1
|
Zeng L, Zhang C, Yang M, Sun J, Lu J, Zhang H, Qin J, Zhang W, Jiang Z. Unveiling the Diversity and Modifications of Short Peptides in Buthus martensii Scorpion Venom through Liquid Chromatography-High Resolution Mass Spectrometry. Toxins (Basel) 2024; 16:155. [PMID: 38535821 PMCID: PMC10975176 DOI: 10.3390/toxins16030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2025] Open
Abstract
More recently, short peptides in scorpion venom have received much attention because of their potential for drug discovery. Although various biological effects of these short peptides have been found, their studies have been hindered by the lack of structural information especially in modifications. In this study, small peptides from scorpion venom were investigated using high-performance liquid chromatography high-resolution mass spectrometry followed by de novo sequencing. A total of 156 sequences consisting of 2~12 amino acids were temporarily identified from Buthus martensii scorpion venom. The identified peptides exhibited various post-translational modifications including N-terminal and C-terminal modifications, in which the N-benzoyl modification was first found in scorpion venom. Moreover, a short peptide Bz-ARF-NH2 demonstrated both N-terminal and C-terminal modifications simultaneously, which is extremely rare in natural peptides. In conclusion, this study provides a comprehensive insight into the diversity, modifications, and potential bioactivities of short peptides in scorpion venom.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (L.Z.); (C.Z.); (M.Y.); (J.S.); (J.L.); (H.Z.); (J.Q.); (W.Z.)
| |
Collapse
|
2
|
Nasr S, Borges A, Sahyoun C, Nasr R, Roufayel R, Legros C, Sabatier JM, Fajloun Z. Scorpion Venom as a Source of Antimicrobial Peptides: Overview of Biomolecule Separation, Analysis and Characterization Methods. Antibiotics (Basel) 2023; 12:1380. [PMID: 37760677 PMCID: PMC10525675 DOI: 10.3390/antibiotics12091380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target biological receptors with remarkable affinity. Some of these receptors have emerged as prime therapeutic targets for addressing various human pathologies, including cancer and infectious diseases, and have served as models for designing novel drugs. Consequently, extensive biochemical and proteomic investigations have focused on characterizing scorpion venoms. This review provides a comprehensive overview of the key methodologies used in the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase high-performance liquid chromatography, size exclusion chromatography, and "omics" approaches are explored, along with various combinations of methods that enable bioassay-guided venom fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These workflows differ based on whether the venom is pre-fractionated using separation techniques or is proteolytically digested directly before further proteomic analyses. Since the composition and functionality of scorpion venoms are species-specific, the selection and sequence of the techniques for venom analyses, including these workflows, should be tailored to the specific parameters of the study.
Collapse
Affiliation(s)
- Sara Nasr
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
| | - Adolfo Borges
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas 50587, Venezuela;
- Centro para el Desarrollo de la Investigación Científica, Asunción 1255, Paraguay
| | - Christina Sahyoun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Riad Nasr
- Department of Physical Therapy, Faculty of Public Health 3, Lebanese University, Tripoli 1200, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Jean-Marc Sabatier
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| |
Collapse
|
3
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
4
|
AaTs-1: A Tetrapeptide from Androctonus australis Scorpion Venom, Inhibiting U87 Glioblastoma Cells Proliferation by p53 and FPRL-1 Up-Regulations. Molecules 2021; 26:molecules26247610. [PMID: 34946686 PMCID: PMC8704564 DOI: 10.3390/molecules26247610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.
Collapse
|
5
|
Maatoug S, Cheikh A, Khamessi O, Tabka H, Landoulsi Z, Guigonis JM, Diochot S, Bendahhou S, Benkhalifa R. Cross Pharmacological, Biochemical and Computational Studies of a Human Kv3.1b Inhibitor from Androctonus australis Venom. Int J Mol Sci 2021; 22:ijms222212290. [PMID: 34830172 PMCID: PMC8618407 DOI: 10.3390/ijms222212290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.
Collapse
Affiliation(s)
- Sonia Maatoug
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| | - Amani Cheikh
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Oussema Khamessi
- Laboratoire des Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia;
| | - Hager Tabka
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia
| | - Zied Landoulsi
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l′Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur, F-06107 Nice, France;
| | - Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France;
| | - Saïd Bendahhou
- UMR7370 CNRS, LP2M, Université Côte d’Azur, Labex ICST, Nice, France;
| | - Rym Benkhalifa
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| |
Collapse
|
6
|
Xiao Z, Zhao P, Wu X, Kong X, Wang R, Liang S, Tang C, Liu Z. Variation of Two S3b Residues in K V4.1-4.3 Channels Underlies Their Different Modulations by Spider Toxin κ-LhTx-1. Front Pharmacol 2021; 12:692076. [PMID: 34177600 PMCID: PMC8222713 DOI: 10.3389/fphar.2021.692076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The naturally occurred peptide toxins from animal venoms are valuable pharmacological tools in exploring the structure-function relationships of ion channels. Herein we have identified the peptide toxin κ-LhTx-1 from the venom of spider Pandercetes sp (the Lichen huntsman spider) as a novel selective antagonist of the KV4 family potassium channels. κ-LhTx-1 is a gating-modifier toxin impeded KV4 channels' voltage sensor activation, and mutation analysis has confirmed its binding site on channels' S3b region. Interestingly, κ-LhTx-1 differently modulated the gating of KV4 channels, as revealed by toxin inhibiting KV4.2/4.3 with much more stronger voltage-dependence than that for KV4.1. We proposed that κ-LhTx-1 trapped the voltage sensor of KV4.1 in a much more stable resting state than that for KV4.2/4.3 and further explored the underlying mechanism. Swapping the non-conserved S3b segments between KV4.1(280FVPK283) and KV4.3(275VMTN278) fully reversed their voltage-dependence phenotypes in inhibition by κ-LhTx-1, and intensive mutation analysis has identified P282 in KV4.1, D281 in KV4.2 and N278 in KV4.3 being the key residues. Furthermore, the last two residues in this segment of each KV4 channel (P282/K283 in KV4.1, T280/D281 in KV4.2 and T277/N278 in KV4.3) likely worked synergistically as revealed by our combinatorial mutations analysis. The present study has clarified the molecular basis in KV4 channels for their different modulations by κ-LhTx-1, which have advanced our understanding on KV4 channels' structure features. Moreover, κ-LhTx-1 might be useful in developing anti-arrhythmic drugs given its high affinity, high selectivity and unique action mode in interacting with the KV4.2/4.3 channels.
Collapse
Affiliation(s)
- Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangyue Wu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ruiwen Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Zoukimian C, Meudal H, De Waard S, Ouares KA, Nicolas S, Canepari M, Béroud R, Landon C, De Waard M, Boturyn D. Synthesis by native chemical ligation and characterization of the scorpion toxin AmmTx3. Bioorg Med Chem 2018; 27:247-253. [PMID: 30529150 DOI: 10.1016/j.bmc.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
The scorpion toxin AmmTx3 is a specific blocker of Kv4 channels. It was shown to have interesting potential for neurological disorders. In this study, we report the first chemical synthesis of AmmTx3 by using the native chemical ligation strategy and validate its biological activity. We determined its 3D structure by nuclear magnetic resonance spectroscopy, and pointed out that AmmTx3 possesses the well-known CSαβ structural motif, which is found in a large number of scorpion toxins. Overall, this study establishes an easy synthetic access to biologically active AmmTx3 toxin.
Collapse
Affiliation(s)
- Claude Zoukimian
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France; Smartox Biotechnology, 6 rue des platanes, Saint Egrève 38120, France
| | - Hervé Meudal
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | - Stephan De Waard
- Institut du Thorax, INSERM, CNRS, Univ. Nantes, 8 quai Moncousu, BP 70721, Nantes 44007, France
| | - Karima Ait Ouares
- Laboratory for Interdisciplinary Physics, Univ. Grenoble Alpes, CNRS, 140 Avenue de la Physique, BP 87, Saint-Martin d'Hères 38402, France
| | - Sébastien Nicolas
- Institut du Thorax, INSERM, CNRS, Univ. Nantes, 8 quai Moncousu, BP 70721, Nantes 44007, France
| | - Marco Canepari
- Laboratory for Interdisciplinary Physics, Univ. Grenoble Alpes, CNRS, 140 Avenue de la Physique, BP 87, Saint-Martin d'Hères 38402, France
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des platanes, Saint Egrève 38120, France
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans 45071, France
| | - Michel De Waard
- Institut du Thorax, INSERM, CNRS, Univ. Nantes, 8 quai Moncousu, BP 70721, Nantes 44007, France
| | - Didier Boturyn
- Department of Molecular Chemistry, Univ. Grenoble Alpes, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| |
Collapse
|
8
|
Ding L, Chen J, Hao J, Zhang J, Huang X, Hu F, Wu Z, Liu Y, Li W, Cao Z, Wu Y, Li J, Li S, Liu H, Wu W, Chen Z. Discovery of three toxin peptides with Kv1.3 channel and IL-2 cytokine-inhibiting activities from Non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Peptides 2017; 91:13-19. [PMID: 28300672 DOI: 10.1016/j.peptides.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022]
Abstract
Non-Buthidae venomous scorpions are huge natural sources of toxin peptides; however, only a few studies have been done to understand their toxin peptides. Herein, we describe three new potential immunomodulating toxin peptides, Ctri18, Ctry68 and Ctry2908, from two non-Buthidae scorpions, Chaerilus tricostatus and Chaerilus tryznai. Sequence alignment analyses showed that Ctri18, Ctry68 and Ctry2908 are three new members of the scorpion toxin α-KTx15 subfamily. Electrophysiological experiments showed that Ctri18, Ctry68 and Ctry2908 blocked the Kv1.3 channel at micromole to nanomole levels, but had weak effects on potassium channel KCNQ1 and sodium channel Nav1.4, which indicated that Ctri18, Ctry68 and Ctry2908 might have specific inhibiting effects on the Kv1.3 channel. ELISA experiments showed that Ctri18, Ctry68 and Ctry2908 inhibited IL-2 cytokine secretions of activated T lymphocyte in human PBMCs. Excitingly, consistent with the good Kv1.3 channel inhibitory activity, Ctry2908 inhibited cytokine IL-2 secretion in nanomole level, which indicated that Ctry2908 might be a new lead drug template toward Kv1.3 channels. Together, these studies discovered three new toxin peptides, Ctri18, Ctry68 and Ctry2908, with Kv1.3 channel and IL-2 cytokine-inhibiting activities from two scorpions, C. tricostatus and C. tryznai, and highlighted that non-Buthidae venomous scorpions are new natural toxin peptide sources.
Collapse
Affiliation(s)
- Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Jing Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xuejun Huang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Fangfang Hu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zheng Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Yaru Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Hongyan Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Wenlong Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China.
| |
Collapse
|