated Ca2+ channels (VDCCs) get activated and disturb the brain's normal physiology. Animal toxins are novel inhibitors of ASICs and VDCCs channels and have provided neuroprotective insights into the pathophysiology of IS. This review will discuss the potential directions of translational ASICs and VDCCs inhibitors research for clinical therapies.
Collapse
|
20
|
The Molecular Composition of Peptide Toxins in the Venom of Spider Lycosa coelestis as Revealed by cDNA Library and Transcriptomic Sequencing. Toxins (Basel) 2023; 15:toxins15020143. [PMID: 36828457 PMCID: PMC9959208 DOI: 10.3390/toxins15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In the so-called "struggle for existence" competition, the venomous animals developed a smart and effective strategy, envenomation, for predation and defense. Biochemical analysis revealed that animal venoms are chemical pools of proteinase, peptide toxins, and small organic molecules with various biological activities. Of them, peptide toxins are of great molecular diversity and possess the capacity to modulate the activity of ion channels, the second largest group of drug targets expressed on the cell membrane, which makes them a rich resource for developing peptide drug pioneers. The spider Lycosa coelestis (L. coelestis) commonly found in farmland in China is a dominant natural enemy of agricultural pests; however, its venom composition and activity were never explored. Herein, we conducted cDNA library and transcriptomic sequencing of the venom gland of L. coelestis, which identified 1131 high-quality expressed sequence tags (ESTs), grouped into three categories denoted as toxin-like ESTs (597, 52.79%), cellular component ESTs (357, 31.56%), and non-matched ESTs (177, 15.65%). These toxin-like ESTs encode 98 non-reductant toxins, which are artificially divided into 11 families based on their sequence homology and cysteine frameworks (2-14 cysteines forming 1-7 disulfide bonds to stabilize the toxin structure). Furthermore, RP-HPLC purification combined with off-line MALDI-TOF analysis have detected 147 different peptides physically existing in the venom of L. coelestis. Electrophysiology analysis confirmed that the venom preferably inhibits the voltage-gated calcium channels in rat dorsal root ganglion neurons. Altogether, the present study has added a great lot of new members to the spider toxin superfamily and built the foundation for characterizing novel active peptides in the L. coelestis venom.
Collapse
|
21
|
Michálek O, Walker AA, Šedo O, Zdráhal Z, King GF, Pekár S. Composition and toxicity of venom produced by araneophagous white-tailed spiders (Lamponidae: Lampona sp.). Sci Rep 2022; 12:21597. [PMID: 36517485 PMCID: PMC9751281 DOI: 10.1038/s41598-022-24694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey. The venoms of specialists are often prey-specific and less complex than those of generalists, but their venom composition has not been studied in detail. Here, we investigated the venom of the prey-specialised white-tailed spiders (Lamponidae: Lampona), which utilise specialised morphological and behavioural adaptations to capture spider prey. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides < 10 kDa and 105 proteins > 10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Toxin-like proteins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be more potent against the preferred spider prey than against alternative cricket prey. In contrast, the venom of a related generalist was similarly potent against both prey types. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Ondrej Šedo
- Research Group Proteomics, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Research Group Proteomics, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
22
|
Jacob B, Vogelaar A, Cadenas E, Camarero JA. Using the Cyclotide Scaffold for Targeting Biomolecular Interactions in Drug Development. Molecules 2022; 27:molecules27196430. [PMID: 36234971 PMCID: PMC9570680 DOI: 10.3390/molecules27196430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.
Collapse
Affiliation(s)
- Binu Jacob
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Alicia Vogelaar
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 9033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 9033, USA
- Correspondence:
| |
Collapse
|
23
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
24
|
Vásquez-Escobar J, Romero-Gutiérrez T, Morales JA, Clement HC, Corzo GA, Benjumea DM, Corrales-García LL. Transcriptomic Analysis of the Venom Gland and Enzymatic Characterization of the Venom of Phoneutria depilata (Ctenidae) from Colombia. Toxins (Basel) 2022; 14:toxins14050295. [PMID: 35622542 PMCID: PMC9144723 DOI: 10.3390/toxins14050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
The transcriptome of the venom glands of the Phoneutria depilata spider was analyzed using RNA-seq with an Illumina protocol, which yielded 86,424 assembled transcripts. A total of 682 transcripts were identified as potentially coding for venom components. Most of the transcripts found were neurotoxins (156) that commonly act on sodium and calcium channels. Nevertheless, transcripts coding for some enzymes (239), growth factors (48), clotting factors (6), and a diuretic hormone (1) were found, which have not been described in this spider genus. Furthermore, an enzymatic characterization of the venom of P. depilata was performed, and the proteomic analysis showed a correlation between active protein bands and protein sequences found in the transcriptome. The transcriptomic analysis of P. depilata venom glands show a deeper description of its protein components, allowing the identification of novel molecules that could lead to the treatment of human diseases, or could be models for developing bioinsecticides.
Collapse
Affiliation(s)
- Julieta Vásquez-Escobar
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| | - Teresa Romero-Gutiérrez
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - José Alejandro Morales
- Traslational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Guadalajara 44430, Mexico; (T.R.-G.); (J.A.M.)
| | - Herlinda C. Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Gerardo A. Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
| | - Dora M. Benjumea
- Grupo de Toxinología y Alternativas Farmacéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia;
| | - Ligia Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (H.C.C.); (G.A.C.)
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellin 1226, Colombia
- Correspondence: (J.V.-E.); (L.L.C.-G.)
| |
Collapse
|
25
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
Duran LH, Wilson DT, Lee Rymer T. Behaviour of the Sydney funnel-web spider Atrax robustus over different contexts, time, and stimuli. Toxicon X 2022; 13:100093. [PMID: 35146415 PMCID: PMC8816710 DOI: 10.1016/j.toxcx.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Atrax robustus is an iconic Australian spider because the venom can be lethal to humans. Moreover, some of the venom biomolecules have promise as therapeutic and bioinsecticidal leads. Nonetheless, aspects related to the life history and behaviour of this species, which might influence changes in venom components, have been overlooked. We assessed different behavioural traits (antipredator behaviour, defensiveness and activity) of juveniles and adult females across different contexts (predation, conspecific tolerance and exploration of a new territory) and stimuli (puff of air versus prod) over time. Adults responded to a puff of air faster than juveniles, but in response to a prod, both juveniles and adults become more defensive over time. No differences were observed between adults and juveniles for conspecific tolerance and exploration. Understanding behaviour of venomous species is important because behaviours may affect physiological traits, such as venom, and the ability of spiders to adapt to different conditions. Study of Sydney funnel-web spiders behaviour in response to different stimuli over time and different contexts. Adults and juveniles show different behavioural responses to an aversive stimulus. Adults show flexibility of aggressive behaviour in response to a threatening stimulus. The type of threatening stimulus affects the way spiders modulate their behaviour.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Corresponding author. College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Corresponding author. College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia.
| |
Collapse
|
27
|
Caruso L, Nadur NF, Brandão M, Peixoto Ferreira LDA, Lacerda RB, Graebin CS, Kümmerle AE. The Design of Multi-target Drugs to Treat Cardiovascular Diseases: Two (or more) Birds on one Stone. Curr Top Med Chem 2022; 22:366-394. [PMID: 35105288 DOI: 10.2174/1568026622666220201151248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVDs) comprise a group of diseases and disorders of the heart and blood vessels, which together are the number one cause of death worldwide, being associated with multiple genetic and modifiable risk factors, and that may directly arise from different etiologies. For a long time, the search for cardiovascular drugs was based on the old paradigm "one compound - one target", which aims to obtain a highly potent and selective molecule with only one desired molecular target. Although historically successful in the last decades, this approach ignores the multiple causes and the multifactorial nature of CVD's. Thus, over time, treatment strategies for cardiovascular diseases have changed and, currently, pharmacological therapies for CVD are mainly based on the association of two or more drugs to control symptoms and reduce cardiovascular death. In this context, the development of multitarget drugs, i.e, compounds having the ability to act simultaneously at multiple sites, is an attractive and relevant strategy that can be even more advantageous to achieve predictable pharmacokinetic and pharmacodynamics correlations as well as better patient compliance. In this review, we aim to highlight the efforts and rational pharmacological bases for the design of some promising multitargeted compounds to treat important cardiovascular diseases like heart failure, atherosclerosis, acute myocardial infarction, pulmonary arterial hypertension and arrhythmia.
Collapse
Affiliation(s)
- Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Marina Brandão
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Larissa de Almeida Peixoto Ferreira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| |
Collapse
|
28
|
Deuis JR, Ragnarsson L, Robinson SD, Dekan Z, Chan L, Jin AH, Tran P, McMahon KL, Li S, Wood JN, Cox JJ, King GF, Herzig V, Vetter I. The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel Na V1.8 to Enhance Activation. Front Pharmacol 2022; 12:789570. [PMID: 35095499 PMCID: PMC8795738 DOI: 10.3389/fphar.2021.789570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of β-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 μM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel D. Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lerena Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsten L. McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Li
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - John N. Wood
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - James J. Cox
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
29
|
Peng S, Chen M, Xiao Z, Xiao X, Luo S, Liang S, Zhou X, Liu Z. A Novel Spider Toxin Inhibits Fast Inactivation of the Na v1.9 Channel by Binding to Domain III and Domain IV Voltage Sensors. Front Pharmacol 2021; 12:778534. [PMID: 34938190 PMCID: PMC8685421 DOI: 10.3389/fphar.2021.778534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Venomous animals have evolved to produce peptide toxins that modulate the activity of voltage-gated sodium (Nav) channels. These specific modulators are powerful probes for investigating the structural and functional features of Nav channels. Here, we report the isolation and characterization of δ-theraphotoxin-Gr4b (Gr4b), a novel peptide toxin from the venom of the spider Grammostola rosea. Gr4b contains 37-amino acid residues with six cysteines forming three disulfide bonds. Patch-clamp analysis confirmed that Gr4b markedly slows the fast inactivation of Nav1.9 and inhibits the currents of Nav1.4 and Nav1.7, but does not affect Nav1.8. It was also found that Gr4b significantly shifts the steady-state activation and inactivation curves of Nav1.9 to the depolarization direction and increases the window current, which is consistent with the change in the ramp current. Furthermore, analysis of Nav1.9/Nav1.8 chimeric channels revealed that Gr4b preferentially binds to the voltage-sensor of domain III (DIII VSD) and has additional interactions with the DIV VSD. The site-directed mutagenesis analysis indicated that N1139 and L1143 in DIII S3-S4 linker participate in toxin binding. In sum, this study reports a novel spider peptide toxin that may slow the fast inactivation of Nav1.9 by binding to the new neurotoxin receptor site-DIII VSD. Taken together, these findings provide insight into the functional role of the Nav channel DIII VSD in fast inactivation and activation.
Collapse
Affiliation(s)
- Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sen Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
30
|
Dongol Y, Choi PM, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid. Front Pharmacol 2021; 12:795455. [PMID: 35002728 PMCID: PMC8740163 DOI: 10.3389/fphar.2021.795455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Given the important role of voltage-gated sodium (NaV) channel-modulating spider toxins in elucidating the function, pharmacology, and mechanism of action of therapeutically relevant NaV channels, we screened the venom from Australian theraphosid species against the human pain target hNaV1.7. Using assay-guided fractionation, we isolated a 33-residue inhibitor cystine knot (ICK) peptide (Ssp1a) belonging to the NaSpTx1 family. Recombinant Ssp1a (rSsp1a) inhibited neuronal hNaV subtypes with a rank order of potency hNaV1.7 > 1.6 > 1.2 > 1.3 > 1.1. rSsp1a inhibited hNaV1.7, hNaV1.2 and hNaV1.3 without significantly altering the voltage-dependence of activation, inactivation, or delay in recovery from inactivation. However, rSsp1a demonstrated voltage-dependent inhibition at hNaV1.7 and rSsp1a-bound hNaV1.7 opened at extreme depolarizations, suggesting rSsp1a likely interacted with voltage-sensing domain II (VSD II) of hNaV1.7 to trap the channel in its resting state. Nuclear magnetic resonance spectroscopy revealed key structural features of Ssp1a, including an amphipathic surface with hydrophobic and charged patches shown by docking studies to comprise the interacting surface. This study provides the basis for future structure-function studies to guide the development of subtype selective inhibitors.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Phil M. Choi
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2021; 27:molecules27010047. [PMID: 35011282 PMCID: PMC8746590 DOI: 10.3390/molecules27010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Sakda Daduang
- Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
32
|
Adams GL, Pall PS, Grauer SM, Zhou X, Ballard JE, Vavrek M, Kraus RL, Morissette P, Li N, Colarusso S, Bianchi E, Palani A, Klein R, John CT, Wang D, Tudor M, Nolting AF, Biba M, Nowak T, Makarov AA, Reibarkh M, Buevich AV, Zhong W, Regalado EL, Wang X, Gao Q, Shahripour A, Zhu Y, de Simone D, Frattarelli T, Pasquini NM, Magotti P, Iaccarino R, Li Y, Solly K, Lee KJ, Wang W, Chen F, Zeng H, Wang J, Regan H, Amin RP, Regan CP, Burgey CS, Henze DA, Sun C, Tellers DM. Development of ProTx-II Analogues as Highly Selective Peptide Blockers of Na v1.7 for the Treatment of Pain. J Med Chem 2021; 65:485-496. [PMID: 34931831 DOI: 10.1021/acs.jmedchem.1c01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.
Collapse
Affiliation(s)
- Gregory L Adams
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Parul S Pall
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Steven M Grauer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiaoping Zhou
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Marissa Vavrek
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Nianyu Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Stefania Colarusso
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Anandan Palani
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Rebecca Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Deping Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Tudor
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew F Nolting
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mirlinda Biba
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Nowak
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | | | - Wendy Zhong
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Xiao Wang
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qi Gao
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Yuping Zhu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniele de Simone
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Tommaso Frattarelli
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Nicolo' Maria Pasquini
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Roberto Iaccarino
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Yuxing Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelli Solly
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Keun-Joong Lee
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Feifei Chen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Haoyu Zeng
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jixin Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Hilary Regan
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rupesh P Amin
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Darrell A Henze
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chengzao Sun
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M Tellers
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
33
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
34
|
Lopez L, Montnach J, Oliveira-Mendes B, Khakh K, Thomas B, Lin S, Caumes C, Wesolowski S, Nicolas S, Servent D, Cohen C, Béroud R, Benoit E, De Waard M. Synthetic Analogues of Huwentoxin-IV Spider Peptide With Altered Human NaV1.7/NaV1.6 Selectivity Ratios. Front Cell Dev Biol 2021; 9:798588. [PMID: 34988086 PMCID: PMC8722715 DOI: 10.3389/fcell.2021.798588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Huwentoxin-IV (HwTx-IV), a peptide discovered in the venom of the Chinese bird spider Cyriopagopus schmidti, has been reported to be a potent antinociceptive compound due to its action on the genetically-validated NaV1.7 pain target. Using this peptide for antinociceptive applications in vivo suffers from one major drawback, namely its negative impact on the neuromuscular system. Although studied only recently, this effect appears to be due to an interaction between the peptide and the NaV1.6 channel subtype located at the presynaptic level. The aim of this work was to investigate how HwTx-IV could be modified in order to alter the original human (h) NaV1.7/NaV1.6 selectivity ratio of 23. Nineteen HwTx-IV analogues were chemically synthesized and tested for their blocking effects on the Na+ currents flowing through these two channel subtypes stably expressed in cell lines. Dose-response curves for these analogues were generated, thanks to the use of an automated patch-clamp system. Several key amino acid positions were targeted owing to the information provided by earlier structure-activity relationship (SAR) studies. Among the analogues tested, the potency of HwTx-IV E4K was significantly improved for hNaV1.6, leading to a decreased hNaV1.7/hNaV1.6 selectivity ratio (close to 1). Similar decreased selectivity ratios, but with increased potency for both subtypes, were observed for HwTx-IV analogues that combine a substitution at position 4 with a modification of amino acid 1 or 26 (HwTx-IV E1G/E4G and HwTx-IV E4K/R26Q). In contrast, increased selectivity ratios (>46) were obtained if the E4K mutation was combined to an additional double substitution (R26A/Y33W) or simply by further substituting the C-terminal amidation of the peptide by a carboxylated motif, linked to a marked loss of potency on hNaV1.6 in this latter case. These results demonstrate that it is possible to significantly modulate the selectivity ratio for these two channel subtypes in order to improve the potency of a given analogue for hNaV1.6 and/or hNaV1.7 subtypes. In addition, selective analogues for hNaV1.7, possessing better safety profiles, were produced to limit neuromuscular impairments.
Collapse
Affiliation(s)
- Ludivine Lopez
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | - Jérôme Montnach
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
| | | | | | | | - Sophia Lin
- Xenon Pharmaceuticals, Burnaby, BC, Canada
| | | | | | | | - Denis Servent
- Département Médicaments et Technologies pour La Santé (DMTS), Service d’Ingénierie Moléculaire pour La Santé (SIMoS), ERL CNRS/CEA, Institut des Sciences du Vivant Frédéric Joliot, CEA, Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - Evelyne Benoit
- Département Médicaments et Technologies pour La Santé (DMTS), Service d’Ingénierie Moléculaire pour La Santé (SIMoS), ERL CNRS/CEA, Institut des Sciences du Vivant Frédéric Joliot, CEA, Université Paris Saclay, Gif-sur-Yvette, France
| | - Michel De Waard
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, Nantes, France
- Smartox Biotechnology, Saint-Egrève, France
- LabEx « Ion Channels, Science and Therapeutics », Valbonne, France
- *Correspondence: Michel De Waard,
| |
Collapse
|
35
|
Neff RA, Wickenden AD. Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides. Channels (Austin) 2021; 15:179-193. [PMID: 33427574 PMCID: PMC7808416 DOI: 10.1080/19336950.2020.1860382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
A fundamental mechanism that drives the propagation of electrical signals in the nervous system is the activation of voltage-gated sodium channels. The sodium channel subtype Nav1.7 is critical for the transmission of pain-related signaling, with gain-of-function mutations in Nav1.7 resulting in various painful pathologies. Loss-of-function mutations cause complete insensitivity to pain and anosmia in humans that otherwise have normal nervous system function, rendering Nav1.7 an attractive target for the treatment of pain. Despite this, no Nav1.7 selective therapeutic has been approved for use as an analgesic to date. Here we present a summary of research that has focused on engineering peptides found in spider venoms to produce Nav1.7 selective antagonists. We discuss the progress that has been made on various scaffolds from different venom families and highlight the challenges that remain in the effort to produce a Nav1.7 selective, venom-based analgesic.
Collapse
Affiliation(s)
- Robert A. Neff
- Neuroscience Discovery, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Alan D. Wickenden
- Molecular and Cellular Pharmacology, Janssen Research and Development, LLC, San Diego, CA, USA
| |
Collapse
|
36
|
Hu H, Mawlawi SE, Zhao T, Deuis JR, Jami S, Vetter I, Lewis RJ, Cardoso FC. Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Front Mol Biosci 2021; 8:742457. [PMID: 34621788 PMCID: PMC8490825 DOI: 10.3389/fmolb.2021.742457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Venom peptides are potent and selective modulators of voltage-gated ion channels that regulate neuronal function both in health and in disease. We previously identified the spider venom peptide Tap1a from the Venezuelan tarantula Theraphosa apophysis that targeted multiple voltage-gated sodium and calcium channels in visceral pain pathways and inhibited visceral mechano-sensing neurons contributing to irritable bowel syndrome. In this work, alanine scanning and domain activity analysis revealed Tap1a inhibited sodium channels by binding with nanomolar affinity to the voltage-sensor domain II utilising conserved structure-function features characteristic of spider peptides belonging to family NaSpTx1. In order to speed up the development of optimized NaV-targeting peptides with greater inhibitory potency and enhanced in vivo activity, we tested the hypothesis that incorporating residues identified from other optimized NaSpTx1 peptides into Tap1a could also optimize its potency for NaVs. Applying this approach, we designed the peptides Tap1a-OPT1 and Tap1a-OPT2 exhibiting significant increased potency for NaV1.1, NaV1.2, NaV1.3, NaV1.6 and NaV1.7 involved in several neurological disorders including acute and chronic pain, motor neuron disease and epilepsy. Tap1a-OPT1 showed increased potency for the off-target NaV1.4, while this off-target activity was absent in Tap1a-OPT2. This enhanced potency arose through a slowed off-rate mechanism. Optimized inhibition of NaV channels observed in vitro translated in vivo, with reversal of nocifensive behaviours in a murine model of NaV-mediated pain also enhanced by Tap1a-OPT. Molecular docking studies suggested that improved interactions within loops 3 and 4, and C-terminal of Tap1a-OPT and the NaV channel voltage-sensor domain II were the main drivers of potency optimization. Overall, the rationally designed peptide Tap1a-OPT displayed new and refined structure-function features which are likely the major contributors to its enhanced bioactive properties observed in vivo. This work contributes to the rapid engineering and optimization of potent spider peptides multi-targeting NaV channels, and the research into novel drugs to treat neurological diseases.
Collapse
Affiliation(s)
- H Hu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S E Mawlawi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - T Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - J R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S Jami
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - I Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - R J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - F C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Centre for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
38
|
Jiang Y, Castro J, Blomster LV, Agwa AJ, Maddern J, Schober G, Herzig V, Chow CY, Cardoso FC, Demétrio De Souza França P, Gonzales J, Schroeder CI, Esche S, Reiner T, Brierley SM, King GF. Pharmacological Inhibition of the Voltage-Gated Sodium Channel Na V1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacol Transl Sci 2021; 4:1362-1378. [PMID: 34423271 DOI: 10.1021/acsptsci.1c00072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.
Collapse
Affiliation(s)
- Yan Jiang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Linda V Blomster
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Otorhinolaryngology & Head and Neck Surgery, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
39
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
40
|
Samgina TY, Tolpina MD, Surin AK, Kovalev SV, Bosch RA, Alonso IP, Garcia FA, Gonzalez Lopez LJ, Lebedev AT. Manual mass spectrometry de novo sequencing of the anionic host defense peptides of the Cuban Treefrog Osteopilus septentrionalis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9061. [PMID: 33527491 DOI: 10.1002/rcm.9061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Host defense peptides accumulated in the skin glands of the animals constitute the basis of the adaptive and immune system of amphibians. The peptidome of the Cuban frog Osteopilus septentrionalis was established using tandem mass spectrometry as the best analytical tool to elucidate the sequence of these peptides. METHODS Manual interpretation of complementary collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), and electron transfer dissociation (ETD) tandem mass spectra recorded with an Orbitrap Elite mass spectrometer in liquid chromatography/mass spectrometry (LC/MS) mode was used to sequence the peptide components of the frog skin secretion, obtained by mild electrostimulation. RESULTS Although the vast majority of amphibian peptides discovered so far are cationic, surprisingly only anionic peptides were identified in the skin secretion of the Cuban frog Osteopilus septentrionalis. Mass spectrometry allowed the sequences to be established of 16 representatives of new peptide families: septenins 1 and septenins 2. The highest sequence coverage when dealing with these anionic peptides was obtained with CID normalized collision energy 35 and HCD normalized collision energy 28. CONCLUSIONS Mirror-symmetrical peptides are sequenced using N-terminal acetylation. Acetylated Ser is reliably distinguished from isomeric Glu by the loss of ketene from b-ions containing the corresponding residue. Calculations of the physicochemical and structural properties of the discovered anionic septenins 1 and 2 allowed the mechanism of their interaction with microbe cells to be postulated.
Collapse
Affiliation(s)
- Tatiana Y Samgina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Maria D Tolpina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Alexey K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow, 142290, Russia
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Roberto Alonso Bosch
- Museum of Natural History "Felipe Poey", Faculty of Biology, University of Havana, Havana, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | | | - Luis Javier Gonzalez Lopez
- Mass Spectrometry Laboratory, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
41
|
Structural Pharmacology of Voltage-Gated Sodium Channels. J Mol Biol 2021; 433:166967. [PMID: 33794261 DOI: 10.1016/j.jmb.2021.166967] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.
Collapse
|
42
|
Cardoso FC, Castro J, Grundy L, Schober G, Garcia-Caraballo S, Zhao T, Herzig V, King GF, Brierley SM, Lewis RJ. A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain 2021; 162:569-581. [PMID: 32826759 DOI: 10.1097/j.pain.0000000000002041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Tianjiao Zhao
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Volker Herzig
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Glenn F King
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Zhang Y, Wang L, Peng D, Zhang Q, Yang Q, Li J, Li D, Tang D, Chen M, Liang S, Liu Y, Wang S, Liu Z. Engineering of highly potent and selective HNTX-III mutant against hNa v1.7 sodium channel for treatment of pain. J Biol Chem 2021; 296:100326. [PMID: 33493520 PMCID: PMC7988488 DOI: 10.1016/j.jbc.2021.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 μM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jiayan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
44
|
Alvarado D, Cardoso-Arenas S, Corrales-García LL, Clement H, Arenas I, Montero-Dominguez PA, Olamendi-Portugal T, Zamudio F, Csoti A, Borrego J, Panyi G, Papp F, Corzo G. A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Front Pharmacol 2021; 11:563858. [PMID: 33597864 PMCID: PMC7883638 DOI: 10.3389/fphar.2020.563858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Spider venoms include various peptide toxins that modify the ion currents, mainly of excitable insect cells. Consequently, scientific research on spider venoms has revealed a broad range of peptide toxins with different pharmacological properties, even for mammal species. In this work, thirty animal venoms were screened against hKv1.5, a potential target for atrial fibrillation therapy. The whole venom of the spider Oculicosa supermirabilis, which is also insecticidal to house crickets, caused voltage-gated potassium ion channel modulation in hKv1.5. Therefore, a peptide from the spider O. supermirabilis venom, named Osu1, was identified through HPLC reverse-phase fractionation. Osu1 displayed similar biological properties as the whole venom; so, the primary sequence of Osu1 was elucidated by both of N-terminal degradation and endoproteolytic cleavage. Based on its primary structure, a gene that codifies for Osu1 was constructed de novo from protein to DNA by reverse translation. A recombinant Osu1 was expressed using a pQE30 vector inside the E. coli SHuffle expression system. recombinant Osu1 had voltage-gated potassium ion channel modulation of human hKv1.5, and it was also as insecticidal as the native toxin. Due to its novel primary structure, and hypothesized disulfide pairing motif, Osu1 may represent a new family of spider toxins.
Collapse
Affiliation(s)
- Diana Alvarado
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Samuel Cardoso-Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Ligia-Luz Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Pavel Andrei Montero-Dominguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jesús Borrego
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
45
|
Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, Catterall WA. Structural Basis for High-Affinity Trapping of the Na V1.7 Channel in Its Resting State by Tarantula Toxin. Mol Cell 2021; 81:38-48.e4. [PMID: 33232657 PMCID: PMC8043720 DOI: 10.1016/j.molcel.2020.10.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaVAb with voltage-shifting mutations and the toxin-binding site of human NaV1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Eagles DA, Chow CY, King GF. Fifteen years of Na
V
1.7 channels as an analgesic target: Why has excellent in vitro pharmacology not translated into in vivo analgesic efficacy? Br J Pharmacol 2020; 179:3592-3611. [DOI: 10.1111/bph.15327] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- David A. Eagles
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Chun Yuen Chow
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - Glenn F. King
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| |
Collapse
|
47
|
Chen M, Peng S, Wang L, Yang L, Si Y, Zhou X, Zhang Y, Liu Z. Recombinant PaurTx-3, a spider toxin, inhibits sodium channels and decreases membrane excitability in DRG neurons. Biochem Biophys Res Commun 2020; 533:958-964. [PMID: 33004176 DOI: 10.1016/j.bbrc.2020.09.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. Gating modifier toxins from spider venom can modulate the gating mechanism of sodium channels and thus have potential as drug leads. Here, we established expression of the gating modifier toxin PaurTx-3, a sodium channel inhibitor found in the venom of the spider Phrixotrichus auratus. Whole-cell voltage-clamp recordings indicated that recombinant PaurTx-3 (rPaurTx-3) inhibited Nav1.4, Nav1.5, and Nav1.7 currents with IC50 values of 61 nM, 72 nM, and 25 nM, respectively. Furthermore, rPaurTx-3 irreversibly inhibited Nav1.7 currents, but had 60-70% recovery in Nav1.4 and Nav1.5 after washing with a bath solution. rPaurTx-3 also hyperpolarized the voltage-dependent steady-state inactivation curve and significantly slowed recovery from fast inactivation of Nav1.7. Current-clamp recordings showed that rPaurTx-3 suppressed small DRG neuron activity. The biological activity assay findings for rPaurTx-3 support its potent pharmacological effect in Nav1.7 and small DRG neurons.
Collapse
Affiliation(s)
- Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shuijiao Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Li Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuxin Si
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Yunxiao Zhang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
48
|
Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon X 2020; 8:100063. [PMID: 33305257 PMCID: PMC7711288 DOI: 10.1016/j.toxcx.2020.100063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Mygalomorph venom properties and active components, which have importance in medicine, agronomy, venomics, ecology and evolution, have been widely studied, but only a small fraction have been characterised. Several studies have shown inter-individual variation in the composition of venom peptides based on ontogeny, sexual dimorphism, season and diet. However, intra-individual variation in venom composition, which could play a key role in the evolution, diversification and function of toxins, is poorly understood. In this study, we demonstrate significant intra- and inter-individual variation in venom composition in the Australian funnel-web spider Hadronyche valida, highlighting that individuals show different venom profiles over time. Fourteen (four juvenile and ten adult females) funnel-web spiders, maintained under the same environmental conditions and diet, were milked a total of four times, one month apart. We then used reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry to generate venom fingerprints containing the retention time and molecular weights of the different toxin components in the venom. Across all individuals, we documented a combined total of 83 individual venom components. Only 20% of these components were shared between individuals. Individuals showed variation in the composition of venom peptides, with some components consistently present over time, while others were only present at specific times. When individuals were grouped using the Jaccard clustering index and Kernel Principal Component Analysis, spiders formed two distinct clusters, most likely due to their origin or time of collection. This study contributes to the understanding of variation in venom composition at different levels (intra-individual, and intra- and inter-specific) and considers some of the mechanisms of selection that may contribute to venom diversification within arachnids. In addition, inter-specific variation in venom composition can be highly useful as a chemotaxonomic marker to identify funnel-web species.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
49
|
A selective NaV1.1 activator with potential for treatment of Dravet syndrome epilepsy. Biochem Pharmacol 2020; 181:113991. [DOI: 10.1016/j.bcp.2020.113991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
|
50
|
Peschel A, Cardoso FC, Walker AA, Durek T, Stone MRL, Braga Emidio N, Dawson PE, Muttenthaler M, King GF. Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem 2020; 63:12773-12785. [PMID: 33078946 PMCID: PMC7667638 DOI: 10.1021/acs.jmedchem.0c01107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Voltage-gated
sodium (NaV) channels are pore-forming
transmembrane proteins that play essential roles in excitable cells,
and they are key targets for antiepileptic, antiarrhythmic, and analgesic
drugs. We implemented a heterobivalent design strategy to modulate
the potency, selectivity, and binding kinetics of NaV channel
ligands. We conjugated μ-conotoxin KIIIA, which occludes the
pore of the NaV channels, to an analogue of huwentoxin-IV,
a spider-venom peptide that allosterically modulates channel gating.
Bioorthogonal hydrazide and copper-assisted azide–alkyne cycloaddition
conjugation chemistries were employed to generate heterobivalent ligands
using polyethylene glycol linkers spanning 40–120 Å. The
ligand with an 80 Å linker had the most pronounced bivalent effects,
with a significantly slower dissociation rate and 4–24-fold
higher potency compared to those of the monovalent peptides for the
human NaV1.4 channel. This study highlights the power of
heterobivalent ligand design and expands the repertoire of pharmacological
probes for exploring the function of NaV channels.
Collapse
Affiliation(s)
- Alicia Peschel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - M Rhia L Stone
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.,Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|