1
|
Teixeira SC, Fernandes TAM, de Souza G, Luz LC, Paschoalino M, Junior JPDL, Rosini AM, Martínez AFF, de Freitas V, Lopes DS, Clissa PB, de Souza VC, Nishiyama-Jr. MY, Barbosa BF, Ferro EAV, Ávila VDMR. Insights into the Role of Proteolytic and Adhesive Domains of Snake Venom Metalloproteinases from Bothrops spp. in the Control of Toxoplasma gondii Infection. Toxins (Basel) 2025; 17:95. [PMID: 39998112 PMCID: PMC11861417 DOI: 10.3390/toxins17020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Toxoplasmosis is an alarming public health problem that affects more than one-third of the world's population. In our work, we investigated the antiparasitic effects of catalytically active [BpMP-I and Jararhagin (Jar)] and catalytically inactive [Jararhagin-C (Jar-C)] snake venom metalloproteinases (SVMPs) in human HeLa cells. These toxins impaired the parasite invasion and intracellular growth, and modulated IL-6, IL-8, and MIF cytokines that control the cell susceptibility and response against T. gondii. Furthermore, we verified that the antiprotozoal activities are not restricted to the presence of the proteolytic domain, and the adhesive domains participate in the control of T. gondii infection. Also, by analyzing the structures of Jar and Jar-C through molecular modeling and dynamics, we observed that the adhesive domains in Jar-C are more exposed due to the absence of the proteolytic domain, which could favor the interaction with different targets. Our investigation on the role of SVMP domains in combating T. gondii infection highlights their potential application as biotechnological tools for creating more effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Samuel C. Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Thales A. M. Fernandes
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (T.A.M.F.); (V.C.d.S.); (M.Y.N.-J.)
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Luana C. Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Joed P. de L. Junior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Alessandra M. Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Aryani F. F. Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Vitor de Freitas
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Daiana S. Lopes
- Institute Multidisciplinary in Health, Universidade Federal da Bahia (UFBA), Vitória da Conquista 45029-094, BA, Brazil;
| | - Patrícia B. Clissa
- Laboratory of Immunopathology, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Vinícius C. de Souza
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (T.A.M.F.); (V.C.d.S.); (M.Y.N.-J.)
| | - Milton Y. Nishiyama-Jr.
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo 05503-900, SP, Brazil; (T.A.M.F.); (V.C.d.S.); (M.Y.N.-J.)
| | - Bellisa F. Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Eloisa A. V. Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil; (S.C.T.); (G.d.S.); (L.C.L.); (M.P.); (J.P.d.L.J.); (A.M.R.); (A.F.F.M.); (B.F.B.)
| | - Veridiana de M. R. Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia 38405-318, MG, Brazil;
| |
Collapse
|
2
|
Salimo ZM, Barros AL, Adrião AAX, Rodrigues AM, Sartim MA, de Oliveira IS, Pucca MB, Baia-da-Silva DC, Monteiro WM, de Melo GC, Koolen HHF. Toxins from Animal Venoms as a Potential Source of Antimalarials: A Comprehensive Review. Toxins (Basel) 2023; 15:375. [PMID: 37368676 DOI: 10.3390/toxins15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Collapse
Affiliation(s)
- Zeca M Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - André L Barros
- Setor de Medicina Veterinária, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Asenate A X Adrião
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Aline M Rodrigues
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marco A Sartim
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pro-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Isadora S de Oliveira
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Manuela B Pucca
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Faculdade de Medicina, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
| | - Djane C Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus 69057-070, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69080-900, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Gisely C de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Hector H F Koolen
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| |
Collapse
|
3
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Diniz-Sousa R, Silva CCA, Pereira SS, da Silva SL, Fernandes PA, Teixeira LMC, Zuliani JP, Soares AM. Therapeutic applications of snake venoms: An invaluable potential of new drug candidates. Int J Biol Macromol 2023; 238:124357. [PMID: 37028634 DOI: 10.1016/j.ijbiomac.2023.124357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.
Collapse
Affiliation(s)
- Rafaela Diniz-Sousa
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil
| | - Cleópatra C A Silva
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil
| | - Soraya S Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Saulo L da Silva
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
| | - Pedro A Fernandes
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Luís M C Teixeira
- LAQV/Requimte, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Andreimar M Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde (LABIOPROT), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, Rondônia, Brazil; Centro Universitário São Lucas (UniSL), Porto Velho, Rondônia, Brazil; Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental (INCT-EpiAmO), Porto Velho, Rondônia, Brazil; Faculdade Católica de Rondônia (FCR), Porto Velho, Rondônia, Brazil.
| |
Collapse
|
5
|
Muniz EG, Sano-Martins IS, Saraiva MDGG, Monteiro WM, Magno ES, Oliveira SS. Biological characterization of the Bothrops brazili snake venom and its neutralization by Brazilian Bothrops antivenom produced by the Butantan Institute. Toxicon 2023; 223:107010. [PMID: 36586491 DOI: 10.1016/j.toxicon.2022.107010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
We evaluated the ability of the Bothrops antivenom produced by the Butantan Institute to neutralize the lethal, hemorrhagic, myotoxic and phospholipase A2 activities induced by B. brazili venom from Rondônia state, Brazil, and verified its cross-reactivity against this venom. This antivenom neutralized the cited biological activities. It also showed cross-reactivity with this venom, and preferentially recognized components with a relative mass above 66 kDa. Our results suggest that Brazilian Bothrops antivenom can be used in B. brazili envenomation in this region.
Collapse
Affiliation(s)
- Emiro G Muniz
- Department of Epidemiology and Public Health, Dr Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, 69040-000, Brazil
| | - Ida S Sano-Martins
- Pathophysiology Laboratory, Butantan Institute, São Paulo, 05503-900, Brazil
| | - Maria das Graças G Saraiva
- Department of Epidemiology and Public Health, Dr Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, 69040-000, Brazil; Research Department, Dr Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, 69040-000, Brazil
| | - Wuelton Marcelo Monteiro
- Teaching and Research Directorate, Dr Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, 69040-000, Brazil
| | - Evela S Magno
- Department of Epidemiology and Public Health, Dr Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, 69040-000, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus, 69050-001, Brazil; Teaching and Research Center, Francisca Mendes Heart Hospital Foundation, Manaus, 69097-720, Brazil.
| |
Collapse
|
6
|
Lima ER, Freire RP, Suzuki MF, Oliveira JE, Yosidaki VL, Peroni CN, Sevilhano T, Zorzeto M, Torati LS, Soares CRJ, Lima IDDM, Kronenberger T, Maltarollo VG, Bartolini P. Isolation and Characterization of the Arapaima gigas Growth Hormone (ag-GH) cDNA and Three-Dimensional Modeling of This Hormone in Comparison with the Human Hormone (hGH). Biomolecules 2023; 13:158. [PMID: 36671542 PMCID: PMC9855374 DOI: 10.3390/biom13010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
In a previous work, the common gonadotrophic hormone α-subunit (ag-GTHα), the ag-FSH β- and ag-LH β-subunit cDNAs, were isolated and characterized by our research group from A. gigas pituitaries, while a preliminary synthesis of ag-FSH was also carried out in human embryonic kidney 293 (HEK293) cells. In the present work, the cDNA sequence encoding the ag-growth hormone (ag-GH) has also been isolated from the same giant Arapaimidae Amazonian fish. The ag-GH consists of 208 amino acids with a putative 23 amino acid signal peptide and a 185 amino acid mature peptide. The highest identity, based on the amino acid sequences, was found with the Elopiformes (82.0%), followed by Anguilliformes (79.7%) and Acipenseriformes (74.5%). The identity with the corresponding human GH (hGH) amino acid sequence is remarkable (44.8%), and the two disulfide bonds present in both sequences were perfectly conserved. Three-dimensional (3D) models of ag-GH, in comparison with hGH, were generated using the threading modeling method followed by molecular dynamics. Our simulations suggest that the two proteins have similar structural properties without major conformational changes under the simulated conditions, even though they are separated from each other by a >100 Myr evolutionary period (1 Myr = 1 million years). The sequence found will be used for the biotechnological synthesis of ag-GH while the ag-GH cDNA obtained will be utilized for preliminary Gene Therapy studies.
Collapse
Affiliation(s)
- Eliana Rosa Lima
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Renan Passos Freire
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Miriam Fussae Suzuki
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - João Ezequiel Oliveira
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Vanessa Luna Yosidaki
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Cibele Nunes Peroni
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Thaís Sevilhano
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Moisés Zorzeto
- Piscicultura Raça, Canabrava do Norte 78658-000, MT, Brazil
| | - Lucas Simon Torati
- EMBRAPA Pesca e Aquicultura, Loteamento Água Fria, Palmas 77008-900, TO, Brazil
| | - Carlos Roberto Jorge Soares
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| | - Igor Daniel de Miranda Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Straße 10, DE, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Paolo Bartolini
- Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), Cidade Universitária, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
7
|
Moraes JDN, Francisco AF, Dill LM, Diniz RS, Oliveira CSD, Silva TMRD, Caldeira CADS, Corrêa EDA, Coutinho-Neto A, Zanchi FB, Fontes MRDM, Soares AM, Calderon LDA. New multienzymatic complex formed between human cathepsin D and snake venom phospholipase A2. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220002. [DOI: 10.1590/1678-9199-jvatitd-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Aleff Ferreira Francisco
- São Paulo State University (UNESP), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; Smart Active Ingredients Lab (SAIL), Brazil
| | | | - Rafaela Souza Diniz
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil
| | | | | | | | | | | | - Fernando Berton Zanchi
- Federal University of Rondônia (UNIR), Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Brazil
| | | | - Andreimar Martins Soares
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; National Institute of Science and Technology of Epidemiology of the Western Amazon, Brazil; São Lucas University Center (UniSL), Brazil
| | - Leonardo de Azevedo Calderon
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; Federal University of Rondônia (UNIR), Brazil; Smart Active Ingredients Lab (SAIL), Brazil; Aparicio Carvalho University Center (FIMCA), Brazil
| |
Collapse
|
8
|
Bhat SK, Joshi MB, Vasishta S, Jagadale RN, Biligiri SG, Coronado MA, Arni RK, Satyamoorthy K. P-I metalloproteinases and L-amino acid oxidases from Bothrops species inhibit angiogenesis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200180. [PMID: 34471403 PMCID: PMC8381740 DOI: 10.1590/1678-9199-jvatitd-2020-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Snake venoms are composed of pharmacologically active proteins that are evolutionarily diverse, stable and specific to targets. Hence, venoms have been explored as a source of bioactive molecules in treating numerous diseases. Recent evidences suggest that snake venom proteins may affect the formation of new blood vessels. Excessive angiogenesis has been implicated in several pathologies including tumours, diabetic retinopathy, arthritis, inter alia. In the present study, we have examined the effects of P-I metalloproteinases isolated from Bothrops moojeni (BmMP-1) and Bothrops atrox (BaMP-1) and L-amino acid oxidases (LAAO) isolated from B. moojeni (BmLAAO) and B. atrox (BaLAAO) on biochemical and functional aspects of angiogenesis. METHODS P-I metalloproteinases and LAAO were purified from venom by molecular size exclusion and ion-exchange chromatography and subsequently confirmed using mass spectrometry. The P-I metalloproteinases were characterized by azocaseinolytic, fibrinogenolytic and gelatinase activity and LAAO activity was assessed by enzyme activity on L-amino acids. Influence of these proteins on apoptosis and cell cycle in endothelial cells was analysed by flow cytometry. The angiogenic activity was determined by in vitro 3D spheroid assay, Matrigel tube forming assay, and in vivo agarose plug transformation in mice. RESULTS P-I metalloproteinases exhibited azocaseinolytic activity, cleaved α and partially β chain of fibrinogen, and displayed catalytic activity on gelatin. LAAO showed differential activity on L-amino acids. Flow cytometry analysis indicated that both P-I metalloproteinases and LAAO arrested the cells in G0/G1 phase and further induced both necrosis and apoptosis in endothelial cells. In vitro, P-I metalloproteinases and LAAO exhibited significant anti-angiogenic properties in 3D spheroid and Matrigel models by reducing sprout outgrowth and tube formation. Using agarose plug transplants in mice harbouring P-I metalloproteinases and LAAO we demonstrated a marked disruption of vasculature at the periphery. CONCLUSION Our research suggests that P-I metalloproteinases and LAAO exhibit anti-angiogenic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Shreesha K. Bhat
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B. Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sampara Vasishta
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Monika A. Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Imam TS, Tukur Z, Bala AA, Ahmad NB, Ugya AY. In vitro trichomonocidal potency of Naja nigricollis and Bitis arietans snake venom. INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.6-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Trichomonas vaginalis drug's limited efficacy and high toxicity, justify the need to explore other therapeutic agents, including animal toxins. In this study, the Naja nigricollis and Bitis arietans snake venoms were used to assess such trichomonocidal effect.
Materials and Methods: The median lethal dose (LD50) value for both snake species was calculated by probit analysis using a statistical package for the sciences version 20.0 with an LD50 of 4.04 μg/mL for the N. nigricollis, and no mortality was observed in the B. arietans envenomed rats.
Results: The trichomonocidal potency of the snake venom on T. vaginalis was evident with a growth inhibitory concentration of 89% with a half-maximal inhibitory concentration (IC50) of 0.805 μg/mL in B. arietans while 95% for N. nigricollis at an IC50 of 0.411 μg/mL.
Conclusion: The statistical analysis of one-way analysis of variance shows a significant difference (p<0.05) between the venoms and positive control group (p<0.001), and there is no significant difference between each venom and its varying concentration (p>0.05). As the least concentration can be useful, interestingly, there is no significant difference in the efficacy of N. nigricollis and B. arietans to T. vaginalis (p>0.05); as such, either of the venom can be used for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Tijjani Sabiu Imam
- Department of Biological Sciences, Bayero University Kano, Kano, Nigeria
| | - Zainab Tukur
- Department of Biological Sciences, Bayero University Kano, Kano, Nigeria
| | | | | | - Adamu Yunusa Ugya
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun, China; Department of Environmental Management, Kaduna State University, Kaduna, Nigeria
| |
Collapse
|
10
|
Structural, enzymatic and pharmacological profiles of AplTX-II - A basic sPLA 2 (D49) isolated from the Agkistrodon piscivorus leucostoma snake venom. Int J Biol Macromol 2021; 175:572-585. [PMID: 33529631 DOI: 10.1016/j.ijbiomac.2021.01.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
A basic sPLA2 (D49) from the venom of snake Agkistrodon piscivorus leucostoma (AplTX-II) was isolated, purified and characterized. We determined the enzymatic and pharmacological profiles of this toxin. AplTX-II was isolated with a high level of purity through reverse phase chromatography and molecular exclusion. The enzyme showed pI 9.48 and molecular weight of 14,003 Da. The enzymatic activity of the AplTX-II depended on Ca2+ pH and temperature. The comparison of the primary structure with other sPLA2s revealed that AplTX-II presented all the structural reasons expected for a basic sPLA2s. Additionally, we have resolved its structure with the docked synthetic substrate NOBA (4-nitro-3-octanoyloxy benzoic acid) by homology modeling, and performed MD simulations with explicit solvent. Structural similarities were found between the enzyme's modeled structure and other snake sPLA2 X-Ray structures, available in the PDB database. NOBA and active-site water molecules spontaneously adopted stable positions and established interactions in full agreement with the reaction mechanism, proposed for the physiological substrate, suggesting that NOBA hydrolysis is an excellent model to study phospholipid hydrolysis.
Collapse
|
11
|
Nina-Cueva O, Olazabal-Chambilla D, Quispe-Arpasi J, Alzamora-Sánchez A, Gomes-Heleno M, Huancahuire-Vega S. Biochemical characterization of Bothrops roedingeri Mertens, 1942 snake venom and its edematogenic, hemorrhagic, and myotoxic activities. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:682-692. [PMID: 33275347 PMCID: PMC7808785 DOI: 10.7705/biomedica.5228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Introduction: Snakebite envenoming is considered by the World Health Organization (WHO) as a neglected tropical disease. Currently, Bothrops snake venoms are being studied intensively, but there is little knowledge about Bothrops roedingeri venom. Objectives: To biochemically characterize B. roedingeri total venom and evaluate its myotoxic, edematogenic, and hemorrhagic activity. Materials and methods: We characterized B. roedingeri venom enzymatic activity by determining the phospholipase A2 and the proteolytic and fibrinogenolytic action using SDSPAGE electrophoresis while we characterized its venom toxicity by determining the minimum hemorrhagic dose, the minimum edema dose, and the local and systemic myotoxic effects. Results: Bothrops roedingeri venom showed a PLA2 activity of 3.45 ± 0.11 nmoles/min, proteolytic activity of 0.145 ± 0.009 nmoles/min, and a fibrinogen coagulation index of 6.67 ± 1.33 seconds. On the other hand, it produced an minimum hemorrhagic dose of 24.5 μg, an minimum edema dose of 15.6 μg, and a pronounced local myotoxic effect evidenced by the elevation of plasma creatine kinase levels after intramuscular inoculation. The venom showed no systemic myotoxicity. Conclusions: Bothrops roedingeri venom has local hemorrhagic, edematogenic, and myotoxic activity. Enzymatically, it has high PLA2 activity, which would be responsible for the myotoxic and edematogenic effects. It also has proteolytic activity, which could affect coagulation given its ability to degrade fibrinogen, and it causes bleeding through the metalloproteases.
Collapse
Affiliation(s)
- Oswaldo Nina-Cueva
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Derly Olazabal-Chambilla
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Jair Quispe-Arpasi
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Adell Alzamora-Sánchez
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| | - Mauricio Gomes-Heleno
- Laboratorio de Química de Proteínas, Departamento de Bioquímica, Instituto de Biología, Universidad Estatal de Campinas, Sao Paulo, Brasil.
| | - Salomón Huancahuire-Vega
- Laboratorio de Investigación en Biología Molecular, Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Peruana Unión, Lima, Perú.
| |
Collapse
|
12
|
Rodrigues CR, Molina DAM, Silva de Assis TC, Liberato C, Melo-Braga MN, Ferreyra CB, Cárdenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili ("jergón shushupe"), venom. Toxicon 2020; 184:19-27. [PMID: 32479836 DOI: 10.1016/j.toxicon.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C Silva de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Sanz L, Pérez A, Quesada-Bernat S, Diniz-Sousa R, Calderón LA, Soares AM, Calvete JJ, Caldeira CAS. Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190103. [PMID: 32362928 PMCID: PMC7179968 DOI: 10.1590/1678-9199-jvatitd-2019-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/28/2020] [Indexed: 11/26/2022] Open
Abstract
Background: The Brazil’s lancehead, Bothrops brazili, is a poorly
studied pit viper distributed in lowlands of the equatorial rainforests of
southern Colombia, northeastern Peru, eastern Ecuador, southern and
southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and
northern Bolivia. Few studies have been reported on toxins isolated from
venom of Ecuadorian and Brazilian B. brazili. The aim of
the present study was to elucidate the qualitative and quantitative protein
composition of B. brazili venom from Pará (Brazil), and to
carry out a comparative antivenomics assessment of the immunoreactivity of
the Brazilian antibothropic pentavalent antivenom [soro
antibotrópico (SAB) in Portuguese] against the venoms of
B. brazili and reference species, B.
jararaca. Methods: We have applied a quantitative snake venomics approach, including
reverse-phase and two-dimensional electrophoretic decomplexation of the
venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS
proteomic analysis, to unveil the overall protein composition of B.
brazili venom from Pará (Brazil). Using third-generation
antivenomics, the specific and paraspecific immunoreactivity of the
Brazilian SAB against homologous (B. jararaca) and
heterologous (B. brazili) venoms was investigated. Results: The venom proteome of the Brazil’s lancehead (Pará) is predominantly composed
of two major and three minor acidic (19%) and two major and five minor basic
(14%) phospholipase A2 molecules; 7-11 snake venom
metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine
proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins,
including two cysteine-rich secretory proteins, one C-type lectin-like
molecule, one nerve growth factor, one 5'-nucleotidase, one
phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule,
represent together less than 2.7% of the venom proteome. Third generation
antivenomics profile of the Brazilian pentabothropic antivenom showed
paraspecific immunoreactivity against all the toxin classes of B.
brazili venom, with maximal binding capacity of
132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's
F(ab')2 antibodies bind B. brazili venom
toxins. Conclusion: The proteomics outcome contribute to a deeper insight into the spectrum of
toxins present in the venom of the Brazil’s lancehead, and rationalize the
pathophysiology underlying this snake bite envenomings. The comparative
qualitative and quantitative immunorecognition profile of the Brazilian
pentabothropic antivenom toward the venom toxins of B.
brazili and B. jararaca (the reference venom
for assessing the bothropic antivenom's potency in Brazil), provides clues
about the proper use of the Brazilian antibothropic polyvalent antivenom in
the treatment of bites by the Brazil’s lancehead.
Collapse
Affiliation(s)
- Libia Sanz
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Alicia Pérez
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Leonardo A Calderón
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,Aparício Carvalho University Center (FIMCA), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,National Institute of Science and Technology in Epidemiology of the Western Amazônia, (INCT-EpiAmO), Porto Velho, RO, Brazil
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Cleópatra A S Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil
| |
Collapse
|
14
|
Torres-Huaco FD, Maruñak S, Teibler P, Bustillo S, Acosta de Pérez O, Leiva LC, Ponce-Soto LA, Marangoni S. Local and systemic effects of BtaMP-1, a new weakly hemorrhagic Snake Venom Metalloproteinase purified from Bothriopsis taeniata Snake Venom. Int J Biol Macromol 2019; 141:1044-1054. [PMID: 31494155 DOI: 10.1016/j.ijbiomac.2019.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023]
Abstract
A new weak hemorrhagic metalloproteinase named BtaMP-1 was purified from Bothriopsis taeniata snake venom by molecular exclusion followed by anion exchange chromatographies. This protein showed a molecular mass of 25,968.16 Da and is composed of 218 amino acid residues. The multiple alignments of its partial amino acid sequence showed high structural identity with other P-I class SVMP. BtaMP-1 showed caseinolytic activity that was enhanced by Ca2+ ion, completely inhibited by chelating and reducing agents and can be classified as an α-fibrinogenolytic enzyme. Locally, BtaMP-1 induces hemorrhage and edema, but not myotoxicity. These findings were confirmed by histological analysis of mouse gastrocnemius muscle. "In vitro" studies suggest that BtaMP-1 induce cytotoxicity in myoblast C2C12 but not in the myotubes cell line. BtaMP-1 induced systemic alterations in mice with one MHD and two hours exposure; histological analysis of lungs showed hemorrhagic areas, congestion, and increase the thickness of alveolar septum. Also, this protein induced mild effects on kidney and disruption of coagulation by depletion of fibrinogen plasma levels. This work provides insights into the importance of BtaMP-1 biological effects in envenomation by Bothropsis taeniata snake venom and providing further evidence to understand the role of P-I class SVMP in ophidian envenomation.
Collapse
Affiliation(s)
- Frank Denis Torres-Huaco
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil; Universidad Continental, Av. Los Incas, ZIP 4002 Arequipa, Peru.
| | - Silvana Maruñak
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Pamela Teibler
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Soledad Bustillo
- Protein Research Laboratory (LabInPro), Faculty of Natural Sciences and Surveying (FACENA), National Northeastern University (UNNE), Corrientes 3400, Argentina
| | - Ofelia Acosta de Pérez
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Laura Cristina Leiva
- Protein Research Laboratory (LabInPro), Faculty of Natural Sciences and Surveying (FACENA), National Northeastern University (UNNE), Corrientes 3400, Argentina
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil
| |
Collapse
|
15
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
16
|
Functional Elucidation of Nemopilema nomurai and Cyanea nozakii Nematocyst Venoms' Lytic Activity Using Mass Spectrometry and Zymography. Toxins (Basel) 2017; 9:toxins9020047. [PMID: 28134758 PMCID: PMC5331427 DOI: 10.3390/toxins9020047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Medusozoans utilize explosively discharging penetrant nematocysts to inject venom into prey. These venoms are composed of highly complex proteins and peptides with extensive bioactivities, as observed in vitro. Diverse enzymatic toxins have been putatively identified in the venom of jellyfish, Nemopilema nomurai and Cyanea nozakii, through examination of their proteomes and transcriptomes. However, functional examination of putative enzymatic components identified in proteomic approaches to elucidate potential bioactivities is critically needed. Methods: In this study, enzymatic toxins were functionally identified using a combined approach consisting of in gel zymography and liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential roles of metalloproteinases and lipases in hemolytic activity were explored using specific inhibitors. Results: Zymography indicated that nematocyst venom possessed protease-, lipase- and hyaluronidase-class activities. Further, proteomic approaches using LC-MS/MS indicated sequence homology of proteolytic bands observed in zymography to extant zinc metalloproteinase-disintegrins and astacin metalloproteinases. Moreover, pre-incubation of the metalloproteinase inhibitor batimastat with N. nomurai nematocyst venom resulted in an approximate 62% reduction of hemolysis compared to venom exposed sheep erythrocytes, suggesting that metalloproteinases contribute to hemolytic activity. Additionally, species within the molecular mass range of 14–18 kDa exhibited both egg yolk and erythrocyte lytic activities in gel overlay assays. Conclusion: For the first time, our findings demonstrate the contribution of jellyfish venom metalloproteinase and suggest the involvement of lipase species to hemolytic activity. Investigations of this relationship will facilitate a better understanding of the constituents and toxicity of jellyfish venom.
Collapse
|
17
|
Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon 2017; 125:1-12. [DOI: 10.1016/j.toxicon.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023]
|
18
|
BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:15-25. [DOI: 10.1016/j.cbpa.2016.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
|
19
|
Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016; 8:117. [PMID: 27104567 PMCID: PMC4848642 DOI: 10.3390/toxins8040117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.
Collapse
Affiliation(s)
- Aida Verdes
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Prachi Anand
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Juliette Gorson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Stephen Jannetti
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Patrick Kelly
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Abba Leffler
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine 550 1st Avenue, New York, NY 10016, USA.
| | - Danny Simpson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Tandon School of Engineering, New York University 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Girish Ramrattan
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Mandë Holford
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| |
Collapse
|