1
|
Chen J, Geng X, Li B, Xie J, Ma J, Qin Z, Wang M, Yang J. Homosalate and ERK Knockdown in the Modulation of Aurelia coerulea Metamorphosis by Regulating the PI3K Pathway and ERK Pathway. Curr Issues Mol Biol 2024; 46:11630-11645. [PMID: 39451570 PMCID: PMC11505814 DOI: 10.3390/cimb46100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Metamorphosis control is pivotal in preventing the outbreak of jellyfish, and it is often studied using common model organisms. The widespread use of the ultraviolet blocking agent homosalate in cosmetics poses a threat to marine ecosystems. Although the impact of homosalate on marine organisms has been extensively examined, there is a notable absence of research on its effects on jellyfish metamorphosis and the underlying mechanisms, warranting further investigation. In this study, we first established a study model by using 5-methoxy-2-methylindole to induce Aurelia coerulea metamorphosis, and selected homosalate as a PI3K agonist and an ERK agonist, while we used YS-49 as a specific PI3K agonist, as well as ERK knockdown, to observe their effect on the metamorphosis of Aurelia coerulea. The results showed that an Aurelia coerulea metamorphosis model was established successfully, and the PI3K agonist homosalate, YS-49, and the knockdown of ERK molecules could significantly delay the metamorphosis development of Aurelia coerulea. We propose that activating PI3K/Akt and inhibiting the ERK pathway are involved in the delayed development of Aurelia coerulea, which provides a new strategy for the prevention and control of jellyfish blooms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (J.C.); (X.G.); (B.L.); (J.X.); (Z.Q.)
| |
Collapse
|
2
|
Nagata RM, D'Ambra I, Lauritano C, von Montfort GM, Djeghri N, Jordano MA, Colin SP, Costello JH, Leoni V. Physiology and functional biology of Rhizostomeae jellyfish. ADVANCES IN MARINE BIOLOGY 2024; 98:255-360. [PMID: 39547751 DOI: 10.1016/bs.amb.2024.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rhizostomeae species attract our attention because of their distinctive body shape, their large size and because of blooms of some species in coastal areas around the world. The impacts of these blooms on human activities, and the interest in consumable species and those of biotechnological value have led to a significant expansion of research into the physiology and functional biology of Rhizostomeae jellyfish over the last years. This review brings together information generated over these last decades on rhizostome body composition, locomotion, toxins, nutrition, respiration, growth, among other functional parameters. Rhizostomes have more than double the carbon content per unit of biomass than jellyfish of Semaeostomeae. They swim about twice as fast, and consume more oxygen than other scyphozoans of the same size. Rhizostomes also have faster initial growth in laboratory and the highest body growth rates measured in nature, when compared to other medusae groups. Parameters such as body composition, nutrition and excretion are highly influenced by the presence of symbiotic zooxanthellae in species of the Kolpophorae suborder. These physiological and functional characteristics may reveal a wide range of adaptive responses, but our conclusions are still based on studies of a limited number of species. Available data indicates that Rhizosotomeae jellyfish have a higher energy demand and higher body productivity when compared to other jellyfish groups. The information gathered here can help ecologists better understand and make more assertive predictions on the role of these jellyfish in their ecosystems.
Collapse
Affiliation(s)
- Renato M Nagata
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanografia Biológica (PPGOB), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Isabella D'Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy; National Center for Future Biodiversity (NFBC), Palermo, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Guilherme M von Montfort
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanografia Biológica (PPGOB), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Mayara A Jordano
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sean P Colin
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI, United States; Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - John H Costello
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States; Biology Department, Providence College, Providence, RI, United States
| | - Valentina Leoni
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
3
|
Geng XY, Wang MK, Hou XC, Wang ZF, Wang Y, Zhang DY, Danso B, Wei DB, Shou ZY, Xiao L, Yang JS. Comparative Analysis of Tentacle Extract and Nematocyst Venom: Toxicity, Mechanism, and Potential Intervention in the Giant Jellyfish Nemopilema nomurai. Mar Drugs 2024; 22:362. [PMID: 39195478 PMCID: PMC11355847 DOI: 10.3390/md22080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV for their composition, toxicity, and efficacy in vitro and in vivo used RAW264.7 cells and ICR mice. A total of 239 and 225 toxin proteins were identified in TE and NV by proteomics, respectively. Pathological analysis revealed that TE and NV caused heart and liver damage through apoptosis, necrosis, and inflammation, while TE exhibited higher toxicity ex vivo and in vivo. Biochemical markers indicated TE and NV elevated creatine kinase, lactatedehydrogenase, and aspartate aminotransferase, with the TE group showing a more significant increase. Transcriptomics and Western blotting indicated both venoms increased cytokines expression and MAPK signaling pathways. Additionally, 1 mg/kg PACOCF3 (the phospholipase A2 inhibitor) improved survival from 16.7% to 75% in mice. Our results indicate that different extraction methods impact venom activities, tentacle autolysis preserves toxin proteins and their toxicity, and PACOCF3 is a potential antidote, which establishes a good extraction method of jellyfish venom, expands our understanding of jellyfish toxicity, mechanism, and provides a promising intervention.
Collapse
Affiliation(s)
- Xiao-Yu Geng
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| | - Ming-Ke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| | - Xiao-Chuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Zeng-Fa Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yi Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Die-Yu Zhang
- College of Pharmacy, Bengbu Medical University, Bengbu 233030, China;
| | - Blessing Danso
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Dun-Biao Wei
- Unit 92196 of the People’s Liberation Army, Qingdao 266000, China;
| | - Zhao-Yong Shou
- Faculty of Health Service, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (X.-C.H.); (Z.-F.W.); (Y.W.); (B.D.)
| | - Ji-Shun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China; (X.-Y.G.); (M.-K.W.)
| |
Collapse
|
4
|
Selvaraj U, Ganapathy S, Muthuvel A, Alex AM, Masood Khan J, Vijayalakshmi P. Evaluation of the toxicological properties of Himantura imbricata Venom using a zebrafish model (Danio rerio). Toxicon 2024; 243:107739. [PMID: 38704125 DOI: 10.1016/j.toxicon.2024.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The stingrays of the genus Himantura imbricata are present in all of the world's oceans, but the toxicity of their venoms has not yet been thoroughly characterized. The zebrafish as a toxicology model can be used for general toxicity testing of drugs and the investigation of toxicological mechanisms. The aim of this study was to evaluate the effect of crude venom from the stingray H. imbricata on the zebrafish Danio rerio. Juvenile zebrafish were injected with different concentrations of venom from H. imbricata via subcutaneous injections. The venom's effects were established via histological examination and hemolytic activity in zebrafish. The histopathological analysis revealed significant tissue damage in the organs of the zebrafish injected with venom, including liver necrosis and kidney degeneration. A blood examination revealed echinocytes, hemolysis, and nuclear abnormalities. Bodyweight estimations and histopathological attributes of the gills, heart, muscle, liver, intestine, eye, and brain were determined. The histological staining studies of the gills, liver, and intestine were measurably higher in the venom groups compared with the other two groups. Aggregately, the result shows that zebrafish may act as a valuable biomarker for alterations impelled by H. imbricata venom. The work delivers a useful model with substantial pharmacological potential for new drugs and a better comprehension of research on stingray venom.
Collapse
Affiliation(s)
- Uthra Selvaraj
- CAS in Marine Biology, Annamalai University, Parangipettai, India
| | | | | | - Asha Monica Alex
- Department of Biotechnology, St. Joseph's College (Autonomous), Tiruchirappalli, 620 002, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Periyasamy Vijayalakshmi
- P.G and Research Department of Biotechnology Bioinformatics, Holy Cross College (Autonomous) Affiliated to Bharathidasan University, Trichy, India.
| |
Collapse
|
5
|
Liu R, Wang Y, Kuai W, Li W, Wang Z, Xiao L, Wu J. Troxerutin suppress inflammation response and oxidative stress in jellyfish dermatitis by activating Nrf2/HO-1 signaling pathway. Front Immunol 2024; 15:1369849. [PMID: 38779681 PMCID: PMC11109374 DOI: 10.3389/fimmu.2024.1369849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Stomolophus meleagris envenomation causes severe cutaneous symptoms known as jellyfish dermatitis. The potential molecule mechanisms and treatment efficiency of dermatitis remain elusive because of the complicated venom components. The biological activity and molecular regulation mechanism of Troxerutin (TRX) was firstly examined as a potential treatment for jellyfish dermatitis. Methods We examined the inhibit effects of the TRX on tentacle extract (TE) obtained from S. meleagris in vivo and in vitro using the mice paw swelling models and corresponding assays for Enzyme-Linked Immunosorbent Assay (ELISA) Analysis, cell counting kit-8 assay, flow cytometry, respectively. The mechanism of TRX on HaCaT cells probed the altered activity of relevant signaling pathways by RNA sequencing and verified by RT-qPCR, Western blot to further confirm protective effects of TRX against the inflammation and oxidative damage caused by TE. Results TE significantly induced the mice paw skin toxicity and accumulation of inflammatory cytokines and reactive oxygen species in vivo and vitro. Moreover, a robust increase in the phosphorylation of mitogen-activated protein kinase (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways was observed. While, the acute cutaneous inflammation and oxidative stress induced by TE were significantly ameliorated by TRX treatment. Notablly, TRX suppressed the phosphorylation of MAPK and NF-κB by initiating the nuclear factor erythroid 2-related factor 2 signaling pathway, which result in decreasing inflammatory cytokine release. Conclusion TRX inhibits the major signaling pathway responsible for inducing inflammatory and oxidative damage of jellyfish dermatitis, offering a novel therapy in clinical applications.
Collapse
Affiliation(s)
- Ran Liu
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Yulian Wang
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Wenhao Kuai
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Wenting Li
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| | - Zengfa Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Navy Medical University, Shanghai, China
| |
Collapse
|
6
|
Li A, Yu H, Li R, Yue Y, Yu C, Liu S, Xing R, Li P. Effects of toxin metalloproteinases from jellyfish Nemopilema nomurai nematocyst on the dermal toxicity and potential treatment of jellyfish dermatitis. Int Immunopharmacol 2024; 128:111492. [PMID: 38218009 DOI: 10.1016/j.intimp.2024.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Jellyfish dermatitis is a common medical problem in many countries due to the jellyfish envenomation. However, there are no specific and targeted medications for their treatment. Here we investigated the possible therapeutic effects of metalloproteinase inhibitors on the dermal toxicity of Nemopilema nomurai nematocyst venom (NnNV), a giant venomous jellyfish from China, using the jellyfish dermatitis model, focusing on inflammatory effector molecules during jellyfish envenomation. Metalloproteinase may further stimulate inflammation by promoting oxidative stress in the organism and play key roles by activating MAPK and NF-κB, in the pathogenesis of jellyfish dermatitis. And the metalloproteinase inhibitors batimastat and EDTA disodium salt may treat the Jellyfish dermatitis by inhibiting the metalloproteinase activity in NnNV. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to dermal toxicity as the inflammation effect molecular, and metalloproteinase inhibitors can be regarded as novel therapeutic medicines in jellyfish envenomation. This study contributes to understanding the mechanism of jellyfish dermatitis and suggests new targets and ideas for the treatment of jellyfish envenomation.
Collapse
Affiliation(s)
- Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
7
|
Li A, Yue Y, Li R, Yu C, Wang X, Liu S, Xing R, Li P, Zhang Q, Yu H. Fucoidan may treat jellyfish dermatitis by inhibiting the inflammatory effect of jellyfish venom. Int J Biol Macromol 2023; 253:127449. [PMID: 37844814 DOI: 10.1016/j.ijbiomac.2023.127449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Jellyfish dermatitis is a common medical problem caused by jellyfish stings. However, there are no targeted and effective medications for their treatment. Here, the biological activity of fucoidan for treatment of jellyfish dermatitis was investigated for the first time. 3 mg/mL Fucoidan attenuated the inflammatory effects of Nemopilema nomurai nematocyst venom (NnNV), including dermal toxicity and myotoxicity. Fucoidan may decrease the inflammatory effects of NnNV by downregulating MAPK and NF-κB pathways. This may be attributed to the inhibitory effect of fucoidan on metalloproteinases and phospholipase A2 (PLA2) in NnNV. 3 mg/mL fucoidan reduced the metalloproteinase activity in NnNV from 316.33 ± 20.84 U/mg to 177.33 ± 25.36 U/mg, while the inhibition of PLA2 activity in NnNV by 1 mg/mL fucoidan could reach 37.67 ± 3.42 %. Besides, external application of 3 mg/mL fucoidan can effectively alleviate the symptoms of jellyfish dermatitis. These observations suggest that fucoidan has considerable potential for treatment of jellyfish dermatitis and could be regarded as a novel medicine for jellyfish envenomation. This study provides new ideas for treatment of jellyfish envenomation and suggests evidence for the use of fucoidan in the treatment of jellyfish dermatitis as well as broadens the potential application of fucoidan in clinical practice.
Collapse
Affiliation(s)
- Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Li J, Wang Q, Zou S, Song J, Zhang P, Wang F, Huang Y, He Q, Zhang L. Protective Effects of Epigallocatechin-3-gallate (EGCG) against the Jellyfish Nemopilema nomurai Envenoming. Toxins (Basel) 2023; 15:283. [PMID: 37104221 PMCID: PMC10142270 DOI: 10.3390/toxins15040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom.
Collapse
Affiliation(s)
- Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Yichao Huang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| | - Qian He
- The Third Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China; (J.L.)
| |
Collapse
|
9
|
Li R, Yu H, Li A, Yu C, Li P. Identification and characterization of the key lethal toxin from jellyfish Cyanea nozakii. Int J Biol Macromol 2023; 230:123176. [PMID: 36621741 DOI: 10.1016/j.ijbiomac.2023.123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Jellyfish Cyanea nozakii venom is a complex mixture of various toxins, most of which are proteinous biological macromolecules and are considered to be responsible for clinical symptoms or even death after a severe sting. Previous transcriptome and proteome analysis identified hundreds of toxins in the venom, including hemolysins, C-type lectin, phospholipase A2, potassium channel inhibitor, metalloprotease, etc. However, it is not clear which toxin in the venom plays the most important role in lethality. Herein, we isolated the key lethal toxin (Letoxcn) from jellyfish Cyanea nozakii using anion exchange chromatography, size-exclusion chromatography, and cation exchange chromatography. The molecular weight of Letoxcn is ∼50 kDa with the N-terminal sequences of QADAEKVNLPVGVCV. Peptide mass fingerprinting analysis of Letoxcn shows that it may have some motifs of phospholipase, metalloproteinase, thrombin-like enzyme, potassium channel toxin, etc. However, only metalloproteinase activity but no hemolytic, PLA2, or blood coagulation activity was observed from in vitro toxicity analysis. Overall, this study uncovered and characterized the key lethal toxin in the venom of jellyfish Cyanea nozakii, which will not only help to reveal the molecule mechanism of the lethality, but also develop effective treatment like antivenom for this jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
10
|
Li A, Yu H, Li R, Yue Y, Yu C, Geng H, Liu S, Xing R, Li P. Jellyfish Nemopilema nomurai causes myotoxicity through the metalloprotease component of venom. Biomed Pharmacother 2022; 151:113192. [PMID: 35644119 DOI: 10.1016/j.biopha.2022.113192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022] Open
Abstract
Jellyfish envenomation is a common medical problem in many countries. However, the myotoxicity and effector molecules of scyphozoan venoms remain uninvestigated. Here, we present the myotoxicity of nematocyst venom from Nemopilema nomurai (NnNV), a giant venomous scyphozoan from China, for the first time, using in vivo models with inhibitors. NnNV was able to induce remarkable myotoxicity including significant muscle swelling, increasing the content of CK and LDH in serum, stimulating inflammation of muscle tissue, and destroying the structure of muscle tissue. In addition, the metalloproteinase inhibitors BMT and EDTA significantly reduced the myotoxicity induced by NnNV. Moreover, BMT and EDTA could decrease the inflammatory stimulation and necrosis of muscle tissue caused by the venom. These observations suggest that the metalloproteinase components of NnNV make a considerable contribution to myotoxicity. This study contributes to understanding the effector molecules of muscle injury caused by jellyfish stings and suggests a new idea for the treatment of scyphozoan envenomation.
Collapse
Affiliation(s)
- Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
11
|
Ranasinghe RASN, Wijesekara WLI, Perera PRD, Senanayake SA, Pathmalal MM, Marapana RAUJ. Nutritional Value and Potential Applications of Jellyfish. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- R. A. S. N. Ranasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - W. L. I. Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - P. R. D. Perera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S. A. Senanayake
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M. M. Pathmalal
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R. A. U. J. Marapana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
12
|
Li R, Yu H, Li A, Yu C, Li P. Refinement and Neutralization Evaluation of the F(ab') 2 Type of Antivenom against the Deadly Jellyfish Nemopilema nomurai Toxins. Int J Mol Sci 2021; 22:ijms222312672. [PMID: 34884477 PMCID: PMC8657884 DOI: 10.3390/ijms222312672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Jellyfish stings threaten people's health and even life in coastal areas worldwide. Nemopilema nomurai is one of the most dangerous jellyfish in the East Asian Marginal Seas, which not only stings hundreds of thousands of people every year but also is assumed to be responsible for most deaths by jellyfish stings in China. However, there is no effective first-aid drug, such as antivenoms, for the treatment of severe stings by N. nomurai to date. In this study, we prepared a N. nomurai antiserum from rabbits using inactivated N. nomurai toxins (NnTXs) and isolated the IgG type of antivenom (IgG-AntiNnTXs) from the antiserum. Subsequently, IgG-AntiNnTXs were refined with multiple optimizations to remove Fc fragments. Finally, the F(ab')2 type of antivenom (F(ab')2-AntiNnTXs) was purified using Superdex 200 and protein A columns. The neutralization efficacy of both types of antivenom was analyzed in vitro and in vivo, and the results showed that both IgG and F(ab')2 types of antivenom have some neutralization effect on the metalloproteinase activity of NnTXs in vitro and could also decrease the mortality of mice in the first 4 h after injection. This study provides some useful information for the development of an effective antivenom for N. nomurai stings in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.Y.); (A.L.); (C.Y.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (R.L.); (P.L.); Tel.: +86-532-8289-8512 (R.L.); +86-532-8289-8707 (P.L.)
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.Y.); (A.L.); (C.Y.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.Y.); (A.L.); (C.Y.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.Y.); (A.L.); (C.Y.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.Y.); (A.L.); (C.Y.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- Correspondence: (R.L.); (P.L.); Tel.: +86-532-8289-8512 (R.L.); +86-532-8289-8707 (P.L.)
| |
Collapse
|
13
|
Yu C, Yue Y, Yin X, Li R, Yu H, Li P. Identifying and revealing the geographical variation in Nemopilema nomurai venom metalloprotease and phospholipase A 2 activities. CHEMOSPHERE 2021; 266:129164. [PMID: 33310516 DOI: 10.1016/j.chemosphere.2020.129164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Venom geographical variation is common among venomous animals. This phenomenon presents problems in the development of clinical treatments and medicines against envenomation. The venomous giant jellyfish Nemopilema nomurai, Scyphozoan, is a blooming jellyfish species in the Yellow Sea and the East China Sea that causes numerous jellyfish sting cases every year. Metalloprotease and phospholipase A2 (PLA2) are the main components in Nemopilema nomurai venom and may activate many toxicities, such as hemolysis, inflammation and lethality. Geographical variation in the content and activity of these enzymes may cause different symptoms and therapeutic problems. For the first time, we verified metalloprotease and PLA2 geographical variation in Nemopilema nomurai venom by performing a comparative analysis of 31 venom samples by SDS-PAGE, analyzing protease zymography, enzymatic activity, and drawing contour maps. Band locations and intensities of SDS-PAGE and protease zymograms showed geographical differences. The enzymatic activities of both metalloprotease and PLA2 showed a trend of geographic regularity. The distribution patterns of these activities are directly shown in contour maps. Metalloproteinase activity was lower near the coast. PLA2-like activity was lower in the Southern Yellow Sea. We surmised that metalloproteinase and PLA2-like activities might be related to venom ontogeny and species abundance respectively, and influenced by similar environmental factors. This study provides a theoretical basis for further ecological and medical studies of Nemopilema nomurai jellyfish venom.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China
| | - Xiujing Yin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
14
|
Mohan Prakash RL, Hwang DH, Hong IH, Chae J, Kang C, Kim E. Danio rerio as an alternative vertebrate model for jellyfish venom study: The toxinological aspects of Nemopilema nomurai venom. Toxicol Lett 2020; 335:91-97. [PMID: 33157172 DOI: 10.1016/j.toxlet.2020.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023]
Abstract
Nemopilema nomurai venom (NnV) is severely toxic to many organisms. However, the mechanism of its poisoning has not been properly understood yet. The present work demonstrates that zebrafish (Danio rerio) is an alternative vertebrate model for studying NnV jellyfish venom for the first time. In this model, NnV appears to cause severe hemorrhage and inflammation in cardiopulmonary regions of zebrafish. NnV also altered the swimming behavior of zebrafish accompanied by a significant downregulation of acetylcholinesterase (AChE) activity in brain tissues. Histopathological changes observed for various organs of D. rerio caused by NnV corresponded to an increase in lactate dehydrogenase (LDH) activity in tissues. NnV also significantly altered glutathione S-transferase (GST) activity in cardiopulmonary and brain tissues of D. rerio. SDS-PAGE revealed many protein bands of NnV of various sizes after silver staining. Taken together, these results indicate that Danio rerio can be a useful alternative animal model for jellyfish venom toxicology studies. Findings of the present study also suggest that Danio rerio could be used to develop an effective treatment strategy and discover the mechanism of action of jellyfish venom envenomation.
Collapse
Affiliation(s)
- Ramachandran Loganathan Mohan Prakash
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Il-Hwa Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Jinho Chae
- Marine Environmental Research and Information Laboratory, B1101, 17 Gosan-ro 148beon-gil, Gunpo-si, Gyeonggi-do, 15850, South Korea.
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, South Korea; Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
15
|
Jiang XY, Wang FL, Zhao CC, Yan JN, Han JR, Shang WH, Du YN, Wu HT. Identification of two jellyfish species (Rhopilema esculentum kishinouye and Stomolophus meleagris) in Liaoning Province of China by a rapid, simple PCR-RFLP method. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Li A, Yu H, Li R, Liu S, Xing R, Li P. Inhibitory Effect of Metalloproteinase Inhibitors on Skin Cell Inflammation Induced by Jellyfish Nemopilema nomurai Nematocyst Venom. Toxins (Basel) 2019; 11:E156. [PMID: 30857352 PMCID: PMC6468808 DOI: 10.3390/toxins11030156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult to treat jellyfish dermatitis symptoms effectively. Moreover, inhibiting inflammation is essential for the treatment of jellyfish stings and exploring the main components of jellyfish venom that cause inflammation is an urgent research area. In this study, the inhibitory effects of matrix metalloproteinase (MMP) inhibitors for venom-induced inflammation were explored at a cellular level. The expression of the three inflammatory factors, IL-6, TNF-α and MCP-1 in two skin cell lines, human keratinocyte cells (HaCaT) and human embryonic skin fibroblasts cells (CCC-ESF-1), at the cellular level, after treatment with the inhibitors of jellyfish Nemopilema nomurai (N. nomurai) nematocyst venom (NnNV-I), were determined. The results showed that inhibitors of MMP can significantly reduce the toxic effects of jellyfish Nemopilema nomurai nematocyst venom (NnNV) to skin cells. The expression levels of the three inflammatory factors IL-6, MCP-1, and TNF-α in the cells were also significantly decreased, indicating that MMPs in jellyfish venom are probably vital factors leading to jellyfish dermatitis. This study is beneficial in the prevention and treatment of jellyfish stings.
Collapse
Affiliation(s)
- Aoyu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
- College of life sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory of Marine Drugs and Biological Products, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
17
|
Kim JH, Han SB, Durey A. Fatal Pulmonary Edema in a Child After Jellyfish Stings in Korea. Wilderness Environ Med 2018; 29:527-530. [PMID: 30309824 DOI: 10.1016/j.wem.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023]
Abstract
Jellyfish have been increasing at a global scale in recent years. These blooms not only have deleterious effects on marine ecosystems, they also increase the risk of jellyfish stings and accompanying envenomation. Here, we report a fatal case of pulmonary edema caused by jellyfish envenomation in a child in Korea. The patient died 4 h after envenomation despite cardiopulmonary resuscitation. Nemopilema nomurai was the suspected species of jellyfish encountered by the patient, although we are unable to confirm this. With this case report, we aim to inform on the serious issue of toxicity associated with jellyfish species that bloom mainly along Korean, east Chinese, and Japanese shores and to discuss appropriate first aid methods in case of jellyfish stings.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Seung Baik Han
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Areum Durey
- Department of Emergency Medicine, Inha University School of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
18
|
Cnidarian Jellyfish: Ecological Aspects, Nematocyst Isolation, and Treatment Methods of Sting. Results Probl Cell Differ 2018; 65:477-513. [PMID: 30083932 DOI: 10.1007/978-3-319-92486-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cnidarians play an important role in ecosystem functioning, in the competition among species, and for possible utilization of several active compounds against cardiovascular, nervous, endocrine, immune, infective, and inflammatory disorders or having antitumoral properties, which have been extracted from these organisms. Nevertheless, notwithstanding these promising features, the main reason for which cnidarians are known is due to their venomousness as they have a serious impact on public health as well as in economy being able to affect some human activities. For this reason a preeminent subject of the research about cnidarians is the organization of proper systems and methods of care and treatment of stinging. This chapter aims to present the data about the morphological, ecological, toxicological, epidemiological, and therapeutic aspects regarding cnidarians with the purpose to summarize the existing knowledge and to stimulate future perspectives in the research on these organisms.
Collapse
|
19
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
20
|
Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon 2017; 125:1-12. [DOI: 10.1016/j.toxicon.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
21
|
Li R, Yu H, Yue Y, Liu S, Xing R, Chen X, Li P. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii. J Proteomics 2016; 148:57-64. [PMID: 27461980 DOI: 10.1016/j.jprot.2016.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/16/2016] [Accepted: 07/22/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED Jellyfish sting has become a worldwide issue of critical concern to human health and safety in coastal areas in recent decades. Cyanea nozakii is one of the dominant blooming species and dangerous stingers in China. However, it remains unclear how many and what types of toxins are present in the venom. So, we used a combined transcriptomics and proteomics approach to investigate the venom composition of jellyfish C. nozakii. In total 4,608,524 Illumina valid reads were obtained to de novo assemble to 40,434 unigenes in the transcriptomics analysis. And, a total of 311,635 MS/MS spectra with 12,247 unique MS/MS spectra were generated to 1556 homologous proteins in the proteomics analysis. 174 potential toxin proteins were identified, with 27 proteins homology to the toxins from venomous animals, including phospholipase A2, zinc metalloproteinase-disintegrin agkistin, serine protease inhibitor, plancitoxin-1, alpha-latrocrustotoxin-Lt1a, etc. This study described the transcriptomics and venom proteomics of jellyfish C. nozakii for the first time. Our findings provide a comprehensive understanding of the venom composition of C. nozakii. Furthermore, the results may also be very helpful for the discovery of novel bioactive proteins, as well as the development of effective treatments for jellyfish sting in the future. BIOLOGICAL SIGNIFICANCE Jellyfish Cyanea nozakii is one of the most dangerous stingers in the coast of china. Hundreds of thousands of people would be stung every year and victims suffered a severe pain, itch, swelling, inflammation, wheal and even more serious consequence. However, it remains unclear how many and what types of toxins are present as well as the relationship between the clinical symptoms and toxins. Our combined transcriptomics and proteomics findings can provide a comprehensive understanding of the venom composition of C. nozakii and will also be helpful for the development of effective treatments for jellyfish sting in the future.
Collapse
Affiliation(s)
- Rongfeng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
22
|
Kan T, Gui L, Shi W, Huang Y, Li S, Qiu C. A Survey of Jellyfish Sting Knowledge among Naval Personnel in Northeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070725. [PMID: 27447652 PMCID: PMC4962266 DOI: 10.3390/ijerph13070725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Jellyfish envenomation is common along the coastal area, and can cause severe consequences. Naval personnel are among the high-risk population for this injury. The aim of this study was to assess knowledge regarding jellyfish envenomation among naval personnel in a navy unit in northeast China. METHODS A predesigned questionnaire was distributed to 120 naval members in January 2015. The data of 108 respondents were included in the statistical analysis. RESULTS We found that 38.0% of the respondents selected jellyfish sting as the common wound in their units, and 13.0% had experienced or observed this injury. In addition, 63.0% of the participants rated their own knowledge as "low" or "none". The average score they got was 5.77 ± 2.50, with only 16.7% getting a score above 60% of the full score. The correct rates of five questions were below 60%. No statistical differences existed in the knowledge score among different groups of respondents defined by socio-demographic variables. CONCLUSIONS Jellyfish sting is common in this navy unit, but personnel got a low score on the knowledge assessment. They also lacked confidence in first aid. Medical education and training should be implemented to address this issue.
Collapse
Affiliation(s)
- Ting Kan
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| | - Li Gui
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| | - Wenwen Shi
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| | - Yan Huang
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| | - Shuang Li
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| | - Chen Qiu
- Department of Emergency Nursing, School of Nursing, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate. Toxicon 2016; 119:77-83. [PMID: 27163886 DOI: 10.1016/j.toxicon.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/21/2022]
Abstract
The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS).
Collapse
|
24
|
Becerra-Amezcua MP, Guerrero-Legarreta I, González-Márquez H, Guzmán-García X. In vivo analysis of effects of venom from the jellyfish Chrysaora sp. in zebrafish (Danio rerio). Toxicon 2016; 113:49-54. [DOI: 10.1016/j.toxicon.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/27/2016] [Accepted: 02/09/2016] [Indexed: 12/29/2022]
|