1
|
de Souza CC, Glória JC, da Silva ERD, de Lima Guerra Corado A, de Alcântara KÁG, Cordeiro IB, de Andrade EV, Mariúba LAM. Single-Stranded Variable Fragment Gene Libraries Built for Phage Display: An Updated Review of Design, Selection and Application. J Microbiol Biotechnol 2024; 35:e2407049. [PMID: 39631781 PMCID: PMC11813352 DOI: 10.4014/jmb.2407.07049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024]
Abstract
The development of the phage display technique has brought practicality and speed when selecting high-affinity molecules. It is used to obtain single-chain variable fragments (scFvs) and has revolutionized several branches of research and industry. These are developed from gene libraries that differ in their construction strategies, which causes a diversity of sequences, specificity and binding strength of the projected molecule to its antigen. In this review, we present the recent studies that demonstrate methods and approaches using immune, naïve, synthetic and semi-synthetic libraries to construct and select scFvs. Subsequently, the characteristics of these libraries, the functionality of the scFvs and the cost-benefits of production will be discussed. In addition, we highlight the methodological trends and challenges to be overcome in order to optimize the production and application of these antibody fragments.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Juliane Corrêa Glória
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - Eliza Raquel Duarte da Silva
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
| | - André de Lima Guerra Corado
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Universidade Nilton Lins, Manaus, AM, Brazil
| | - Kelson Ávila Graça de Alcântara
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Faculdade Estácio do Amazonas, Manaus, AM, Brazil
| | - Isabelle Bezerra Cordeiro
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Edmar Vaz de Andrade
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-graduação em Biotecnologia (PPGBIOTEC), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia (DCDIA), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro (PPGBIO-Interação), Instituto Leônidas e Maria Deane (ILMD/Fiocruz-Amazônia), Manaus, AM, Brazil
- Programa de Pós-graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
2
|
Jin J, Chen W, Xu C, Pooe OJ, Xie Y, Shen C, Meng M, Zhu Q, Zhang X, Liu X, Liu Y. Rational design and application of broad-spectrum antibodies for Bt Cry toxins determination. Anal Biochem 2024; 693:115584. [PMID: 38843975 DOI: 10.1016/j.ab.2024.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC50) values of 0.12-9.86 μg/mL. Similarly, 1A0-mAb showed broad spectrum activity, recognizing all of the above Cry protein (IC50 values of 4.66-20.46 μg/mL) with the exception of Cry2Aa. Using optimizations studies, 1A10-mAb was used as a capture antibody and pAbs as detection antibody. Double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) were established for Cry1 toxin, Cry2Ab and Cry3Aa with the limit of detection (LOD) values of 2.36-36.37 ng/mL, respectively. The present DAS-ELISAs had good accuracy and precisions for the determination of Cry toxin spiked tap water, corn, rice, soybeans and soil samples. In conclusion, the present study has successfully obtained broad-spectrum pAbs and mAb. Furthermore, the generated pAbs- and mAb-based DAS-ELISAs protocol can potentially be used for the broad-spectrum monitoring of eight common subtypes of Bt Cry toxins residues in food and environmental samples.
Collapse
Affiliation(s)
- Jiafeng Jin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210023, China
| | - Wei Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ofentse Jacob Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Cheng Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Plant Protection, Nanjing Agricultural University, Nanjing, 210023, China
| | - Meng Meng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Qin Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Qiu Y, You A, Zhang M, Cui H, Fu X, Wang J, Huang H, Shentu X, Ye Z, Yu X. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Faheem A, Qin Y, Nan W, Hu Y. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10407-10418. [PMID: 34319733 DOI: 10.1021/acs.jafc.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect-resistant genetically modified organisms have been globally commercialized for the last 2 decades. Among them, transgenic crops based on Bacillus thuringiensis crystalline (Cry) toxins are extensively used for commercial agricultural applications. However, less emphasis is laid on quantifying Cry toxins because there might be unforeseen health and environmental concerns. Immunoassays, being the preferred method for detection of Cry toxins, are reviewed in this study. Owing to limitations of traditional colorimetric enzyme-linked immunosorbent assay, the trend of detection strategies shifts to modified immunoassays based on nanomaterials, which provide ultrasensitive detection capacity. This review assessed and compared the properties of the recent advances in immunoassays, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering, surface plasmon resonance, and electrochemical approaches. Thus, the ultimate aim of this study is to identify research gaps and infer future prospects of current approaches for the development of novel immunosensors to monitor Cry toxins in food and the environment.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenrui Nan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
6
|
Dong S, Guan L, He K, Yang W, Deng W, Yuan S, Feng J. Screening of anti-idiotypic domain antibody from phage library for development of Bt Cry1A simulants. Int J Biol Macromol 2021; 183:1346-1351. [PMID: 34004200 DOI: 10.1016/j.ijbiomac.2021.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022]
Abstract
Anti-idiotypic antibody technique is a new approach for the rapid development of insecticidal protein. In this study, anti-Cry1A polyclonal antibodies were used as antigen to screen the anti-idiotypic antibody that can simulate Cry1A toxins from a phage display human domain antibody (DAB) library. After four rounds of panning, five positive clones that have binding activities with anti-Cry1A polyclonal antibodies were obtained. Indirect competitive ELISA (IC-ELISA) results showed that the positive clone D6 showed significant inhibition for the binding of Cry1A toxins with anti-Cry1A polyclonal antibodies, and the inhibition ratio increased with the increase of D6 content. While, B3, F4, G5, C7 and the controls showed no obvious inhibition to Cry1A toxins. The results suggest that D6 is the "β" subtype anti-idiotypic antibody, which can simulate Cry1A toxins and competitive binding with anti-Cry1A polyclonal antibodies. Meanwhile, D6 had certain binding activity with the brush border membrane vesicles (BBMV) of p. xylostella, which was the receptor of Cry1A toxins. The results of bioassay showed that D6 had certain insecticidal activity, and the lethal concentration of 50% (LC50) was 976 ng/cm2. This study provides basic materials and experience for the development of Cry toxin simulants.
Collapse
Affiliation(s)
- Sa Dong
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wenchao Yang
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Wei Deng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Shuzhong Yuan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China.
| |
Collapse
|
7
|
Kanagasubbulakshmi S, Kadirvelu K. Paper-Based Simplified Visual Detection of Cry2Ab Insecticide from Transgenic Cottonseed Samples Using Integrated Quantum Dots-IgY Antibodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4074-4080. [PMID: 33789050 DOI: 10.1021/acs.jafc.0c07180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, an easy to use field-deployable methodology was developed for onsite detection of pesticidal crystal protein Cry2Ab from transgenic cotton crops to reduce seed adulteration. Anti Cry2Ab IgG and IgY antibodies were developed against recombinant Cry2Ab protein in New Zealand white rabbits and in white leg horn chickens, respectively. Carboxyl-functionalized CdTe quantum dots (QDs) were used as revealing probes, and nitrocellulose paper was used as an assay matrix. Recombinant Cry2Ab was generated in the lab and used for immunization of chicken and rabbits. After successful immunization and attaining the desired titer values (1:32 000 for IgY and 1:64 000 for IgG), eggs and hyperimmune sera were collected. Anti Cry2Ab IgY was purified as per the standardized protocols, and anti Cry2Ab IgG was purified using protein A affinity chromatography. Sensitivity of the generated antibodies was examined using indirect ELISA methods against recombinant Cr2Ab protein. Specificity evaluation was carried out against other Cry proteins including Cry2Ab, Cry4b, Cry4a, Cry1Ec, and Cry1Ac. Functionalized CdTe QDs were characterized for structure and shape as well as fluorescence properties using standard laboratory techniques. A field-deployable paper-based detection methodology was developed where IgG acted as the capturing antibody and IgY-linked CdTe QDs were used as revealing probes. The limit of detection (LOD) and quantification (LOQ) were found to be 2.91 ng/mL and 9.71 ng/mL, respectively. The effect of matrix interference was assessed on the different plant crude extracts of cottonseed materials.
Collapse
Affiliation(s)
- S Kanagasubbulakshmi
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore-641046, Tamilnadu, India
| | - K Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore-641046, Tamilnadu, India
| |
Collapse
|
8
|
Thongkham M, Thaworn W, Pattanawong W, Teepatimakorn S, Mekchay S, Sringarm K. Spermatological parameters of immunologically sexed bull semen assessed by imaging flow cytometry, and dairy farm trial. Reprod Biol 2021; 21:100486. [PMID: 33636584 DOI: 10.1016/j.repbio.2021.100486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
This study compared the quality parameters of bull semen sexed using an immunological method with those of conventional semen by imaging flow cytometry and applied this semen in dairy farm trials. Semen samples were collected from ten ejaculates from five bulls. Each sample was divided into two treatments: conventional semen (CON) and semen sexed using monoclonal male-specific antibodies combined with the complement system for cytotoxicity reaction (IC-sexed). After obtaining frozen-thawed semen, we used imaging flow cytometry to assess acrosome integrity, sperm sex ratio and viability. Sperm morphology was evaluated using eosin-nigrosin staining. The percentage acrosome integrity did not differ between IC-sexed and CON semen (P = 0.313). The sperm sex ratio showed that the percentage of live X-chromosome-bearing sperm was higher than that of live Y-chromosome-bearing sperm in IC-sexed semen (P = 0.001). IC-sexed semen showed a higher percentage of head and tail defects than did CON semen (P = 0.019). In field trials, 585 cows were subjected randomly to AI with CON or IC-sexed semen. The pregnancy rate of the IC-sexed group did not differ from that of the CON group (P = 0.535). However, IC-sexed semen produced a significantly higher percentage of female calves than did CON semen (P = 0.031). Thus, immunological sexing did not adversely affect the acrosome integrity of sperm. Furthermore, a female calf birth rate of over 74 % can potentially be achieved using IC-sexed semen. These findings could help farmers to replace heifers in their herds.
Collapse
Affiliation(s)
- Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wannaluk Thaworn
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Wiwat Pattanawong
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai, 50290, Thailand
| | - Sorn Teepatimakorn
- Livestock Semen Production Center, Inthanon Royal Project, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Chiang Mai, 50360, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, 50200, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, 50200, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.
| |
Collapse
|
9
|
Thaworn W, Hongsibsong S, Thongkham M, Mekchay S, Pattanawong W, Sringarm K. Production of single-chain fragment variable (scFv) antibodies specific to plasma membrane epitopes on bull Y-bearing sperm. Anim Biotechnol 2020; 33:508-518. [DOI: 10.1080/10495398.2020.1811294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wannaluk Thaworn
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Surat Hongsibsong
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Suthep, Thailand
- Laboratory Research Institute for Health Sciences, Chiang Mai University, Suthep, Thailand
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Suthep, Thailand
| | - Wiwat Pattanawong
- Faculty of Animal Science and Technology, Maejo University, Nong Han, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Suthep, Thailand
| |
Collapse
|
10
|
Construction, Expression, and Identification of Double Light Chain (VL-VL) Antibody from a Unique Bt Cry1-Specific Monoclonal Antibody. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01754-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Dong S, Gao M, Bo Z, Guan L, Hu X, Zhang H, Liu B, Li P, He K, Liu X, Zhang C. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody. Int J Biol Macromol 2020; 149:60-69. [PMID: 31954781 DOI: 10.1016/j.ijbiomac.2020.01.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
There are plenty of applications of Cry1A toxins (Cry1Aa, Cry1Ab, Cry1Ac) in genetically modified crops, and it is necessary to establish corresponding detection methods. In this study, a single-chain variable fragment (scFv) with high affinities to Cry1A toxins was produced. First, the variable regions of heavy (VH) and light chain (VL) were amplified from hybridoma cell 5B5 which secrete anti-Cry1A monoclonal antibody (mAb) and then spliced into scFv-5B5 by overlap extension polymerase chain reaction (SOE-PCR). Subsequently, site-saturation mutagenesis was performed after homology modeling and molecular docking, which showed that asparagine35, phenylalanine36, isoleucine104, tyrosine105, and serine196, respectively, located in VH complementarity-determining region (CDR1 and CDR3) and VL framework region (FR3) were key amino acid sites. Then, the mutagenesis scFv library (1.35 × 105 CFU/mL) was constructed and a mutant scFv-2G12 with equilibrium dissociation constant (KD) value of 9.819 × 10-9 M against Cry1Ab toxin, which was lower than scFv-5B5 (2.025 × 10-8 M) was obtained by biopanning. Then, enzyme-linked immunosorbent assay (ELISA) was established with limit of detection (LOD) and limit of quantitation (LOQ) of 4.6-9.2 and 11.1-17.1 ng mL-1 respectively for scFv-2G12, which were lower than scFv-5B5 (12.4-22.0 and 23.6-39.7 ng mL-1). Results indicated the promising prospect of scFv-2G12 used for the detection of Cry1A toxins.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China; College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Zongyi Bo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lingjun Guan
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Hanxiaoya Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Beibei Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Kangli He
- College of Horticulture and Plant Protection, Yangzhou University, 225009 Yangzhou, PR China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China.
| |
Collapse
|
12
|
Qiu Y, Li P, Liu B, Liu Y, Wang Y, Tao T, Xu J, Hammock BD, Liu X, Guan R, Zhang C. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2A toxin in cereals. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1642307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yulou Qiu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Pan Li
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Beibei Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Yulong Wang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Tingting Tao
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Junli Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Bruce D. Hammock
- Laboratory of Pesticide and Nematology Biotechnology, Department of Entomology, University of California, Davis, CA, USA
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Rongfa Guan
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, People’s Republic of China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
13
|
Xu C, Liu X, Liu Y, Zhang X, Zhang C, Li J, Liu X. High sensitive single chain variable fragment screening from a microcystin-LR immunized mouse phage antibody library and its application in immunoassay. Talanta 2019; 197:397-405. [PMID: 30771953 DOI: 10.1016/j.talanta.2019.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 12/23/2022]
Abstract
Microcystin-LR (MC-LR) is one of common high-toxic biotoxins produced by cyanobacteria in waterbody. A high sensitive and convenient detection method is necessary for monitoring for MC-LR. To establish a high sensitive indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on single chain variable fragment (scFv) for detecting MC-LR, 16 positive anti-MC-LR phage scFv particles were screened out from a MC-LR-immunized mouse phage scFv library, which was successfully constructed with the capacity of 8.67 × 107 CFU/mL. The most positive anti-MC-LR phage scFv (MscFv7) was successfully expressed in Escherichia coli (E.coli) HB2151. The molecular weight (M.W.) of expressed protein was about 30 kDa, and the concentration of purified protein was 512.6 μg/mL analyzed by SDS-PAGE and protein quantitative respectively. The IC-ELISA based on MscFv7-scFv for MC-LR shows a half-maximum inhibition (IC50) of 0.471 μg/L and a limit of detection (LOD) of 0.044 μg/L, which is below the maximum residue limit standard (MRLs) of 1.0 μg/L in drinking water. The MscFv7-scFv has a strong cross-recognition for MC-RR and MC-YR with cross-reactivity (CRs) of 93.1% and 85.9%, respectively, but weak for MC-LW with that of 9.7%, even non-recognition for MC-WR, MC-LF and MC-LY. The recovery rates of IC-ELISA to detect MC-LR spiked in different cleanliness of water samples were 81.2-106.3% with CVs of 2.62-10.22% at intra-assay and inter-assay. The results showed that we obtained a high sensitive anti-MC-LR scFv, and the established IC-ELISA based on MscFv7-scFv should be promising for ultrasensitive monitoring MC-LR, MC-RR and MC-YR in water samples.
Collapse
Affiliation(s)
- Chongxin Xu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqin Liu
- Huaihua Vocational and Technical College, Huaihua 418007, China
| | - Yuan Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cunzheng Zhang
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianhong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xianjin Liu
- Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
14
|
Lu X, Jiang DJ, Yan JX, Ma ZE, Luo XE, Wei TL, Xu Y, He QH. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta 2018; 179:646-651. [DOI: 10.1016/j.talanta.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
|
15
|
Dong S, Bo Z, Zhang C, Feng J, Liu X. Screening for single-chain variable fragment antibodies against multiple Cry1 toxins from an immunized mouse phage display antibody library. Appl Microbiol Biotechnol 2018; 102:3363-3374. [DOI: 10.1007/s00253-018-8797-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
|
16
|
Zhong W, Li G, Yu X, Zhu M, Gong L, Wan Y. Sensitive detection of Bacillus thuringiensis Cry1B toxin based on camel single-domain antibodies. Microbiologyopen 2018; 7:e00581. [PMID: 29476614 PMCID: PMC6079177 DOI: 10.1002/mbo3.581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Bt Cry1B toxin, a residue in insect-resistant transgenic plants, has been identified to be harmful to human health. Therefore, it is urgent to detect the Cry1B toxin level in each kind of transgenic plant. Nbs, with prominently unique physiochemical properties, are becoming more and more promising tools in the detection of target antigens. In this study, an immune phage display library that was of high quality was successfully constructed for the screening of Cry1B-specific Nbs with excellent specificity, affinity, and thermostable. Subsequently, a novel sandwich ELISA for Cry1B detection was established, which was based on the biotin-streptavidin system using these aforementioned Nbs. This established detection system presented a linear working range from 5 to 1000 ng ml-1 and a low detection limit of 3.46 ng ml-1 . The recoveries from spiked samples were in the range of 82.51%-113.56% with a relative standard deviation (RSD) lower than 5.00%. Taken together, the proposed sandwich ELISA would be a potential method for the detection of Cry1B toxin in transgenic Bt plants specifically and sensitively.
Collapse
Affiliation(s)
- Wenjing Zhong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghui Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolu Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Min Zhu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yakun Wan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. Int J Biol Macromol 2018; 107:920-928. [DOI: 10.1016/j.ijbiomac.2017.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022]
|
18
|
Qiu Y, Li P, Dong S, Zhang X, Yang Q, Wang Y, Ge J, Hammock BD, Zhang C, Liu X. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:950-956. [PMID: 29293334 PMCID: PMC7314401 DOI: 10.1021/acs.jafc.7b04923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.
Collapse
Affiliation(s)
- Yulou Qiu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoshuai Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qianru Yang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Ge
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bruce D. Hammock
- Laboratory of Pesticide & Biotechnology, Department of Entomology, University of California, Davis, CA 95616, USA
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Corresponding author at: Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Tel.:+86-25-8439 0401; (C. Zhang)
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
19
|
Wang Y, Wang Q, Wu AH, Hao ZP, Liu XJ. Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab. Anal Biochem 2017; 539:29-32. [PMID: 28279647 DOI: 10.1016/j.ab.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Traditional ELISA methods of using animal immunity yield antibodies for detection Cry toxin. Not only is this incredibly harmful to the animals, but is also time-intensive. Here we developed a simple method to yield the recognition element. Using a critical selection strategy and immunoassay we confirmed a clone from the Ph.D-C7C phage library, which has displayed the most interesting Cry1Ab-binding characteristics examined in this study (Fig. 1). The current study indicates that isolating peptide is an alternative method for the preparation of a recognition element, and that the developed assay is a potentially useful tool for detecting Cry1Ab.
Collapse
Affiliation(s)
- Yun Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China.
| | - Qian Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Ai-Hua Wu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro- Product Safety and Quality, Ministry of Agriculture, Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Zhen-Ping Hao
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xian-Jin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro- Product Safety and Quality, Ministry of Agriculture, Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| |
Collapse
|
20
|
Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Appl Microbiol Biotechnol 2017; 101:6071-6082. [DOI: 10.1007/s00253-017-8347-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
|
21
|
Dong S, Zhang C, Liu Y, Zhang X, Xie Y, Zhong J, Xu C, Liu X. Simultaneous production of monoclonal antibodies against Bacillus thuringiensis (Bt) Cry1 toxins using a mixture immunization. Anal Biochem 2017; 531:60-66. [PMID: 28527908 DOI: 10.1016/j.ab.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 11/16/2022]
Abstract
The detections of Cry1 toxins are mainly dependent on immunoassays based on specific monoclonal antibodies (mAb). In the present study, a mixture immunization with seven Cry1 toxins was administered. The results showed that five mAbs with different characteristics, especially one mAb named 5-E8 which could recognize all the seven Cry1 toxins were obtained. Based on the 5-E8 mAb, a double antibody sandwich enzyme linked immunosorbent assay (DAS-ELISA) which can specifically detect the seven Cry1 toxins without cross-reactivity to Cry2A and vip3 was developed with the limit of detection (LOD) and limit of quantification (LOQ) of 6.37-11.35 ng mL-1 and 17.36-24.48 ng mL-1, respectively. The recovery tests showed that the recoveries ranged from 78% to 110% within the quantitation range (LOQ-100 ng mL-1). The established DAS-ELISA can be a useful tool for monitoring the Cry1 toxins in agricultural products. Mixture immunization opens a new path for producing diverse mAbs simultaneously in a single immunization circle.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Yajing Xie
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Chongxin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu, PR China; College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
22
|
Dong S, Zhang C, Zhang X, Liu Y, Zhong J, Xie Y, Xu C, Ding Y, Zhang L, Liu X. Production and Characterization of Monoclonal Antibody Broadly Recognizing Cry1 Toxins by Use of Designed Polypeptide as Hapten. Anal Chem 2016; 88:7023-32. [DOI: 10.1021/acs.analchem.6b00429] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sa Dong
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Cunzheng Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xiao Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yuan Liu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Jianfeng Zhong
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Yajing Xie
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Chongxin Xu
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Ying Ding
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Liuquan Zhang
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory
of Food Quality and Safety of Jiangsu Province, State Key Laboratory
Breeding Base, Key Laboratory of Control Technology and Standard for
Agro-product Safety and Quality, Ministry of Agriculture, and Institute
of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
23
|
Chen R, Huang X, Xu H, Xiong Y, Li Y. Plasmonic Enzyme-Linked Immunosorbent Assay Using Nanospherical Brushes as a Catalase Container for Colorimetric Detection of Ultralow Concentrations of Listeria monocytogenes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28632-9. [PMID: 26646325 DOI: 10.1021/acsami.5b10181] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plasmonic enzyme-linked immunosorbent assay (pELISA) based on catalase (CAT)-mediated gold nanoparticle growth exhibits ultrahigh sensitivity for detecting disease-related biomarkers using sandwich formats. However, the limit of detection (LOD) of this strategy for Listeria monocytogenes is only around 10(3) CFU/mL, which considerably exceeds the amount of L. monocytogenes commonly present in food products (<100 CFU/g). Herein, we report an improved pELISA method for detection of L. monocytogenes at ultralow concentrations with the sandwich formats using silica nanoparticles carrying poly(acrylic acid) brushes as a "CAT container" to increase enzyme loading for enhancing the detection signal. Under optimal conditions, the proposed pELISA exhibits good specificity and excellent sensitivity for L. monocytogenes with a LOD of 8 × 10(1) CFU/mL in 0.01 M phosphate-buffered saline, via a reaction that can be discriminated by the naked eye. The LOD obtained by this method was 2 and 5 orders of magnitude lower than that of conventional CAT-based pELISA and horseradish peroxidase (HRP)-based conventional ELISA, respectively. Coupled with large-volume immunomagnetic separation, the LOD for L. monocytogenes-spiked lettuce samples reached 8 × 10(1) CFU/g. The improved pELISA also exhibited a great potential in detecting a single cell of L. monocytogenes in 100 μL of solution.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science, Nanchang University , Nanchang 330031, P. R. China
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Yonghua Xiong
- College of Life Science, Nanchang University , Nanchang 330031, P. R. China
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
24
|
Li M, Zhu M, Zhang C, Liu X, Wan Y. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins (Basel) 2014; 6:3208-22. [PMID: 25474492 PMCID: PMC4280530 DOI: 10.3390/toxins6123208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL-1 and a working range 0.010-1.0 μg·mL-1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.
Collapse
Affiliation(s)
- Min Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Cunzheng Zhang
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xianjin Liu
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| |
Collapse
|