1
|
Mendoza-Tobar LL, Clement H, Arenas I, Sepulveda-Arias JC, Vargas JAG, Corzo G. An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230063. [PMID: 38505508 PMCID: PMC10950367 DOI: 10.1590/1678-9199-jvatitd-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 03/21/2024] Open
Abstract
Background In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.
Collapse
Affiliation(s)
- Leydy Lorena Mendoza-Tobar
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Juan Carlos Sepulveda-Arias
- Grupo de Infección e Inmunidad, Facultad Ciencias de la Salud,
Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jimmy Alexander Guerrero Vargas
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| |
Collapse
|
2
|
Nasr S, Borges A, Sahyoun C, Nasr R, Roufayel R, Legros C, Sabatier JM, Fajloun Z. Scorpion Venom as a Source of Antimicrobial Peptides: Overview of Biomolecule Separation, Analysis and Characterization Methods. Antibiotics (Basel) 2023; 12:1380. [PMID: 37760677 PMCID: PMC10525675 DOI: 10.3390/antibiotics12091380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target biological receptors with remarkable affinity. Some of these receptors have emerged as prime therapeutic targets for addressing various human pathologies, including cancer and infectious diseases, and have served as models for designing novel drugs. Consequently, extensive biochemical and proteomic investigations have focused on characterizing scorpion venoms. This review provides a comprehensive overview of the key methodologies used in the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase high-performance liquid chromatography, size exclusion chromatography, and "omics" approaches are explored, along with various combinations of methods that enable bioassay-guided venom fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These workflows differ based on whether the venom is pre-fractionated using separation techniques or is proteolytically digested directly before further proteomic analyses. Since the composition and functionality of scorpion venoms are species-specific, the selection and sequence of the techniques for venom analyses, including these workflows, should be tailored to the specific parameters of the study.
Collapse
Affiliation(s)
- Sara Nasr
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
| | - Adolfo Borges
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas 50587, Venezuela;
- Centro para el Desarrollo de la Investigación Científica, Asunción 1255, Paraguay
| | - Christina Sahyoun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Riad Nasr
- Department of Physical Therapy, Faculty of Public Health 3, Lebanese University, Tripoli 1200, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Jean-Marc Sabatier
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| |
Collapse
|
3
|
Molecular Characterization and In Silico Analyses of Maurolipin Structure as a Secretory Phospholipase ( ) from Venom Glands of Iranian Scorpio maurus (Arachnida: Scorpionida). J Trop Med 2022; 2022:1839946. [PMID: 36226273 PMCID: PMC9550507 DOI: 10.1155/2022/1839946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
The venom is a mixture of various compounds with specific biological activities, such as the phospholipase A2 (PLA2) enzyme present in scorpion venom. PLA2 plays a key role in inhibiting ryanodine receptor channels and has neurotoxic activity. This study is the first investigation of molecular characterization, cloning, and in silico analyses of PLA2 from Iranian Scorpio maurus, named Maurolipin. After RNA extraction from S. maurus venom glands, cDNA was synthesized and amplified through RT-PCR using specific primers. Amplified Maurolipin was cloned in TA cloning vector, pTG19. For in silico analyses, the characterized gene was analyzed utilizing different software. Maurolipin coding gene with 432 base pair nucleotide length encoded a protein of 144 amino acid residues and 16.34 kilodaltons. Comparing the coding sequence of Maurolipin with other characterized PLA2 from different species of scorpions showed that this protein was a member of the PLA2 superfamily. According to SWISS-MODEL prediction, Maurolipin had 38.83% identity with bee venom PLA2 with 100% confidence and 39% identity with insect phospholipase A2 family, which Phyre2 predicted. According to the three-dimensional structure prediction, Maurolipin with five disulfide bonds has a very high similarity to the structure of PLA2 that belonged to the group III subfamily. The in silico analyses showed that phospholipase A2 coding gene and protein structure is different based on scorpion species and geographical condition in which they live.
Collapse
|
4
|
Soltan-Alinejad P, Alipour H, Meharabani D, Azizi K. Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:300-313. [PMID: 35919080 PMCID: PMC9339116 DOI: 10.30476/ijms.2021.88511.1927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/07/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
Venomous arthropods such as scorpions and bees form one of the important groups with an essential role in medical entomology. Their venom possesses a mixture of diverse compounds, such as peptides, some of which have toxic effects, and enzymatic peptide Phospholipase A2 (PLA2) with a pharmacological potential in the treatment of a wide range of diseases. Bee and scorpion venom PLA2 group III has been used in immunotherapy, the treatment of neurodegenerative and inflammatory diseases. They were assessed for antinociceptive, wound healing, anti-cancer, anti-viral, anti-bacterial, anti-parasitic, and anti-angiogenesis effects. PLA2 has been identified in different species of scorpions and bees. The anti-leishmania, anti-bacterial, anti-viral, and anti-malarial activities of scorpion PLA2 still need further investigation. Many pieces of research have been stopped in the laboratory stage, and several studies need vast investigation in the clinical phase to show the pharmacological potential of PLA2. In this review, the medical significance of PLA2 from the venom of two arthropods, namely bees and scorpions, is discussed.
Collapse
Affiliation(s)
- Parisa Soltan-Alinejad
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Meharabani
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada,
Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
The Enzymatic Core of Scorpion Venoms. Toxins (Basel) 2022; 14:toxins14040248. [PMID: 35448857 PMCID: PMC9030722 DOI: 10.3390/toxins14040248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022] Open
Abstract
Enzymes are an integral part of animal venoms. Unlike snakes, in which enzymes play a primary role in envenomation, in scorpions, their function appears to be ancillary in most species. Due to this, studies on the diversity of scorpion venom components have focused primarily on the peptides responsible for envenomation (toxins) and a few others (e.g., antimicrobials), while enzymes have been overlooked. In this work, a comprehensive study on enzyme diversity in scorpion venoms was performed by transcriptomic and proteomic techniques. Enzymes of 63 different EC types were found, belonging to 330 orthogroups. Of them, 24 ECs conform the scorpion venom enzymatic core, since they were determined to be present in all the studied scorpion species. Transferases and lyases are reported for the first time. Novel enzymes, which can play different roles in the venom, including direct toxicity, as venom spreading factors, activators of venom components, venom preservatives, or in prey pre-digestion, were described and annotated. The expression profile for transcripts coding for venom enzymes was analyzed, and shown to be similar among the studied species, while being significantly different from their expression pattern outside the telson.
Collapse
|
6
|
Rezaei A, Asgari S, Komijani S, Sadat SN, Sabatier JM, Nasrabadi D, Pooshang Bagheri K, Shahbazzadeh D, Akbari Eidgahi MR, De Waard M, Mirzahoseini H. Discovery of Leptulipin, a New Anticancer Protein from theIranian Scorpion, Hemiscorpius lepturus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072056. [PMID: 35408455 PMCID: PMC9000277 DOI: 10.3390/molecules27072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
Abstract
Cancer is one of the leading causes of mortality in the world. Unfortunately, the present anticancer chemotherapeutics display high cytotoxicity. Accordingly, the discovery of new anticancer agents with lower side effects is highly necessitated. This study aimed to discover an anticancer compound from Hemiscorpius lepturus scorpion venom. Bioactivity-guided chromatography was performed to isolate an active compound against colon and breast cancer cell lines. 2D electrophoresis and MALDI-TOF were performed to identify the molecule. A partial protein sequence was obtained by mass spectrometry, while the full-length was deciphered using a cDNA library of the venom gland by bioinformatics analyses and was designated as leptulipin. The gene was cloned in pET-26b, expressed, and purified. The anticancer effect and mechanism action of leptulipin were evaluated by MTT, apoptosis, and cell cycle assays, as well as by gene expression analysis of apoptosis-related genes. The treated cells displayed inhibition of cell proliferation, altered morphology, DNA fragmentation, and cell cycle arrest. Furthermore, the treated cells showed a decrease in BCL-2 expression and an increase in Bax and Caspase 9 genes. In this study, we discovered a new anticancer protein from H. lepturus scorpion venom. Leptulipin showed significant anticancer activity against breast and colon cancer cell lines.
Collapse
Affiliation(s)
- Ali Rezaei
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Saeme Asgari
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 5157944533, Iran;
| | - Samira Komijani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Seyedeh Narjes Sadat
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D’Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Mohammad Reza Akbari Eidgahi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Michel De Waard
- L’Institut du Thorax, INSERM, CNRS, University of Nantes, 44000 Nantes, France
- LabEx “Ion Channels, Science & Therapeutics”, 65560 Valbonne, France
- Smartox Biotechnology, 6 Rue Des Platanes, 38120 Saint-Egrève, France
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Hasan Mirzahoseini
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| |
Collapse
|
7
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Rungsa P, Peigneur S, Jangpromma N, Klaynongsruang S, Tytgat J, Daduang S. In Silico and In Vitro Structure-Activity Relationship of Mastoparan and Its Analogs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020561. [PMID: 35056876 PMCID: PMC8779355 DOI: 10.3390/molecules27020561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), O&N 2, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium;
- Correspondence: (J.T.); (S.D.)
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand; (P.R.); (N.J.); (S.K.)
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: (J.T.); (S.D.)
| |
Collapse
|
9
|
Das B, Saviola AJ, Mukherjee AK. Biochemical and Proteomic Characterization, and Pharmacological Insights of Indian Red Scorpion Venom Toxins. Front Pharmacol 2021; 12:710680. [PMID: 34650430 PMCID: PMC8505525 DOI: 10.3389/fphar.2021.710680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The Indian red scorpion (Mesobuthus tamulus) is one of the world's deadliest scorpions, with stings representing a life-threatening medical emergency. This species is distributed throughout the Indian sub-continent, including eastern Pakistan, eastern Nepal, and Sri Lanka. In India, Indian red scorpions are broadly distributed in western Maharashtra, Saurashtra, Kerala, Andhra Pradesh, Tamil Nadu, and Karnataka; however, fatal envenomations have been recorded primarily in the Konkan region of Maharashtra. The Indian red scorpion venom proteome comprises 110 proteins belonging to 13 venom protein families. The significant pharmacological activity is predominantly caused by the low molecular mass non-enzymatic Na+ and K+ ion channel toxins. Other minor toxins comprise 15.6% of the total venom proteome. Indian red scorpion stings induce the release of catecholamine, which leads to pathophysiological abnormalities in the victim. A strong correlation has been observed between venom proteome composition and local (swelling, redness, heat, and regional lymph node involvement) and systemic (tachycardia, mydriasis, hyperglycemia, hypertension, toxic myocarditis, cardiac failure, and pulmonary edema) manifestations. Immediate administration of antivenom is the preferred treatment for Indian red scorpion stings. However, scorpion-specific antivenoms have exhibited poor immunorecognition and neutralization of the low molecular mass toxins. The proteomic analysis also suggests that Indian red scorpion venom is a rich source of pharmacologically active molecules that may be envisaged as drug prototypes. The following review summarizes the progress made towards understanding the venom proteome of the Indian red scorpion and addresses the current understanding of the pathophysiology associated with its sting.
Collapse
Affiliation(s)
- Bhabana Das
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, India
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashis K. Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, India
- Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
10
|
Krayem N, Gargouri Y. Scorpion venom phospholipases A2: A minireview. Toxicon 2020; 184:48-54. [DOI: 10.1016/j.toxicon.2020.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023]
|
11
|
Abreu CB, Bordon KCF, Cerni FA, Oliveira IS, Balenzuela C, Alexandre-Silva GM, Zoccal KF, Reis MB, Wiezel GA, Peigneur S, Pinheiro-Júnior EL, Tytgat J, Cunha TM, Quinton L, Faccioli LH, Arantes EC, Zottich U, Pucca MB. Pioneering Study on Rhopalurus crassicauda Scorpion Venom: Isolation and Characterization of the Major Toxin and Hyaluronidase. Front Immunol 2020; 11:2011. [PMID: 32973807 PMCID: PMC7468477 DOI: 10.3389/fimmu.2020.02011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Scorpionism is responsible for most accidents involving venomous animals in Brazil, which leads to severe symptoms that can evolve to death. Scorpion venoms consist of complexes cocktails, including peptides, proteins, and non-protein compounds, making separation and purification procedures extremely difficult and time-consuming. Scorpion toxins target different biological systems and can be used in basic science, for clinical, and biotechnological applications. This study is the first to explore the venom content of the unexplored scorpion species Rhopalurus crassicauda, which inhabits exclusively the northernmost state of Brazil, named Roraima, and southern region of Guyana. Here, we pioneer the fractionation of the R. crassicauda venom and isolated and characterized a novel scorpion beta-neurotoxin, designated Rc1, and a monomeric hyaluronidase. R. crassicauda venom and Rc1 (6,882 Da) demonstrated pro-inflammatory activities in vitro and a nociceptive response in vivo. Moreover, Rc1 toxin showed specificity for activating Nav1.4, Nav1.6, and BgNav1 voltage-gated ion channels. This study also represents a new perspective for the treatment of envenomings in Roraima, since the Brazilian scorpion and arachnid antivenoms were not able to recognize R. crassicauda venom and its fractions (with exception of hyaluronidase). Our work provides useful insights for the first understanding of the painful sting and pro-inflammatory effects associated with R. crassicauda envenomings.
Collapse
Affiliation(s)
- Caio B Abreu
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Felipe A Cerni
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carla Balenzuela
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | | | | | - Mouzarllem B Reis
- Barão de Mauá University Center, Ribeirão Preto, Brazil.,Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Tiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Loic Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Liège Université, Liège, Belgium
| | - Lúcia H Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Umberto Zottich
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| |
Collapse
|
12
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
13
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
14
|
Rungsa P, Janpan P, Saengkun Y, Jangpromma N, Klaynongsruang S, Patramanon R, Uawonggul N, Daduang J, Daduang S. Heterologous expression and mutagenesis of recombinant Vespa affinis hyaluronidase protein (rVesA2). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190030. [PMID: 31839801 PMCID: PMC6892566 DOI: 10.1590/1678-9199-jvatitd-2019-0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background Crude venom of the banded tiger waspVespa affinis contains a variety of enzymes including hyaluronidases, commonly known as spreading factors. Methods The cDNA cloning, sequence analysis and structural modelling of V. affinis venom hyaluronidase (VesA2) were herein described. Moreover, heterologous expression and mutagenesis of rVesA2 were performed. Results V. affinis venom hyaluronidase full sequence is composed of 331 amino acids, with four predicted N-glycosylation sites. It was classified into the glycoside hydrolase family 56. The homology modelling exhibited a central core (α/β)7 composed of Asp107 and Glu109, acting as the catalytic residues. The recombinant protein was successfully expressed in E. coli with hyaluronidase activity. A recombinant mutant type with the double point mutation, Asp107Asn and Glu109Gln, completely lost this activity. The hyaluronidase from crude venom exhibited activity from pH 2 to 7. The recombinant wild type showed its maximal activity at pH 2 but decreased rapidly to nearly zero at pH 3 and was completely lost at pH 4. Conclusion The recombinant wild-type protein showed its maximal activity at pH 2, more acidic pH than that found in the crude venom. The glycosylation was predicted to be responsible for the pH optimum and thermal stability of the enzymes activity.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piyapon Janpan
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yutthakan Saengkun
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunthawun Uawonggul
- Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
15
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
16
|
Anti-tumoral effect of scorpion peptides: Emerging new cellular targets and signaling pathways. Cell Calcium 2019; 80:160-174. [DOI: 10.1016/j.ceca.2019.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
17
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
18
|
Tobassum S, Tahir HM, Arshad M, Zahid MT, Ali S, Ahsan MM. Nature and applications of scorpion venom: an overview. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1530681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Saadia Tobassum
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Muhammad Arshad
- Department of Zoology, University of Education Lower Mall Campus, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
19
|
Somay Doğan T, Iğci N, Biber A, Gerekçi S, Hüsnügil HH, Izbirak A, Özen C. Peptidomic characterization and bioactivity of Protoiurus kraepelini (Scorpiones: Iuridae) venom. Turk J Biol 2018; 42:490-497. [PMID: 30983865 PMCID: PMC6451847 DOI: 10.3906/biy-1804-35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protoiurus kraepelini is a scorpion species found in parts of Turkey and Greece. In this study, the peptide profile of its venom was determined for the first time. The electrophoretic profile of the crude venom showed a protein distribution from 2 to 130 kDa. MALDI-TOF MS analysis of the venom peptide fraction yielded 27 peptides between 1059 and 4623 Da in mass. Several ion channelblocking and antimicrobial peptides were identified by peptide mass fingerprinting analysis. Cytotoxic and antimicrobial effects of the venom were also demonstrated on Jurkat cells and Escherichia coli, respectively. As the first peptidomic characterization study on P. kraepelini venom, this report lays the foundation for detailed future studies that may lead to the discovery of novel bioactive peptides.
Collapse
Affiliation(s)
- Tuğba Somay Doğan
- Central Laboratory, Middle East Technical University , Ankara , Turkey.,Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Naşit Iğci
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University , Nevşehir , Turkey.,Science and Technology Research and Application Center, Nevşehir Hacı Bektaş Veli University , Nevşehir , Turkey
| | - Ayşenur Biber
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Selin Gerekçi
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Hepşen Hazal Hüsnügil
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Afife Izbirak
- Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Can Özen
- Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey.,Central Laboratory, Middle East Technical University , Ankara , Turkey.,Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| |
Collapse
|
20
|
Native and recombinant phospholipases A2 of Scorpio maurus venom glands impair angiogenesis by targeting integrins α5β1 and αvβ3. Int J Biol Macromol 2018; 116:305-315. [DOI: 10.1016/j.ijbiomac.2018.04.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
|
21
|
Rungsa P, Peigneur S, Daduang S, Tytgat J. Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon 2018; 148:74-84. [DOI: 10.1016/j.toxicon.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
|
22
|
Santibáñez-López CE, Ontano AZ, Harvey MS, Sharma PP. Transcriptomic Analysis of Pseudoscorpion Venom Reveals a Unique Cocktail Dominated by Enzymes and Protease Inhibitors. Toxins (Basel) 2018; 10:E207. [PMID: 29783636 PMCID: PMC5983263 DOI: 10.3390/toxins10050207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
Transcriptomic and genomic analyses have illuminated the diversity of venoms in three of the four venomous arachnid orders (scorpions, spiders, and ticks). To date, no venom gland transcriptome analysis has been available for pseudoscorpions, the fourth venomous arachnid lineage. To redress this gap, we sequenced an mRNA library generated from the venom glands of the species Synsphyronus apimelus (Garypidae). High-throughput sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 238,331 transcripts. From those, we annotated 131 transcripts, which code for putative peptides/proteins with similar sequences to previously reported venom components available from different arachnid species in protein databases. Transcripts putatively coding for enzymes showed the richest diversity, followed by other venom components such as peptidase inhibitors, cysteine-rich peptides, and thyroglobulin 1-like peptides. Only 11 transcripts were found that code for putatively low molecular mass spider toxins. This study constitutes the first report of the diversity of components within pseudoscorpion venom.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México C.P. 04510, Mexico.
| | - Andrew Z Ontano
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Mark S Harvey
- Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Krayem N, Abdelkefi-Koubaa Z, Gargouri Y, Luis J. Integrin-mediated human glioblastoma cells adhesion, migration and invasion by native and recombinant phospholipases of Scorpio maurus venom glands. Arch Biochem Biophys 2018; 645:19-25. [DOI: 10.1016/j.abb.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
|
24
|
Krayem N, Parsiegla G, Gaussier H, Louati H, Jallouli R, Mansuelle P, Carrière F, Gargouri Y. Functional characterization and FTIR-based 3D modeling of full length and truncated forms of Scorpio maurus venom phospholipase A 2. Biochim Biophys Acta Gen Subj 2018; 1862:1247-1261. [DOI: 10.1016/j.bbagen.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 11/24/2022]
|
25
|
Alekseeva A, Tretiakova D, Chernikov V, Utkin Y, Molotkovsky J, Vodovozova E, Boldyrev I. Heterodimeric V. nikolskii phospholipases A2 induce aggregation of the lipid bilayer. Toxicon 2017; 133:169-179. [PMID: 28528175 DOI: 10.1016/j.toxicon.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
26
|
The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125:123-130. [DOI: 10.1016/j.toxicon.2016.11.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
|
27
|
Jridi I, Catacchio I, Majdoub H, Shahbazzadeh D, El Ayeb M, Frassanito MA, Solimando AG, Ribatti D, Vacca A, Borchani L. The small subunit of Hemilipin2, a new heterodimeric phospholipase A2 from Hemiscorpius lepturus scorpion venom, mediates the antiangiogenic effect of the whole protein. Toxicon 2016; 126:38-46. [PMID: 27940138 DOI: 10.1016/j.toxicon.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/24/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
In a previous study, we reported the identification of Hemilipin, the first secreted heterodimeric phospholipase A2 (sPLA2) from Hemiscorpius lepturus scorpion venom and demonstrated its effective inhibition of all angiogenesis key steps in vitro and in vivo. Here, we aimed to characterize a second sPLA2, Hemilipin2, from the same venom and to elucidate its antiangiogenic effect. The protein was purified by chromatography separation and analyzed by MALDI/TOF mass spectrometry. Its N terminal amino acid sequence was determined by Edman degradation method and the enzymatic activity by fatty acids release assay. Hemilipin2 antiangiogenic activity was investigated by studying its effect in vitro on adhesion, migration and capillary like tube formation of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Pulmonary Artery Endothelial Cells (HPAECs); and in vivo on the chick embryo chorioallantoic membrane (CAM) assay. Data to be presented show that Hemilipin2 is heterodimeric composed by two subunits: the large one has a molecular weight of 12,866 and the small one of 2461 a.m.u. It has a strong calcium-dependent PLA2 activity and impacts angiogenesis in vitro and in vivo without showing any cytotoxic or apoptotic signs. Its chemical modification with p-Bromophenacyl Bromide abolishes the enzymatic activity without affecting the antiangiogenic effect. Furthermore, it has been proved that Hemilipin2 small subunit was able to inhibit blood vessel formation both in vitro and in vivo. These findings may serve as a starting point for the designing of a new generation of specific inhibitor of human angiogenesis at different steps.
Collapse
Affiliation(s)
- Imen Jridi
- Carthage University, Sciences Faculty of Bizerte, Jarzouna 7021, Bizerte, Tunisia; Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia
| | - Ivana Catacchio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, "Aldo Moro" Piazza Giulio Cesare11, I-70124, Bari, Italy
| | - Hafed Majdoub
- USCR Protein Sequencer, Faculty of Sciences de Sfax, Route de la Soukra km 4, B.P 802, Sfax 3038, Tunisia
| | - Delavar Shahbazzadeh
- Pasteur Institute of Iran, Biotechnology Research Center, Medical Biotechnology Department, Venomics Lab, P.O.Box 131649, Tehran 43551, Iran
| | - Mohamed El Ayeb
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of Clinical Pathology, University of Bari Medical School "Aldo Moro", Piazza Giulio Cesare11, I-70124, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, "Aldo Moro" Piazza Giulio Cesare11, I-70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs Section of Human Anatomy and Histology, University of Bari Medical School "Aldo Moro", National Cancer Institute "Giovanni Paolo II", I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, "Aldo Moro" Piazza Giulio Cesare11, I-70124, Bari, Italy
| | - Lamia Borchani
- Université de Tunis El Manar, Institut Pasteur de Tunis, Laboratoire des Venins et Biomolécules Thérapeutiques LR11IPT08, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia.
| |
Collapse
|
28
|
Rungsa P, Incamnoi P, Sukprasert S, Uawonggul N, Klaynongsruang S, Daduang J, Patramanon R, Roytrakul S, Daduang S. Cloning, structural modelling and characterization of VesT2s, a wasp venom hyaluronidase (HAase) from Vespa tropica. J Venom Anim Toxins Incl Trop Dis 2016; 22:28. [PMID: 27790249 PMCID: PMC5075168 DOI: 10.1186/s40409-016-0084-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Wasp venom is a complex mixture containing proteins, enzymes and small molecules, including some of the most dangerous allergens. The greater banded wasp (Vespa tropica) is well-known for its lethal venom, whose one of the major components is a hyaluronidase (HAase). It is believed that the high protein proportion and activity of this enzyme is responsible for the venom potency. Methods In the present study, cDNA cloning, sequencing and 3D-structure of Vespa tropica venom HAase were described. Anti-native HAase antibody was used for neutralization assay. Results Two isoforms, VesT2a and VesT2b, were classified as members of the glycosidase hydrolase 56 family with high similarity (42–97 %) to the allergen venom HAase. VesT2a gene contained 1486 nucleotide residues encoding 357 amino acids whereas the VesT2b isoform consisted of 1411 residues encoding 356 amino acids. The mature VesT2a and VesT2b are similar in mass and pI after prediction. They are 39119.73 Da/pI 8.91 and 39571.5 Da/pI 9.38, respectively. Two catalytic residues in VesT2a, Asp107 and Glu109 were substituted in VesT2b by Asn, thus impeding enzymatic activity. The 3D-structure of the VesT2s isoform consisted of a central core (α/β)7 barrel and two disulfide bridges. The five putative glycosylation sites (Asn79, Asn99, Asn127, Asn187 and Asn325) of VesT2a and the three glycosylation sites (Asn1, Asn66 and Asn81) in VesT2b were predicted. An allergenic property significantly depends on the number of putative N-glycosylation sites. The anti-native HAase serum specifically recognized to venom HAase was able to neutralize toxicity of V. tropica venom. The ratio of venom antiserum was 1:12. Conclusions The wasp venom allergy is known to cause life-threatening and fatal IgE-mediated anaphylactic reactions in allergic individuals. Structural analysis was a helpful tool for prediction of allergenic properties including their cross reactivity among the vespid HAase.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Paroonkorn Incamnoi
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen, Thailand
| | - Sophida Sukprasert
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Nunthawun Uawonggul
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 Thailand ; Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
29
|
Zhang XY, Zhang PY. Scorpion venoms in gastric cancer. Oncol Lett 2016; 12:3683-3686. [PMID: 27900054 PMCID: PMC5104148 DOI: 10.3892/ol.2016.5134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/01/2016] [Indexed: 01/05/2023] Open
Abstract
Venom secretions from snakes, scorpions, spiders and bees, have been widely applied in traditional medicine and current biopharmaceutical research. Possession of anticancer potential is another novel discovery for animal venoms and toxins. An increasing number of studies have shown the anticancer effects of venoms and toxins of snakes, and scorpions in vitro and in vivo, which were achieved mainly through the inhibition of cancer growth, arrest of cell cycle, induction of apoptosis and suppression of cancer metastasis. However, more evidence is needed to support this concept and the mechanisms of anticancer actions are not clearly understood. The present review is focused on the recant updates on anticancer venom research.
Collapse
Affiliation(s)
- Xiao-Ying Zhang
- Nanjing University of Chinese Medicine, Information Institute, Nanjing, Jiangsu 221009, P.R. China
| | - Pei-Ying Zhang
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
30
|
Rungsa P, Incamnoi P, Sukprasert S, Uawonggul N, Klaynongsruang S, Daduang J, Patramanon R, Roytrakul S, Daduang S. Comparative proteomic analysis of two wasps venom, Vespa tropica and Vespa affinis. Toxicon 2016; 119:159-67. [PMID: 27288895 DOI: 10.1016/j.toxicon.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Vespid venom is composed of many bioactive compounds. The venom of the banded tiger wasp (Vespa affinis, or VA) and the great banded wasp (Vespa tropica, or VT)-which are locally found in the northeastern part of Thailand and are well known for their life-threatening venom potency-were comparatively studied in terms of potency, composition and biological activity. Clinical studies that included word-of-mouth information shared by traditional healers in local areas noted that the venom of VT is more potent than that of VA. Our previous study showed that the venom of VA is lower in potency (PD50 = 12.5 μg/g body weight) than that of VT (PD50 = 3 μg/g body weight). Analysis with the PAGE technique showed that these two venoms showed similar patterns of active proteins. Most protein spots were basic proteins at an isoelectric point (pI) ranging from 5 to 10, with molecular weights between 27 and 50 kDa. These spots were identified as hyaluronidase, phospholipase, antigen 5, dipeptidyl peptidase and albumin-like protein. The proportion of hyaluronidase was 2.5 times higher in VT than in VA. VT also showed higher hyaluronidase, phospholipase and dipeptidyl peptidase activities, suggesting that these components made VT venom more potent than VA venom.
Collapse
Affiliation(s)
- Prapenpuksiri Rungsa
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Paroonkorn Incamnoi
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Sophida Sukprasert
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| | - Nunthawun Uawonggul
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
31
|
Jridi I, Catacchio I, Majdoub H, Shahbazeddah D, El Ayeb M, Frassanito MA, Ribatti D, Vacca A, Borchani L. Hemilipin, a novel Hemiscorpius lepturus venom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo. Toxicon 2015; 105:34-44. [PMID: 26335363 DOI: 10.1016/j.toxicon.2015.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
Phospholipases A2 (PLA2) are enzymes which specifically hydrolyze the sn-2 acyl ester bond of phospholipids producing free fatty acids and lysophospholipids. The secreted PLA2 (sPLA2) are the most common types of PLA2 purified from the snake venom, mammalian pancreatic juice and other sources. They display a variety of toxic actions and biological activities, including antitumoral and antiangiogenic effects. In this study, we report the isolation, characterization and the antiangiogenic activity of Hemilipin, a novel sPLA2 extracted from Hemiscorpius lepturus venom, the most dangerous scorpion in Iran. Hemilipin was purified by HPLC and analyzed by MALDI TOF/MS. The primary structure was determined by EDMAN degradation method and the PLA2 activity by titration of fatty acids released from the egg yolk phospholipids. Its antiangiogenic activity was studied in vitro by evaluating effects on apoptosis, Matrigel angiogenesis, migration and adhesion of human umbilical vein endothelial cells (HUVECs) and human pulmonary artery endothelial cells (HPAECs) and in vivo by the chorioallantoic membrane (CAM) assay. Mass spectrometry profile showed that Hemilipin is heterodimeric and the PLA2 test demonstrated its strong hydrolytic activity. N-terminal aminoacid sequence highlighted a significant homology of Hemilipin's small and large subunits with other sPLA2 group III. Hemilipin had no effect on apoptosis, but strongly impacted angiogenesis both in vitro and in vivo. Our results demonstrate that this novel non toxic sPLA2 could be a new tool to disrupt at different steps human angiogenesis.
Collapse
Affiliation(s)
- Imen Jridi
- Carthage University, Sciences Faculty of Bizerte, 7021 Jarzouna, Bizerte, Tunisia; Laboratory of Venom and Therapeutic Biomolecules, Pasteur Institute of Tunis, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia
| | - Ivana Catacchio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124, Bari, Italy
| | - Hafed Majdoub
- USCR Protein Sequencer, Faculty of Sciences, Sfax, Tunisia
| | - Delavar Shahbazeddah
- Biotechnology Research Center, Medical Biotechnology Department, Venomics Lab, P.O.Box 13164943551 Tehran, Iran
| | - Mohamed El Ayeb
- Laboratory of Venom and Therapeutic Biomolecules, Pasteur Institute of Tunis, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of Clinical Pathology, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs Section of Human Anatomy and Histology, University of Bari Medical School, National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, I-70124, Bari, Italy
| | - Lamia Borchani
- Laboratory of Venom and Therapeutic Biomolecules, Pasteur Institute of Tunis, 13 Place Pasteur, BP 74, Tunis, 1002, Tunisia.
| |
Collapse
|
32
|
The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon 2015; 95:52-61. [DOI: 10.1016/j.toxicon.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/23/2022]
|
33
|
Arzamasov AA, Vassilevski AA, Grishin EV. Chlorotoxin and related peptides: Short insect toxins from scorpion venom. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 40:387-98. [DOI: 10.1134/s1068162014040013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Uawonggul N, Sukprasert S, Incamnoi P, Patramanon R, Thammasirirak S, Preecharram S, Bunyatratchata W, Kuaprasert B, Daduang J, Daduang S. Bacterial overexpression of recombinant heteroscorpine-1 (rHS-1), a toxin from Heterometrus laoticus scorpion venom: trends for antibacterial application and antivenom production. Biochem Genet 2014; 52:459-73. [PMID: 24980735 DOI: 10.1007/s10528-014-9660-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Abstract
Heteroscorpine-1 (HS-1) was identified as a member of the scorpine family. HS-1 shows insecticidal activities, exhibiting a low median lethal dose (LD50) in mealworm (Tenebrio molitor L.) and inhibitory activities against Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In this study, a recombinant HS-1 (rHS-1) was produced by overexpression in E. coli. A large yield of product was obtained. The structure of purified rHS-1 was confirmed through mass spectrometry. Both anti-crude venom and anti-rHS-1 antibodies specifically recognized rHS-1, suggesting its structural similarity. Reactivated rHS-1 caused roughening and blebbing of bacterial cell surfaces. It showed higher activity than that of pre-refolded protein. Antisera raised against a partially purified and mis- or unfolded peptide can inhibit relevant bioactivity.
Collapse
Affiliation(s)
- Nunthawun Uawonggul
- Department of Biochemistry, Faculty of Science, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Louati H, Krayem N, Fendri A, Aissa I, Sellami M, Bezzine S, Gargouri Y. A thermoactive secreted phospholipase A2 purified from the venom glands of Scorpio maurus: Relation between the kinetic properties and the hemolytic activity. Toxicon 2013; 72:133-42. [DOI: 10.1016/j.toxicon.2013.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
36
|
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797. [PMID: 23843786 PMCID: PMC3697785 DOI: 10.1155/2013/958797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Several peptides contained in scorpion fluids showed diverse array of biological activities with high specificities to their targeted sites. Many investigations outlined their potent effects against microbes and showed their potential to modulate various biological mechanisms that are involved in immune, nervous, cardiovascular, and neoplastic diseases. Because of their important structural and functional diversity, it is projected that scorpion-derived peptides could be used to develop new specific drugs. This review summarizes relevant findings improving their use as valuable tools for new drugs development.
Collapse
Affiliation(s)
- BenNasr Hmed
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Hammami Turky Serria
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Zeghal Khaled Mounir
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|