1
|
Fernandez-Sánchez F, Flores-Ávila J, García HS, Mixcoha E, Balleza D. Molecular dynamics study of the helix-to-disorder transition in short antimicrobial peptides from Urodacus yaschenkoi. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025:10.1007/s00249-025-01740-4. [PMID: 40137971 DOI: 10.1007/s00249-025-01740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 01/14/2025] [Indexed: 03/29/2025]
Abstract
The bioactivity of the short antimicrobial peptides (ssAMPs) UyCT1, CT2, CT3, CT5, Uy17, Uy192, and Uy234 from the scorpion Urodacus yaschenkoi has been well-characterized. The antagonistic effect reported in those studies on some clinical isolates of pathogenic bacteria, including Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli was studied with an in silico approach to contrast their bioactivity in molecular terms. The peptides were modeled by generating high-quality structures with AlphaFold2, properly validated, and subjected to dynamic simulations in aqueous systems with the Gromos 43a1 and Charmm 36 force fields. Our analysis indicates that the degree of helicity of these peptides is closely linked to their composition and several physicochemical factors such as the hydrophobicity index, electrostatic potential, intrinsic flexibility, and dipole moment. We also found interesting parallels between the degree of order mentioned and the potency of each peptide with previously studied bacterial strains, specifically S. aureus. We analyzed in more detail of two specific peptides, UyCT1 and UyCT2, whose sequences are almost identical, except for the presence of a G-cap in the former. This subtle difference has a decisive impact on the conformational dynamics of these peptides, making the UyCT2 peptide more prone to disorder and the UyCT1 peptide more stable through the formation of multiple H-bonds. This analysis, based on an exhaustive characterization of the physicochemical properties of these ssAMPs, together with the determination of their conformational dynamics and the correlation with experimental data, could be the basis for the design and optimization of new drugs based on natural peptides found in scorpion venoms.
Collapse
Affiliation(s)
- Flora Fernandez-Sánchez
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Jenny Flores-Ávila
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Hugo S García
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Edgar Mixcoha
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
| | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico.
| |
Collapse
|
2
|
Xin K, Sun R, Xiao W, Lu W, Sun C, Lou J, Xu Y, Chen T, Wu D, Gao Y. Short Peptides from Asian Scorpions: Bioactive Molecules with Promising Therapeutic Potential. Toxins (Basel) 2025; 17:114. [PMID: 40137887 PMCID: PMC11946205 DOI: 10.3390/toxins17030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Scorpion venom peptides, particularly those derived from Asian species, have garnered significant attention, offering therapeutic potential in pain management, cancer, anticoagulation, and infectious diseases. This review provides a comprehensive analysis of scorpion venom peptides, focusing on their roles as voltage-gated sodium (Nav), potassium (Kv), and calcium (Cav) channel modulators. It analyzed Nav1.7 inhibition for analgesia, Kv1.3 blockade for anticancer activity, and membrane disruption for antimicrobial effects. While the low targeting specificity and high toxicity of some scorpion venom peptides pose challenges to their clinical application, recent research has made strides in overcoming these limitations. This review summarizes the latest progress in scorpion venom peptide research, discussing their mechanisms of action, therapeutic potential, and challenges in clinical translation. This work aims to provide new insights and directions for the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Kaiyun Xin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Ruize Sun
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Wanyang Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Weijie Lu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Chenhui Sun
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| | - Jietao Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yanyan Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK; (R.S.); (T.C.)
| | - Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (Y.X.)
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine, Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (K.X.); (W.X.); (W.L.); (C.S.)
| |
Collapse
|
3
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Shukri A, Carroll AC, Collins R, Charih F, Wong A, Biggar KK. Systematic in vitro optimization of antimicrobial peptides against Escherichia coli. JAC Antimicrob Resist 2024; 6:dlae096. [PMID: 38966332 PMCID: PMC11220656 DOI: 10.1093/jacamr/dlae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 07/06/2024] Open
Abstract
Objectives Antimicrobial resistance is a growing concern and claims over 1 million lives per year. The discovery of new antimicrobial drugs is expensive and often generates low profitability, with very low success rates. One way to combat this is by the improvement of known antimicrobials, such as antimicrobial peptides (AMPs). The aim of this study was to improve the antimicrobial activities of two known AMPs, UyCT3 and indolicidin, with the use of peptide libraries and growth curves. Methods Peptide permutation libraries were synthesized for two AMPs, indolicidin and UyCT3, which included 520 peptides. These peptides were subsequently tested against MG1655-K12, to which subsequent peptide design was performed, then tested against three clinically Gram-negative relevant drug-resistant isolates. Best-performing candidates were subjected to a haemolysis assay for toxicity validation. Results Single amino acid permutations of UyCT3 and indolicidin were sufficient to inhibit growth of MG1655-K12, and subsequent generations of peptide design were able to inhibit growth of clinical isolates at concentrations as low as 5 µM. Our best-performing AMP, UyCT3I5A, W6Y, K10I, F13I, was not seen to be toxic towards sheep RBCs. Conclusions The efficacy of the AMPs improved with the use of our peptide library technology, whereby an AMP was found that inhibited bacterial growth of clinical Gram-negative isolates 4-fold better than its WT counterpart.
Collapse
Affiliation(s)
- Ali Shukri
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Amanda C Carroll
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Ryan Collins
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Francois Charih
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Alex Wong
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
5
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
6
|
Hua X, Yao J, Liu X, Liu Q, Deng Y, Li S, Valdivia CR, Wang F, Pozzolini M, Shou Z, Valdivia HH, Xiao L. Comparison of the structure-function of five newly members of the calcin family. Int J Biol Macromol 2024; 260:129424. [PMID: 38219929 DOI: 10.1016/j.ijbiomac.2024.129424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.
Collapse
Affiliation(s)
- Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinchi Yao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, the First Affiliated Hospital of the Navy Medical University, Shanghai, 200433, China
| | - Qing Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, Taigu 030801, China
| | - Yuchen Deng
- Department of Dermatology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Zhaoyong Shou
- Faculty of Health Service, Nacal Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
7
|
Bioactive peptides from scorpion venoms: therapeutic scaffolds and pharmacological tools. Chin J Nat Med 2023; 21:19-35. [PMID: 36641229 DOI: 10.1016/s1875-5364(23)60382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 01/14/2023]
Abstract
Evolution and natural selection have endowed animal venoms, including scorpion venoms, with a wide range of pharmacological properties. Consequently, scorpions, their venoms, and/or their body parts have been used since time immemorial in traditional medicines, especially in Africa and Asia. With respect to their pharmacological potential, bioactive peptides from scorpion venoms have become an important source of scientific research. With the rapid increase in the characterization of various components from scorpion venoms, a large number of peptides are identified with an aim of combating a myriad of emerging global health problems. Moreover, some scorpion venom-derived peptides have been established as potential scaffolds helpful for drug development. In this review, we summarize the promising scorpion venoms-derived peptides as drug candidates. Accordingly, we highlight the data and knowledge needed for continuous characterization and development of additional natural peptides from scorpion venoms, as potential drugs that can treat related diseases.
Collapse
|
8
|
de Melo-Braga MN, Moreira RDS, Gervásio JHDB, Felicori LF. Overview of protein posttranslational modifications in Arthropoda venoms. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210047. [PMID: 35519418 PMCID: PMC9036706 DOI: 10.1590/1678-9199-jvatitd-2021-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study "PTM-functional-venomics", herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.
Collapse
Affiliation(s)
- Marcella Nunes de Melo-Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raniele da Silva Moreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - João Henrique Diniz Brandão Gervásio
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Pérez-Delgado O, Rincon-Cortés CA, Vega-Castro NA, Reyes-Montaño EA, Gómez-Garzón M. Purificación parcial de péptidos del veneno de escorpión Hadruroides charcasus (Karsch, 1879) con actividad antimicrobiana. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los venenos de muchas especies de escorpiones son fuentes ricas en componentes biológicamente activos, como los péptidos antimicrobianos, biomoléculas que aún no han sido estudiados del veneno de Hadruroides charcasus. El objetivo de este artículo es evaluar la actividad antimicrobiana de los péptidos parcialmente purificados del veneno del escorpión Hadruroides. asus. A partir de 15,46 mg de proteína total del veneno del escorpión H. charcasus se purificaron parcialmente sus péptidos por medio de cromatografía de filtración en gel empleando sephadex G-75, consecutivo a una cromatografía de intercambio iónico en CM-Sephadex C-25. El peso molecular estimado de los péptidos se determinó mediante electroforesis PAGE-SDS-Tris-Tricina al 15% y la evaluación de la actividad antibacteriana y antifúngica se empleó el método de microdilución y Kirby-Bauer con cepas de Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 y Candida albicans ATCC 10231. En la cromatografía de filtración en gel se obtuvieron 5 fracciones, de lo cual, la fracción IV presentó una concentración mínima inhibitoria de 3,6 mg/mL en S. aureus ATCC 29213 y en C. albicans ATCC 10231. De la cromatografía de intercambio se obtuvieron 7 fracciones, destacando la fracción OPDIV-5 con péptidos de 4 kDa; 5 kDa; 5,5 kDa y 6,4 kDa que presentó actividad antimicrobiana frente S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, C. albicans ATCC 10231.El veneno del escorpión H. charcasus presenta péptidos de naturaleza catiónica con actividad antibacteriana y antifúngica, según su actividad en las cepas evaluadas.
Collapse
|
10
|
Jiménez-Vargas JM, Ramírez-Carreto S, Corzo G, Possani LD, Becerril B, Ortiz E. Structural and functional characterization of NDBP-4 family antimicrobial peptides from the scorpion Mesomexovis variegatus. Peptides 2021; 141:170553. [PMID: 33862164 DOI: 10.1016/j.peptides.2021.170553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Six peptides, belonging to the NDBP-4 family of scorpion antimicrobial peptides were structurally and functionally characterized. The sequence of the mature peptides VpCT1, VpCT2, VpCT3 and VpCT4 was inferred by transcriptomic analysis of the venom gland of the scorpion Mesomexovis variegatus. Analysis of their amino acid sequences revealed patterns that are also present in previously reported peptides that show differences in their hemolytic and antimicrobial activities in vitro. Two other variants, VpCT3W and VpCTConsensus were designed to evaluate the effect of sequence changes of interest on their structure and activity. The synthesized peptides were evaluated by circular dichroism to confirm their α-helical conformation in a folding promoting medium. The peptides were assayed on two Gram-positive and three Gram-negative bacterial strains, and on two yeast strains. They preferentially inhibited the growth of Staphylococcus aureus, were mostly ineffective on Pseudomonas aeruginosa, and moderately inhibited the growth of Candida yeasts. All six peptides exhibited hemolytic activity on human erythrocytes in the range of 4.8-83.7 μM. VpCT3W displayed increased hemolytic and anti-yeast activities, but showed no change in antibacterial activity, relative to its parental peptide, suggesting that Trp6 may potentiate the interaction of VpCT3 with eukaryotic cell membranes. VpCTConsensus showed broader and enhanced antimicrobial activity relative to several of the natural peptides. The results presented here contribute new information on the structure and function of NDBP-4 antimicrobial peptides and provides clues for the design of less hemolytic and more effective antimicrobial peptides.
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), CDMX, Mexico
| | - Santos Ramírez-Carreto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Baltazar Becerril
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Ernesto Ortiz
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
11
|
Daoudi K, Malosse C, Lafnoune A, Darkaoui B, Chakir S, Sabatier JM, Chamot-Rooke J, Cadi R, Oukkache N. Mass spectrometry-based top-down and bottom-up approaches for proteomic analysis of the Moroccan Buthus occitanus scorpion venom. FEBS Open Bio 2021; 11:1867-1892. [PMID: 33715301 PMCID: PMC8255848 DOI: 10.1002/2211-5463.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Buthus occitanus (B. occitanus) is one of the most dangerous scorpions in the world. Despite the involvement of B. occitanus scorpion in severe cases of envenomation in Morocco, no study has focused yet on the proteomic composition of the Moroccan B. occitanus scorpion venom. Mass spectrometry‐based proteomic techniques are commonly used in the study of scorpion venoms. The implementation of top‐down and bottom‐up approaches for proteomic analyses facilitates screening by allowing a global view of the structural aspects of such complex matrices. Here, we provide a partial overview of the venom of B. occitanus scorpion, in order to explore the diversity of its toxins and hereafter understand their effects. To this end, a combination of top‐down and bottom‐up approaches was applied using nano‐high liquid chromatography coupled to nano‐electrospray tandem mass spectrometry (nano‐LC‐ESI MS/MS). The LC‐MS results showed that B. occitanus venom contains around 200 molecular masses ranging from 1868 to 16 720 Da, the most representative of which are those between 5000 and 8000 Da. Interestingly, combined top‐down and bottom‐up LC‐MS/MS results allowed the identification of several toxins, which were mainly those acting on ion channels, including those targeting sodium (NaScTxs), potassium (KScTxs), chloride (ClScTxs), and calcium channels (CaScTx), as well as antimicrobial peptides (AMPs), amphipathic peptides, myotropic neuropeptides, and hypothetical secreted proteins. This study reveals the molecular diversity of B. occitanus scorpion venom and identifies components that may have useful pharmacological activities.
Collapse
Affiliation(s)
- Khadija Daoudi
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Christian Malosse
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Ayoub Lafnoune
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Bouchra Darkaoui
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco.,Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Salma Chakir
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | - Julia Chamot-Rooke
- Mass spectrometry for Biology Unit, Institut Pasteur, CNRS USR 2000, Paris, France
| | - Rachida Cadi
- Laboratory of Molecular Genetics, Physiopathology and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
12
|
Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria. Toxins (Basel) 2021; 13:toxins13050343. [PMID: 34064808 PMCID: PMC8150835 DOI: 10.3390/toxins13050343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.
Collapse
Affiliation(s)
- Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: ; Tel.: +86-(0)-719-8469073
| |
Collapse
|
13
|
Zhao Z, Zhang K, Zhu W, Ye X, Ding L, Jiang H, Li F, Chen Z, Luo X. Two new cationic α-helical peptides identified from the venom gland of Liocheles australasiae possess antimicrobial activity against methicillin-resistant staphylococci. Toxicon 2021; 196:63-73. [PMID: 33836178 DOI: 10.1016/j.toxicon.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 μg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
14
|
Magalhães ACM, de Santana CJC, Melani RD, Domont GB, Castro MS, Fontes W, Roepstorff P, Júnior ORP. Exploring the biological activities and proteome of Brazilian scorpion Rhopalurus agamemnon venom. J Proteomics 2021; 237:104119. [PMID: 33540062 DOI: 10.1016/j.jprot.2021.104119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Scorpion venoms are formed by toxins harmful to various organisms, including humans. Several techniques have been developed to understand the role of proteins in animal venoms, including proteomics approach. Rhopalurus agamemnon (Koch, 1839) is the largest scorpion in the Buthidae family in the Brazilian Cerrado, measuring up to 110 mm in total length. The accident with R. agamemnon is painful and causes some systemic reactions, but the specie's venom remains uninvestigated. We explore the venom protein composition using a proteomic and a biological-directed approach identifying 230 protein compounds including enzymes like Hyaluronidase, metalloproteinase, L-amino acid oxidase and amylase, the last two are first reported for scorpion venoms. Some of those new reports are important to demonstrate how distant we are from a total comprehension of the diversity about venoms in general, due to their diversity in composition and function. BIOLOGICAL SIGNIFICANCE: In this study, we explored the composition of venom proteins from the scorpion Rhopalurus agamemnon. We identified 230 proteins from the venom including new enzyme reports. These data highlight the unique diversity of the venom proteins from the scorpion R. agamemnon, provide insights into new mechanisms of envenomation and enlarge the protein database of scorpion venoms. The discovery of new proteins provides a new scenario for the development of new drugs and suggests molecular targets to venom components.
Collapse
Affiliation(s)
- Ana Carolina Martins Magalhães
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil.
| | - Carlos José Correia de Santana
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Rafael D Melani
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomic Laboratory, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Castro
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil; Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology/IB, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Osmindo Rodrigues Pires Júnior
- Toxinology Laboratory, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| |
Collapse
|
15
|
Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2020; 191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Scorpion venom contains a variety of biologically active peptides. Among them, neurotoxins are major components in the venom, but it also contains peptides that show antimicrobial activity. Previously, we identified three insecticidal peptides from the venom of the Liocheles australasiae scorpion, but activities and structures of other venom components remained unknown. In this study, we performed a transcriptome analysis of the venom gland of the scorpion L. australasiae to gain a comprehensive understanding of its venom components. The result shows that potassium channel toxin-like peptides were the most diverse, whereas only a limited number of sodium channel toxin-like peptides were observed. In addition to these neurotoxin-like peptides, many non-disulfide-bridged peptides were identified, suggesting that these components have some critical roles in the L. australasiae venom. In this study, we also isolated a component with antiviral activity against hepatitis C virus using a bioassay-guided fractionation approach. By integrating mass spectrometric and transcriptomic data, we successfully identified LaPLA2-1 as an anti-HCV component. LaPLA2-1 is a phospholipase A2 having a heterodimeric structure that is N-glycosylated at the N-terminal region. Since the antiviral activity of LaPLA2-1 was inhibited by a PLA2 inhibitor, the enzymatic activity of LaPLA2-1 is likely to be involved in its antiviral activity.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Kitanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mao Yakio
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ming Chen
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hak Hotta
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
16
|
Etebari K, Lindsay KR, Ward AL, Furlong MJ. Australian sugarcane soldier fly's salivary gland transcriptome in response to starvation and feeding on sugarcane crops. INSECT SCIENCE 2020; 27:708-720. [PMID: 30946538 DOI: 10.1111/1744-7917.12676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
The soldier fly is an endemic pest of sugarcane in Australia. Small numbers of larvae can cause significant damage to roots and reduce the crop yields. Little is known about the composition and function of the soldier fly salivary gland, its secretions, and their roles in insect-plant interactions. In this study, we performed transcriptome analysis of the salivary glands of starved and sugarcane root-fed soldier fly larvae. A total of 31 119 highly expressed assembled contigs were identified in the salivary glands and almost 50% of them showed high levels of similarity to known proteins in Nr databases. Of all the obtained contigs, only 9727 sequences contain an open reading frame of over 100 amino acids. Around 31% of contigs were predicted to encode secretory proteins, including some digestive and detoxifying enzymes and potential effectors. Some known salivary secreted peptides such as serine protease, cysteine proteinase inhibitors, antimicrobial peptides and venom proteins were among the top 100 highly expressed genes. Differential gene expression analysis revealed significant modulation of 850 transcripts in salivary glands upon exposure to plant roots or starvation stress. Here, we identified some venom proteins which were significantly upregulated in the salivary glands of soldier fly larvae exposed to sugarcane roots. In other insects and nematodes some of these proteins have been used to manipulate host plant defense systems and facilitate the invasion of the host plant. These findings provide a further insight into the identification of potential effector proteins involved in soldier fly-sugarcane interactions.
Collapse
Affiliation(s)
- Kayvan Etebari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Andrew L Ward
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
18
|
Cesa-Luna C, Muñoz-Rojas J, Saab-Rincon G, Baez A, Morales-García YE, Juárez-González VR, Quintero-Hernández V. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS One 2019; 14:e0222438. [PMID: 31710627 PMCID: PMC6844485 DOI: 10.1371/journal.pone.0222438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
Scorpion venom peptides represent a novel source of antimicrobial peptides (AMPs) with broad-spectrum activity. In this study, we determined the minimum bactericidal concentration (MBC) of three scorpion AMPs, Uy234, Uy17, and Uy192, which are found in the venomous glands of the Urodacus yaschenkoi scorpion, against the clinical isolates of multidrug-resistant (MDR) bacteria. In addition, we tested the activity of a consensus AMP designed in our laboratory based on some previously reported IsCT-type (cytotoxic linear peptide) AMPs with the aim of obtaining higher antimicrobial activity. All peptides tested showed high antimicrobial activity against MDR clinical isolates, with the highest activity against β-hemolytic Streptococcus strains. The hemolytic activity was determined against human red blood cells and was significantly lower than that of previously reported AMPs. The α-helical structure of the four AMPs was confirmed by circular dichroism (CD). These results suggest that the four peptides can be valuable tools for the design and development of AMPs for use in the inhibition of MDR pathogenic bacteria. A clear index of synergism and additivity was found for the combination of QnCs-BUAP + Uy234, which makes these peptides the most promising candidates against pathogenic bacteria.
Collapse
Affiliation(s)
- Catherine Cesa-Luna
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Antonino Baez
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
- Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Puebla, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Verónica Quintero-Hernández
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
- CONACYT-ESMG, LEMM, CICM, IC, BUAP, Puebla, Puebla, México
| |
Collapse
|
19
|
Sharma D, Choudhary M, Vashistt J, Shrivastava R, Bisht GS. Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against A. baumannii. Biochem Biophys Res Commun 2019; 518:472-478. [PMID: 31443965 DOI: 10.1016/j.bbrc.2019.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/10/2019] [Indexed: 01/02/2023]
Abstract
Acinetobacter baumannii is one of the clinically important nosocomial pathogen that has become resistant to most of the conventional antimicrobials. Biofilms formed by A. baumannii are difficult to eradicate, thereby highlighting the need for new therapeutic options to treat biofilm associated infections. Antimicrobial peptides have recently emerged as new alternatives to conventional antibiotics, but peptides often suffer with drawbacks such as poor proteolytic stability and high cost of production. To tackle these limitations, mimetics based on antimicrobial peptides are usually designed and synthesized. In this study we have designed and synthesized a peptoid based on a minimum amphipathic template of a twelve residue cationic peptide. Antimicrobial evaluation of peptide and peptoid was carried out against biofilm producing A. baumannii strains. Further, proteolytic stability study of these compounds was carried out in human serum and morphological alterations caused by them on A. baumannii were visualized by SEM analysis. In addition, these compounds were found to be non toxic to human erythrocytes at their minimum inhibitory concentrations against A. baumannii strains. Overall results obtained in this study suggest that these compounds might be potential antimicrobial agents against biofilm forming A. baumannii and it may be postulated that their mode of action on A. baumannii is disruption of bacterial cell membrane.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Monika Choudhary
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India; Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, 173234, India.
| |
Collapse
|
20
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
21
|
Novel Antimicrobial Peptides from the Arctic Polychaeta Nicomache minor Provide New Molecular Insight into Biological Role of the BRICHOS Domain. Mar Drugs 2018; 16:md16110401. [PMID: 30360541 PMCID: PMC6265681 DOI: 10.3390/md16110401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022] Open
Abstract
Endogenous antimicrobial peptides (AMPs) are among the earliest molecular factors in the evolution of animal innate immunity. In this study, novel AMPs named nicomicins were identified in the small marine polychaeta Nicomache minor in the Maldanidae family. Full-length mRNA sequences encoded 239-residue prepropeptides consisting of a putative signal sequence region, the BRICHOS domain within an acidic proregion, and 33-residue mature cationic peptides. Nicomicin-1 was expressed in the bacterial system, and its spatial structure was analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. Nicomicins are unique among polychaeta AMPs scaffolds, combining an amphipathic N-terminal α-helix and C-terminal extended part with a six-residue loop stabilized by a disulfide bridge. This structural arrangement resembles the Rana-box motif observed in the α-helical host-defense peptides isolated from frog skin. Nicomicin-1 exhibited strong in vitro antimicrobial activity against Gram-positive bacteria at submicromolar concentrations. The main mechanism of nicomicin-1 action is based on membrane damage but not on the inhibition of bacterial translation. The peptide possessed cytotoxicity against cancer and normal adherent cells as well as toward human erythrocytes.
Collapse
|
22
|
Romero-Gutiérrez MT, Santibáñez-López CE, Jiménez-Vargas JM, Batista CVF, Ortiz E, Possani LD. Transcriptomic and Proteomic Analyses Reveal the Diversity of Venom Components from the Vaejovid Scorpion Serradigitus gertschi. Toxins (Basel) 2018; 10:E359. [PMID: 30189638 PMCID: PMC6162517 DOI: 10.3390/toxins10090359] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022] Open
Abstract
To understand the diversity of scorpion venom, RNA from venomous glands from a sawfinger scorpion, Serradigitus gertschi, of the family Vaejovidae, was extracted and used for transcriptomic analysis. A total of 84,835 transcripts were assembled after Illumina sequencing. From those, 119 transcripts were annotated and found to putatively code for peptides or proteins that share sequence similarities with the previously reported venom components of other species. In accordance with sequence similarity, the transcripts were classified as potentially coding for 37 ion channel toxins; 17 host defense peptides; 28 enzymes, including phospholipases, hyaluronidases, metalloproteases, and serine proteases; nine protease inhibitor-like peptides; 10 peptides of the cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 protein superfamily; seven La1-like peptides; and 11 sequences classified as "other venom components". A mass fingerprint performed by mass spectrometry identified 204 components with molecular masses varying from 444.26 Da to 12,432.80 Da, plus several higher molecular weight proteins whose precise masses were not determined. The LC-MS/MS analysis of a tryptic digestion of the soluble venom resulted in the de novo determination of 16,840 peptide sequences, 24 of which matched sequences predicted from the translated transcriptome. The database presented here increases our general knowledge of the biodiversity of venom components from neglected non-buthid scorpions.
Collapse
Affiliation(s)
- Maria Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Carlos Eduardo Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
- Department of Integrative Biology, University of Wisconsin⁻Madison, Madison, WI 53706, USA.
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Cesar Vicente Ferreira Batista
- Laboratorio Universitario de Proteómica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
23
|
Passarini I, Rossiter S, Malkinson J, Zloh M. In Silico Structural Evaluation of Short Cationic Antimicrobial Peptides. Pharmaceutics 2018; 10:E72. [PMID: 29933540 PMCID: PMC6160961 DOI: 10.3390/pharmaceutics10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Cationic peptides with antimicrobial properties are ubiquitous in nature and have been studied for many years in an attempt to design novel antibiotics. However, very few molecules are used in the clinic so far, sometimes due to their complexity but, mostly, as a consequence of the unfavorable pharmacokinetic profile associated with peptides. The aim of this work is to investigate cationic peptides in order to identify common structural features which could be useful for the design of small peptides or peptido-mimetics with improved drug-like properties and activity against Gram negative bacteria. Two sets of cationic peptides (AMPs) with known antimicrobial activity have been investigated. The first reference set comprised molecules with experimentally-known conformations available in the protein databank (PDB), and the second one was composed of short peptides active against Gram negative bacteria but with no significant structural information available. The predicted structures of the peptides from the first set were in excellent agreement with those experimentally-observed, which allowed analysis of the structural features of the second group using computationally-derived conformations. The peptide conformations, either experimentally available or predicted, were clustered in an “all vs. all” fashion and the most populated clusters were then analyzed. It was confirmed that these peptides tend to assume an amphipathic conformation regardless of the environment. It was also observed that positively-charged amino acid residues can often be found next to aromatic residues. Finally, a protocol was evaluated for the investigation of the behavior of short cationic peptides in the presence of a membrane-like environment such as dodecylphosphocholine (DPC) micelles. The results presented herein introduce a promising approach to inform the design of novel short peptides with a potential antimicrobial activity.
Collapse
Affiliation(s)
- Ilaria Passarini
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - Sharon Rossiter
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
| | - John Malkinson
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | - Mire Zloh
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK.
- Faculty of Pharmacy, University Business Academy, Trg mladenaca 5, 21000 Novi Sad, Serbia.
- NanoPuzzle Medicines Design, Business & Technology Centre, Bessemer Drive, Stevenage SG1 2DX, UK.
| |
Collapse
|
24
|
Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, Wu Y, Li W, Harrison PL, Strong PN, Xie Y, Miller K, Cao Z. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria. Front Microbiol 2018; 9:1159. [PMID: 29896190 PMCID: PMC5987058 DOI: 10.3389/fmicb.2018.01159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs) have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18) showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Gaomin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fangfang Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yange Lang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Patrick L Harrison
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Peter N Strong
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Keith Miller
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Bio-drug Research Center, Wuhan University, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids 2018; 50:1025-1043. [DOI: 10.1007/s00726-018-2580-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
|
26
|
de Oliveira UC, Nishiyama MY, dos Santos MBV, Santos-da-Silva ADP, Chalkidis HDM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo IDLM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One 2018; 13:e0193739. [PMID: 29561852 PMCID: PMC5862453 DOI: 10.1371/journal.pone.0193739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.
Collapse
Affiliation(s)
- Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: ,
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
27
|
Deng Y, Gu J, Yan Z, Wang M, Ma C, Zhang J, Jiang G, Ge M, Xu S, Xu Z, Xiao L. De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides. Toxicon 2018; 143:1-19. [DOI: 10.1016/j.toxicon.2017.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 02/07/2023]
|
28
|
Martinez G, Hograindleur JP, Voisin S, Abi Nahed R, Abd El Aziz TM, Escoffier J, Bessonnat J, Fovet CM, De Waard M, Hennebicq S, Aucagne V, Ray PF, Schmitt E, Bulet P, Arnoult C. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol Hum Reprod 2018; 23:116-131. [PMID: 27932550 DOI: 10.1093/molehr/gaw075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/18/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus? SUMMARY ANSWER We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments. WHAT IS KNOWN ALREADY Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore, been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced. STUDY DESIGN, SIZE, DURATION This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species. PARTICIPANTS/MATERIALS, SETTING, METHODS For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide. MAIN RESULTS AND THE ROLE OF CHANCE Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide. LIMITATIONS, REASONS FOR CAUTION This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.
Collapse
Affiliation(s)
- Guillaume Martinez
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France.,Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Sébastien Voisin
- Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Tarek M Abd El Aziz
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Julien Bessonnat
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Claire-Maëlle Fovet
- Molecular Imaging Research Center, MIRCen CEA/INSERM UMR1169, Fontenay-aux-Roses F-92265, France
| | - Michel De Waard
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Sylviane Hennebicq
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans F-45071, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biochimie Génétique et Moléculaire, Grenoble F-38000, France
| | - Eric Schmitt
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France
| | - Philippe Bulet
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| |
Collapse
|
29
|
Xiao L, Gurrola GB, Zhang J, Valdivia CR, SanMartin M, Zamudio FZ, Zhang L, Possani LD, Valdivia HH. Structure-function relationships of peptides forming the calcin family of ryanodine receptor ligands. J Gen Physiol 2017; 147:375-94. [PMID: 27114612 PMCID: PMC4845687 DOI: 10.1085/jgp.201511499] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022] Open
Abstract
Calcins are a novel family of scorpion peptides that bind with high affinity to ryanodine receptors (RyRs) and increase their activity by inducing subconductance states. Here, we provide a comprehensive analysis of the structure-function relationships of the eight calcins known to date, based on their primary sequence, three-dimensional modeling, and functional effects on skeletal RyRs (RyR1). Primary sequence alignment and evolutionary analysis show high similarity among all calcins (≥78.8% identity). Other common characteristics include an inhibitor cysteine knot (ICK) motif stabilized by three pairs of disulfide bridges and a dipole moment (DM) formed by positively charged residues clustering on one side of the molecule and neutral and negatively charged residues segregating on the opposite side. [(3)H]Ryanodine binding assays, used as an index of the open probability of RyRs, reveal that all eight calcins activate RyR1 dose-dependently with Kd values spanning approximately three orders of magnitude and in the following rank order: opicalcin1 > opicalcin2 > vejocalcin > hemicalcin > imperacalcin > hadrucalcin > maurocalcin >> urocalcin. All calcins significantly augment the bell-shaped [Ca(2+)]-[(3)H]ryanodine binding curve with variable effects on the affinity constants for Ca(2+) activation and inactivation. In single channel recordings, calcins induce the appearance of a subconductance state in RyR1 that has a unique fractional value (∼20% to ∼60% of the full conductance state) but bears no relationship to binding affinity, DM, or capacity to stimulate Ca(2+) release. Except for urocalcin, all calcins at 100 nM concentration stimulate Ca(2+) release and deplete Ca(2+) load from skeletal sarcoplasmic reticulum. The natural variation within the calcin family of peptides offers a diversified set of high-affinity ligands with the capacity to modulate RyRs with high dynamic range and potency.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Georgina B Gurrola
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jing Zhang
- Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Carmen R Valdivia
- Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Mario SanMartin
- Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Fernando Z Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | - Héctor H Valdivia
- Center for Arrhythmia Research, Cardiovascular Division, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
31
|
Luna-Ramirez K, Skaljac M, Grotmann J, Kirfel P, Vilcinskas A. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts. Toxins (Basel) 2017; 9:toxins9090261. [PMID: 28837113 PMCID: PMC5618194 DOI: 10.3390/toxins9090261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.
Collapse
Affiliation(s)
- Karen Luna-Ramirez
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Jens Grotmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
32
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
33
|
Santussi WM, Bordon KCF, Rodrigues Alves APN, Cologna CT, Said S, Arantes EC. Antifungal Activity against Filamentous Fungi of Ts1, a Multifunctional Toxin from Tityus serrulatus Scorpion Venom. Front Microbiol 2017. [PMID: 28634472 PMCID: PMC5459920 DOI: 10.3389/fmicb.2017.00984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of the innate immune defense arsenal used by both prokaryotic and eukaryotic organisms. The search for new AMPs has increased in recent years, due to the growing development of microbial resistance to therapeutical drugs. In this work, we evaluate the effects of Tityus serrulatus venom (Tsv), its fractions and its major toxin Ts1, a beta-neurotoxin, on fungi growth. The fractions were obtained by ion-exchange chromatography of Tsv. The growth inhibition of 11 pathogenic and non-pathogenic filamentous fungi (Aspergillus fumigatus, A. nidulans, A. niger, A. terreus, Neurospora crassa, Penicillium corylophilum, P. ochrochloron, P. verrucosum, P. viridicatum, P. waksmanii, and Talaromyces flavus) was evaluated by quantitative microplate reader assay. Tsv (100 and 500 μg/well, which correspond to 1 and 5 mg/mL, respectively, of total soluble protein) was active in inhibiting growth of A. nidulans, A. terreus, P. corylophilum, and P. verrucosum, especially in the higher concentration used and at the first 30 h. After this period, fungi might have used Tsv components as alternative sources of nutrients, and therefore, increased their growth tax. Only fractions IX, X, XI, XIIA, XIIB (3 and 7.5 μg/well, which correspond to 30 and 75 μg/mL, respectively, of total soluble protein) and Ts1 (1.5, 3, and 6 μg/well, which correspond to 2.18, 4.36, and 8.72 μM, respectively) showed antifungal activity. Ts1 showed to be a non-morphogenic toxin with dose-dependent activity against A. nidulans, inhibiting 100% of fungal growth from 3 μg/well (4.36 μM). The inhibitory effect of Ts1 against A. nidulans growth was accompanied by fungistatic effects and was not amended by 1 mM CaCl2 or tetrodotoxin (46.98 and 93.96 μM). The structural differences between Ts1 and drosomycin, a potent cysteine-rich antifungal peptide, are discussed here. Our results highlight the antifungal potential of the first cysteine-containing scorpion toxin. Since Ts1 is a multifunctional toxin, we suggest that it could be used as a template in the design of engineered scorpion AMPs and in the search for new mechanisms of action of antifungal drugs.
Collapse
Affiliation(s)
- Welligton M Santussi
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Karla C F Bordon
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ana P N Rodrigues Alves
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Camila T Cologna
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Suraia Said
- Laboratory of Industrial Enzymology, Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Eliane C Arantes
- Laboratory of Animal Toxins, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
34
|
Wang X, Wang G. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept Lett 2017; 23:707-21. [PMID: 27165405 DOI: 10.2174/0929866523666160511151320] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 12/19/2022]
Abstract
The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses.
Collapse
Affiliation(s)
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
35
|
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128:23-37. [DOI: 10.1016/j.toxicon.2017.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
36
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
37
|
Vargas-Jaimes L, Xiao L, Zhang J, Possani LD, Valdivia HH, Quintero-Hernández V. Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochim Biophys Acta Gen Subj 2017; 1861:936-946. [PMID: 28159581 DOI: 10.1016/j.bbagen.2017.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/22/2017] [Accepted: 01/30/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Scorpion venoms contain toxins that modulate ionic channels, among which are the calcins, a small group of short, basic peptides with an Inhibitor Cystine Knot (ICK) motif that target calcium release channels/ryanodine receptors (RyRs) with high affinity and selectivity. Here we describe the heterologous expression of Intrepicalcin, identified by transcriptomic analysis of venomous glands from Vaejovis intrepidus. METHODS Recombinant Intrepicalcin was obtained in Escherichia coli BL21-DE3 (periplasm) by fusing the Intrepicalcin gene to sequences coding for signal-peptide, thioredoxin, His-tag and enterokinase cleavage site. RESULTS [3H]Ryanodine binding, used as a functional index of RyR activity, revealed that recombinant Intrepicalcin activates skeletal RyR (RyR1) dose-dependently with Kd=17.4±4.0nM. Intrepicalcin significantly augments the bell-shaped [Ca2+]-[3H]ryanodine binding curve at all [Ca2+] ranges, as is characteristic of the calcins. In single channel recordings, Intrepicalcin induces the appearance of a subconductance state in RyR1 with a fractional value ∼55% of the full conductance state, very close to that of Vejocalcin. Furthermore, Intrepicalcin stimulates Ca2+ release at an initial dose=45.3±2.5nM, and depletes ~50% of Ca2+ load from skeletal sarcoplasmic reticulum vesicles. CONCLUSIONS We conclude that active recombinant Intrepicalcin was successfully obtained without the need of manual oxidation, enabling it to target RyR1s with high affinity. GENERAL SIGNIFICANCE This is the first calcin heterologously expressed in the periplasma of Escherichia coli BL21-DE3, shown to be pharmacologically effective, thus paving the way for the generation of Intrepicalcin variants that are required for structure-function relationship studies of calcins and RyRs.
Collapse
Affiliation(s)
- Leonel Vargas-Jaimes
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | - Liang Xiao
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México
| | - Héctor H Valdivia
- Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62271, México.,CONACYT- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, México
| |
Collapse
|
38
|
Luna-Ramirez K, Miller AD, Rašić G. Genetic and morphological analyses indicate that the Australian endemic scorpion Urodacus yaschenkoi (Scorpiones: Urodacidae) is a species complex. PeerJ 2017; 5:e2759. [PMID: 28123903 PMCID: PMC5244882 DOI: 10.7717/peerj.2759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Australian scorpions have received far less attention from researchers than their overseas counterparts. Here we provide the first insight into the molecular variation and evolutionary history of the endemic Australian scorpion Urodacus yaschenkoi. Also known as the inland robust scorpion, it is widely distributed throughout arid zones of the continent and is emerging as a model organism in biomedical research due to the chemical nature of its venom. METHODS We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual's membership to a putative species. RESULTS Genetic and morphological data suggest that U. yaschenkoi is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model and the PTP/bPTP approach identified major lineages and several sub-lineages as putative species. Ratios of several traits that approximate body shape had a strong predictive power (83-100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene and Pliocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. This structuring dynamics is congruent with the diversification history of other fauna of the Australian arid zones. DISCUSSION Our results indicate that the taxonomic status of U. yaschenkoi requires revision, and we provide recommendations for such future efforts. A complex evolutionary history and extensive diversity highlights the importance of conserving U. yaschenkoi populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential.
Collapse
Affiliation(s)
| | - Adam D. Miller
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Victoria, Australia
| | | |
Collapse
|
39
|
Luna-Ramirez K, Tonk M, Rahnamaeian M, Vilcinskas A. Bioactivity of Natural and Engineered Antimicrobial Peptides from Venom of the Scorpions Urodacus yaschenkoi and U. manicatus. Toxins (Basel) 2017; 9:toxins9010022. [PMID: 28067810 PMCID: PMC5308254 DOI: 10.3390/toxins9010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/26/2016] [Accepted: 12/29/2016] [Indexed: 12/30/2022] Open
Abstract
The spread of multidrug-resistant human pathogens has drawn attention towards antimicrobial peptides (AMPs), which are major players in the innate immune systems of many organisms, including vertebrates, invertebrates, plants and microbes. Scorpion venom is an abundant source of novel and potent AMPs. Here, we investigated natural and engineered AMPs from the scorpions Urodacus yaschenkoi and U. manicatus to determine their antimicrobial spectra as well as their hemolytic/cytotoxic activity. None of the AMPs were active against fungi, but many of them were active at low concentrations (0.25–30 µM) against seven different bacteria. Hemolytic and cytotoxic activities were determined using pig erythrocytes and baby hamster kidney cells, respectively. The amino acid substitutions in the engineered AMPs did not inhibit cytotoxicity, but reduced hemolysis and therefore increased the therapeutic indices. The phylogenetic analysis of scorpion AMPs revealed they are closely related and the GXK motif is highly conserved. The engineered scorpion AMPs offer a promising alternative for the treatment of multidrug-resistant bacterial infections and could be modified further to reduce their hemolytic/cytotoxic activity.
Collapse
Affiliation(s)
- Karen Luna-Ramirez
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Miray Tonk
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Mohammad Rahnamaeian
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, D-35394 Giessen, Germany.
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| |
Collapse
|
40
|
The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon 2017; 125:123-130. [DOI: 10.1016/j.toxicon.2016.11.261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 11/23/2022]
|
41
|
Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel) 2016; 8:toxins8120367. [PMID: 27941686 PMCID: PMC5198561 DOI: 10.3390/toxins8120367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022] Open
Abstract
Venom gland transcriptomic and proteomic analyses have improved our knowledge on the diversity of the heterogeneous components present in scorpion venoms. However, most of these studies have focused on species from the family Buthidae. To gain insights into the molecular diversity of the venom components of scorpions belonging to the family Superstitioniidae, one of the neglected scorpion families, we performed a transcriptomic and proteomic analyses for the species Superstitionia donensis. The total mRNA extracted from the venom glands of two specimens was subjected to massive sequencing by the Illumina protocol, and a total of 219,073 transcripts were generated. We annotated 135 transcripts putatively coding for peptides with identity to known venom components available from different protein databases. Fresh venom collected by electrostimulation was analyzed by LC-MS/MS allowing the identification of 26 distinct components with sequences matching counterparts from the transcriptomic analysis. In addition, the phylogenetic affinities of the found putative calcins, scorpines, La1-like peptides and potassium channel κ toxins were analyzed. The first three components are often reported as ubiquitous in the venom of different families of scorpions. Our results suggest that, at least calcins and scorpines, could be used as molecular markers in phylogenetic studies of scorpion venoms.
Collapse
|
42
|
Daniele-Silva A, Machado RJ, Monteiro NK, Estrela AB, Santos EC, Carvalho E, Araújo Júnior RF, Melo-Silveira RF, Rocha HAO, Silva-Júnior AA, Fernandes-Pedrosa MF. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: Assessment of structure and therapeutic potential in experimental sepsis. Toxicon 2016; 121:10-21. [DOI: 10.1016/j.toxicon.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
|
43
|
Zhong J, Zeng XC, Zeng X, Nie Y, Zhang L, Wu S, Bao A. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2016; 150:40-62. [PMID: 27519694 DOI: 10.1016/j.jprot.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
Abstract
Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xin Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhang
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shifen Wu
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Aorigele Bao
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
44
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
45
|
Olamendi-Portugal T, Bartok A, Zamudio-Zuñiga F, Balajthy A, Becerril B, Panyi G, Possani LD. Isolation, chemical and functional characterization of several new K+-channel blocking peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2016; 115:1-12. [DOI: 10.1016/j.toxicon.2016.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
|
46
|
Slavokhotova AA, Shelenkov AA, Odintsova TI. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. PLANT MOLECULAR BIOLOGY 2015; 89:203-14. [PMID: 26369913 DOI: 10.1007/s11103-015-0346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 05/06/2023]
Abstract
Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.
Collapse
Affiliation(s)
- Anna A Slavokhotova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991.
| | - Andrey A Shelenkov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow, Russia, 119991
| |
Collapse
|
47
|
Zhang L, Shi W, Zeng XC, Ge F, Yang M, Nie Y, Bao A, Wu S, E G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128:231-50. [DOI: 10.1016/j.jprot.2015.07.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/22/2022]
|
48
|
Santibáñez-López CE, Possani LD. Overview of the Knottin scorpion toxin-like peptides in scorpion venoms: Insights on their classification and evolution. Toxicon 2015; 107:317-26. [PMID: 26187850 DOI: 10.1016/j.toxicon.2015.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Scorpion venoms include several compounds with different pharmacological activities. Within these compounds, toxins affecting ion channels are among the most studied. They are all peptides that have been classified based on their 3D structure, chain size and function. Usually, they show a spatial arrangement characterized by the presence of a cysteine-stabilized alpha beta motif; most of them affect Na(+) and K(+) ion-channels. These features have been revised in several occasions before, but a complete phylogenetic analysis of the disulfide containing peptides is not been done. In the present contribution, two databases (Pfam and InterPro) including more than 800 toxins from different scorpions were analyzed. Pfam database included toxins from several organisms other than scorpions such as insects and plants, while InterPro included only scorpion toxins. Our results suggest that Na(+) toxins have evolved independently from those of K(+) toxins no matter the length of the peptidic chains. These preliminary results suggest that current classification needs a more detailed revision, in order to have better characterized toxin families, so the new peptides obtained from transcriptomic analyses would be properly classified.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| |
Collapse
|
49
|
Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One 2015; 10:e0127883. [PMID: 26020943 PMCID: PMC4447460 DOI: 10.1371/journal.pone.0127883] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Australian scorpion venoms have been poorly studied, probably because they do not pose an evident threat to humans. In addition, the continent has other medically important venomous animals capable of causing serious health problems. Urodacus yaschenkoi belongs to the most widely distributed family of Australian scorpions (Urodacidae) and it is found all over the continent, making it a useful model system for studying venom composition and evolution. This communication reports the whole set of mRNA transcripts produced by the venom gland. U. yaschenkoi venom is as complex as its overseas counterparts. These transcripts certainly code for several components similar to known scorpion venom components, such as: alpha-KTxs, beta-KTxs, calcins, protease inhibitors, antimicrobial peptides, sodium-channel toxins, toxin-like peptides, allergens, La1-like, hyaluronidases, ribosomal proteins, proteasome components and proteins related to cellular processes. A comparison with the venom gland transcriptome of Centruroides noxius (Buthidae) showed that these two scorpions have similar components related to biological processes, although important differences occur among the venom toxins. In contrast, a comparison with sequences reported for Urodacus manicatus revealed that these two Urodacidae species possess the same subfamily of scorpion toxins. A comparison with sequences of an U. yaschenkoi cDNA library previously reported by our group showed that both techniques are reliable for the description of the venom components, but the whole transcriptome generated with Next Generation Sequencing platform provides sequences of all transcripts expressed. Several of which were identified in the proteome, but many more transcripts were identified including uncommon transcripts. The information reported here constitutes a reference for non-Buthidae scorpion venoms, providing a comprehensive view of genes that are involved in venom production. Further, this work identifies new putative bioactive compounds that could be used to seed research into new pharmacological compounds and increase our understanding of the function of different ion channels.
Collapse
Affiliation(s)
- Karen Luna-Ramírez
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
50
|
Chemical synthesis of La1 isolated from the venom of the scorpion Liocheles australasiae
and determination of its disulfide bonding pattern. J Pept Sci 2015; 21:636-43. [DOI: 10.1002/psc.2778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
|