1
|
Arrahman A, Xu H, Khan MA, Bos TS, Slagboom J, van der Velden GC, Nehrdich U, Casewell NR, Richardson MK, Tudorache C, Cardoso FC, Kool J. Parallel in vitro ion channel and in vivo zebrafish assaying of elapid snake venoms following chromatographic separation of toxin components. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 34:100239. [PMID: 40334747 DOI: 10.1016/j.slasd.2025.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Snake venoms are complex bioactive mixtures designed to paralyse, kill, or digest prey. These venoms are of pharmacological interest due to their ability to modulate molecular targets such as ion channels and receptors with high specificity and potency. Traditional studies often focus on in vitro molecular analysis or in vivo behavioural effects, limiting comprehensive understanding. Here, we present a high-throughput screening platform that combines in vitro ion channel assays with in vivo zebrafish larval bioassays using nanofractionation analytics. This method integrates post-column calcium flux assays, zebrafish paralytic bioassays, toxin mass spectrometry, and proteomics to link bioactivity with toxin identification. Using elapid snake venoms (genus Dendroaspis, Naja, and Hemachatus) as a proof of concept, we identified several toxins modulating ion channels with paralytic effects on zebrafish larvae. Our approach enables parallel acquisition of in vitro and in vivo data, offering a robust guide for identifying and characterising ion channel modulators with defined molecular targets.
Collapse
Affiliation(s)
- Arif Arrahman
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands; Faculty of Pharmacy Universitas Indonesia, Depok, Jawa Barat, Indonesia
| | - Haifeng Xu
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| | - Muzaffar A Khan
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands; Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Tijmen S Bos
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands
| | | | - Ulrike Nehrdich
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | | | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Centre for Analytical Sciences Amsterdam (CASA), The Netherlands.
| |
Collapse
|
2
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Palermo G, Schouten WM, Alonso LL, Ulens C, Kool J, Slagboom J. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Int J Mol Sci 2023; 24:16769. [PMID: 38069093 PMCID: PMC10706727 DOI: 10.3390/ijms242316769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Snakebite is considered a concerning issue and a neglected tropical disease. Three-finger toxins (3FTxs) in snake venoms primarily cause neurotoxic effects since they have high affinity for nicotinic acetylcholine receptors (nAChRs). Their small molecular size makes 3FTxs weakly immunogenic and therefore not appropriately targeted by current antivenoms. This study aims at presenting and applying an analytical method for investigating the therapeutic potential of the acetylcholine-binding protein (AChBP), an efficient nAChR mimic that can capture 3FTxs, for alternative treatment of elapid snakebites. In this analytical methodology, snake venom toxins were separated and characterised using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-throughput venomics. By subsequent nanofractionation analytics, binding profiling of toxins to the AChBP was achieved with a post-column plate reader-based fluorescence-enhancement ligand displacement bioassay. The integrated method was established and applied to profiling venoms of six elapid snakes (Naja mossambica, Ophiophagus hannah, Dendroaspis polylepis, Naja kaouthia, Naja haje and Bungarus multicinctus). The methodology demonstrated that the AChBP is able to effectively bind long-chain 3FTxs with relatively high affinity, but has low or no binding affinity towards short-chain 3FTxs, and as such provides an efficient analytical platform to investigate binding affinity of 3FTxs to the AChBP and mutants thereof and to rapidly identify bound toxins.
Collapse
Affiliation(s)
- Giulia Palermo
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wietse M. Schouten
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Luis Lago Alonso
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Jeroen Kool
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Julien Slagboom
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
|
5
|
Akhtar B, Muhammad F, Sharif A, Anwar MI. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur J Pharmacol 2021; 899:174022. [PMID: 33727054 DOI: 10.1016/j.ejphar.2021.174022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Snake venoms are a potential source of various enzymatic and non-enzymatic compounds with a defensive role for the host. Various peptides with significant medicinal properties have been isolated and characterized from these venoms. Few of these are FDA approved. They inhibit tumor cells adhesion, migration, angiogenesis and metastasis by inhibiting integrins on transmembrane cellular surfaces. This plays important role in delaying tumor growth, neovascularization and development. Tumor targeting and smaller size make them ideal candidates as novel therapeutic agents for cancer treatment. This review is based on sources of these disintegrins, their targeting modality, classification and underlying anti-cancer potential.
Collapse
Affiliation(s)
- Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
6
|
Otvos RA, Still KBM, Somsen GW, Smit AB, Kool J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:362-385. [PMID: 30682257 PMCID: PMC6484542 DOI: 10.1177/2472555218822098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
Abstract
Natural extracts are complex mixtures that may be rich in useful bioactive compounds and therefore are attractive sources for new leads in drug discovery. This review describes drug discovery from natural products and in explaining this process puts the focus on ion-channel drug discovery. In particular, the identification of bioactives from natural products targeting nicotinic acetylcholine receptors (nAChRs) and serotonin type 3 receptors (5-HT3Rs) is discussed. The review is divided into three parts: "Targets," "Sources," and "Approaches." The "Targets" part will discuss the importance of ion-channel drug targets in general, and the α7-nAChR and 5-HT3Rs in particular. The "Sources" part will discuss the relevance for drug discovery of finding bioactive compounds from various natural sources such as venoms and plant extracts. The "Approaches" part will give an overview of classical and new analytical approaches that are used for the identification of new bioactive compounds with the focus on targeting ion channels. In addition, a selected overview is given of traditional venom-based drug discovery approaches and of diverse hyphenated analytical systems used for screening complex bioactive mixtures including venoms.
Collapse
Affiliation(s)
- Reka A. Otvos
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kristina B. M. Still
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Govert W. Somsen
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- The Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Detection and identification of antibacterial proteins in snake venoms using at-line nanofractionation coupled to LC-MS. Toxicon 2018; 155:66-74. [DOI: 10.1016/j.toxicon.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
|
8
|
Munawar A, Ali SA, Akrem A, Betzel C. Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel) 2018; 10:toxins10110474. [PMID: 30441876 PMCID: PMC6266942 DOI: 10.3390/toxins10110474] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations.
Collapse
Affiliation(s)
- Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Syed Abid Ali
- H.E. J. Research Institute of Chemistry, (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 22607 Hamburg, Germany.
- Laboratory for Structural Biology of Infection and Inflammation, DESY, Build. 22a, Notkestr. 85, 22603 Hamburg, Germany.
| |
Collapse
|
9
|
Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon 2018; 152:1-8. [DOI: 10.1016/j.toxicon.2018.06.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
|
10
|
Slagboom J, Otvos RA, Cardoso FC, Iyer J, Visser JC, van Doodewaerd BR, McCleary RJR, Niessen WMA, Somsen GW, Lewis RJ, Kini RM, Smit AB, Casewell NR, Kool J. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling. Toxicon 2018; 148:213-222. [PMID: 29730150 DOI: 10.1016/j.toxicon.2018.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022]
Abstract
Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins.
Collapse
Affiliation(s)
- Julien Slagboom
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Reka A Otvos
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Janaki Iyer
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Jeroen C Visser
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Bjorn R van Doodewaerd
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Department of Biological Sciences, Stetson University, 421 N. Woodland Blvd, Unit 8264, DeLand, FL, 32723, USA.
| | - Wilfried M A Niessen
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands; hyphen MassSpec, Margrietstraat 34, 2215 HJ, Voorhout, The Netherlands.
| | - Govert W Somsen
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK; Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Echterbille J, Gilles N, Araóz R, Mourier G, Amar M, Servent D, De Pauw E, Quinton L. Discovery and characterization of EII B, a new α-conotoxin from Conus ermineus venom by nAChRs affinity capture monitored by MALDI-TOF/TOF mass spectrometry. Toxicon 2017; 130:1-10. [PMID: 28238803 DOI: 10.1016/j.toxicon.2017.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Animal toxins are peptides that often bind with remarkable affinity and selectivity to membrane receptors such as nicotinic acetylcholine receptors (nAChRs). The latter are, for example, targeted by α-conotoxins, a family of peptide toxins produced by venomous cone snails. nAChRs are implicated in numerous physiological processes explaining why the design of new pharmacological tools and the discovery of potential innovative drugs targeting these receptor channels appear so important. This work describes a methodology developed to discover new ligands of nAChRs from complex mixtures of peptides. The methodology was set up by the incubation of Torpedo marmorata electrocyte membranes rich in nAChRs with BSA tryptic digests (>100 peptides) doped by small amounts of known nAChRs ligands (α-conotoxins). Peptides that bind to the receptors were purified and analyzed by MALDI-TOF/TOF mass spectrometry which revealed an enrichment of α-conotoxins in membrane-containing fractions. This result exhibits the binding of α-conotoxins to nAChRs. Negative controls were performed to demonstrate the specificity of the binding. The usefulness and the power of the methodology were also investigated for a discovery issue. The workflow was then applied to the screening of Conus ermineus crude venom, aiming at characterizing new nAChRs ligands from this venom, which has not been extensively investigated to date. The methodology validated our experiments by allowing us to bind two α-conotoxins (α-EI and α-EIIA) which have already been described as nAChRs ligands. Moreover, a new conotoxin, never described to date, was also captured, identified and sequenced from this venom. Classical pharmacology tests by radioligand binding using a synthetic homologue of the toxin confirm the activity of the new peptide, called α-EIIB. The Ki value of this peptide for Torpedo nicotinic receptors was measured at 2.2 ± 0.7 nM.
Collapse
Affiliation(s)
- Julien Echterbille
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nicolas Gilles
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Romulo Araóz
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Gilles Mourier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Muriel Amar
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium
| | - Loic Quinton
- Laboratory of Mass Spectrometry- MolSys, Department of Chemistry, University of Liege, Liege, Belgium.
| |
Collapse
|
12
|
Gorson J, Holford M. Small Packages, Big Returns: Uncovering the Venom Diversity of Small Invertebrate Conoidean Snails. Integr Comp Biol 2016; 56:962-972. [PMID: 27371389 PMCID: PMC6058754 DOI: 10.1093/icb/icw063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Venomous organisms used in research were historically chosen based on size and availability. This opportunity-driven strategy created a species bias in which snakes, scorpions, and spiders became the primary subjects of venom research. Increasing technological advancements have enabled interdisciplinary studies using genomics, transcriptomics, and proteomics to expand venom investigation to animals that produce small amounts of venom or lack traditional venom producing organs. One group of non-traditional venomous organisms that have benefitted from the rise of -omic technologies is the Conoideans. The Conoidean superfamily of venomous marine snails includes, the Terebridae, Turridae (s.l), and Conidae. Conoidea venom is used for both predation and defense, and therefore under strong selection pressures. The need for conoidean venom peptides to be potent and specific to their molecular targets has made them important tools for investigating cellular physiology and bioactive compounds that are beneficial to improving human health. A convincing case for the potential of Conoidean venom is made with the first commercially available conoidean venom peptide drug Ziconotide (Prialt®), an analgesic derived from Conus magus venom that is used to treat chronic pain in HIV and cancer patients. Investigation of conoidean venom using -omics technology provides significant insights into predator-driven diversification in biodiversity and identifies novel compounds for manipulating cellular communication, especially as it pertains to disease and disorders.
Collapse
Affiliation(s)
- J Gorson
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| | - M Holford
- *Department of Chemistry, Hunter College, The City University of New York, Belfer Research Building, NY, 10021 USA
- Departments of Biology, Chemistry, and Biochemistry, The Graduate City, The City University of New York, NY, 10016 USA
- Invertebrate Zoology, Sackler Institute of Comparative Genomics, American Museum of Natural History, NY, 10024 USA
| |
Collapse
|
13
|
Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016; 8:117. [PMID: 27104567 PMCID: PMC4848642 DOI: 10.3390/toxins8040117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.
Collapse
Affiliation(s)
- Aida Verdes
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Prachi Anand
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Juliette Gorson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Stephen Jannetti
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Patrick Kelly
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Abba Leffler
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine 550 1st Avenue, New York, NY 10016, USA.
| | - Danny Simpson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Tandon School of Engineering, New York University 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Girish Ramrattan
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Mandë Holford
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| |
Collapse
|
14
|
Iyer JK, Otvos RA, Kool J, Kini RM. Microfluidic Chip–Based Online Screening Coupled to Mass Spectrometry. ACTA ACUST UNITED AC 2015; 21:212-20. [DOI: 10.1177/1087057115602648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/04/2015] [Indexed: 11/17/2022]
Abstract
Thrombin and factor Xa (FXa) are critical enzymes of the blood coagulation cascade and are excellent targets of anticoagulant agents. Natural sources present an array of anticoagulants that can be developed as antithrombotic drugs. High-resolution, online screening techniques have been developed for the identification of drug leads from complex mixtures. In this study, we have developed and optimized a microfluidic online screening technique coupled to nano–liquid chromatography (LC) and in parallel with a mass spectrometer for the identification of thrombin and FXa inhibitors in mixtures. Inhibitors eluting from the nano-LC were split postcolumn in a 1:1 ratio; half was fed into a mass spectrometer (where its mass is detected), and the other half was fed into a microfluidic chip (which acts as a microreactor for the online assays). With our platform, thrombin and FXa inhibitors were detected in the assay in parallel with their mass identification. These methods are suitable for the identification of inhibitors from sample amounts as low as sub-microliter volumes.
Collapse
Affiliation(s)
| | - Reka A. Otvos
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|