1
|
Kim SY, Rasmussen U, Rydberg S. Impact of the neurotoxin β-N-methylamino-L-alanine on the diatom Thalassiosira pseudonana using metabolomics. MARINE POLLUTION BULLETIN 2024; 202:116299. [PMID: 38581736 DOI: 10.1016/j.marpolbul.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has emerged as an environmental factor related to neurodegenerative diseases. BMAA is produced by various microorganisms including cyanobacteria and diatoms, in diverse ecosystems. In the diatom Phaeodactylum tricornutum, BMAA is known to inhibit growth. The present study investigated the impact of BMAA on the diatom Thalassiosira pseudonana by exposing it to different concentrations of exogenous BMAA. Metabolomics was predominantly employed to investigate the effect of BMAA on T. pseudonana, and MetaboAnalyst (https://www.metabo-analyst.ca/) was used to identify BMAA-associated metabolisms/pathways in T. pseudonana. Furthermore, to explore the unique response, specific metabolites were compared between treatments. When the growth was obstructed by BMAA, 17 metabolisms/pathways including nitrogen and glutathione (i.e. oxidative stress) metabolisms, were influenced in T. pseudonana. This study has further determined that 11 out of 17 metabolisms/pathways could be essentially affected by BMAA, leading to the inhibition of diatom growth.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
2
|
Li A, Yan Y, Qiu J, Yan G, Zhao P, Li M, Ji Y, Wang G, Meng F, Li Y, Metcalf JS, Banack SA. Putative biosynthesis mechanism of the neurotoxin β-N-methylamino-L-alanine in marine diatoms based on a transcriptomics approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129953. [PMID: 36116313 DOI: 10.1016/j.jhazmat.2022.129953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been presumed as an environmental cause of human neurodegenerative disorders, such as Alzheimer's disease. Marine diatoms Thalassiosira minima are demonstrated here to produce BMAA-containing proteins in axenic culture while the isomer diaminobutyric acid was bacterially produced. In the co-culture with Cyanobacterium aponinum, diatom growth was inhibited but the biosynthesis of BMAA-containing proteins was stimulated up to seven times higher than that of the control group by cell-cell interactions. The stimulation effect was not caused by the cyanobacterial filtrate. Nitrogen deprivation also doubled the BMAA content of T. minima cells. Transcriptome analysis of the diatom in mixed culture revealed that pathways involved in T. minima metabolism and cellular functions were mainly influenced, including KEGG pathways valine and leucine/isoleucine degradation, endocytosis, pantothenate and CoA biosynthesis, and SNARE interactions in vesicular transport. Based on the expression changes of genes related to protein biosynthesis, it was hypothesized that ubiquitination and autophagy suppression, and limited COPII vesicles transport accuracy and efficiency were responsible for biosynthesis of BMAA-containing proteins in T. minima. This study represents a first application of transcriptomics to investigate the biological processes associated with BMAA biosynthesis in diatoms.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peng Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, West 55 of Zhongshan Avenue, Guangzhou 510631, China
| | - James S Metcalf
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Sandra A Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| |
Collapse
|
3
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
4
|
Mantas MJQ, Nunn PB, Codd GA, Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2,3-diaminopropanoic acid (BMAA). PHYTOCHEMISTRY 2022; 200:113198. [PMID: 35447107 DOI: 10.1016/j.phytochem.2022.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are an ancient clade of photosynthetic prokaryotes, present in many habitats throughout the world, including water resources. They can present health hazards to humans and animals due to the production of a wide range of toxins (cyanotoxins), including the diaminoacid neurotoxin, 3-N-methyl-2,3-diaminopropanoic acid (β-N-methylaminoalanine, BMAA). Knowledge of the biosynthetic pathway for BMAA, and its role in cyanobacteria, is lacking. Present evidence suggests that BMAA is derived by 3-N methylation of 2,3-diaminopropanoic acid (2,3-DAP) and, although the latter has never been reported in cyanobacteria, there are multiple pathways to its biosynthesis known in other bacteria and in plants. Here, we used bioinformatics analyses to investigate hypotheses concerning 2,3-DAP and BMAA biosynthesis in cyanobacteria. We assessed the potential presence or absence of each enzyme in candidate biosynthetic routes known in Albizia julibrissin, Lathyrus sativus seedlings, Streptomyces, Clostridium, Staphylococcus aureus, Pantoea agglomerans, and Paenibacillus larvae, in 130 cyanobacterial genomes using sequence alignment, profile hidden Markov models, substrate specificity/active site identification and the reconstruction of gene phylogenies. Most enzymes involved in pathways leading to 2,3-DAP in other species were not found in the cyanobacteria analysed. Nevertheless, two species appear to have the genes sbnA and sbnB, responsible for forming the 2,3-DAP constituent in staphyloferrin B, a siderophore from Staphylococcus aureus. It is currently undetermined whether these species are also capable of biosynthesising BMAA. It is possible that, in some cyanobacteria, the formation of 2,3-DAP and/or BMAA is associated with environmental iron-scavenging. The pam gene cluster, responsible for the biosynthesis of the BMAA-containing peptide, paenilamicin, so far appears to be restricted to Paenibacillus larvae. It was not detected in any of the cyanobacterial genomes analysed, nor was it found in 93 other Paenibacillus genomes or in the genomes of two BMAA-producing diatom species. We hypothesise that the presence, in some cyanobacterial species, of the enzymes 2,3-diaminopropionate ammonia-lyase (DAPAL) and reactive intermediate deaminase A (RidA) may explain the failure to detect 2,3-DAP in analytical studies. Overall, the taxonomic distribution of 2,3-DAP and BMAA in cyanobacteria is unclear; there may be multiple and additional routes, and roles, for the biosynthesis of 2,3-DAP and BMAA in these organisms.
Collapse
Affiliation(s)
- Maria José Q Mantas
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| | - Peter B Nunn
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Geoffrey A Codd
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom; School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom.
| | - Daniel Barker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, The King's Buildings, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
5
|
Kim SY, Hedberg P, Winder M, Rydberg S. Evidence of 2,4-diaminobutyric acid (DAB) production as a defense mechanism in diatom Thalassiosira pseudonana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106210. [PMID: 35665646 DOI: 10.1016/j.aquatox.2022.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The neurotoxic secondary metabolite β-N-methylamino-L-alanine (BMAA) and its structural isomer 2,4-diaminobutyric acid (DAB) are known to be produced by various phytoplankton groups. Despite the worldwide spread of these toxin producers, no obvious role and function of BMAA and DAB in diatoms have been identified. Here, we investigated the effects of biotic factors, i.e., predators and competitors, as possible causes of BMAA and/or DAB regulation in the two diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. DAB was specifically regulated in T. pseudonana by the presence of predators and competitors. The effects of DAB on both diatoms as competitors and on the copepod Tigriopus sp. as predator at individual and at population levels were examined. The toxic effects of DAB on the growth of T. pseudonana and the population of Tigriopus sp. were significant. The effect of DAB as a defensive secondary metabolite is assumed to be environmentally relevant depending on the number of the copepods. The results show a potential function of DAB that can play an important role in defense mechanisms of T. pseudonana.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
7
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
8
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|
9
|
Italiano CJ, Pu L, Violi JP, Duggin IG, Rodgers KJ. Cysteine biosynthesis contributes to β-methylamino-l-alanine tolerance in Escherichia coli. Res Microbiol 2021; 172:103852. [PMID: 34246779 DOI: 10.1016/j.resmic.2021.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin β-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 μg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.
Collapse
Affiliation(s)
- Carly J Italiano
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Lisa Pu
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
10
|
Omidi A, Pflugmacher S, Kaplan A, Kim YJ, Esterhuizen M. Reviewing Interspecies Interactions as a Driving Force Affecting the Community Structure in Lakes via Cyanotoxins. Microorganisms 2021; 9:1583. [PMID: 34442662 PMCID: PMC8401979 DOI: 10.3390/microorganisms9081583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
The escalating occurrence of toxic cyanobacterial blooms worldwide is a matter of concern. Global warming and eutrophication play a major role in the regularity of cyanobacterial blooms, which has noticeably shifted towards the predomination of toxic populations. Therefore, understanding the effects of cyanobacterial toxins in aquatic ecosystems and their advantages to the producers are of growing interest. In this paper, the current literature is critically reviewed to provide further insights into the ecological contribution of cyanotoxins in the variation of the lake community diversity and structure through interspecies interplay. The most commonly detected and studied cyanobacterial toxins, namely the microcystins, anatoxins, saxitoxins, cylindrospermopsins and β-N-methylamino-L-alanine, and their ecotoxicity on various trophic levels are discussed. This work addresses the environmental characterization of pure toxins, toxin-containing crude extracts and filtrates of single and mixed cultures in interspecies interactions by inducing different physiological and metabolic responses. More data on these interactions under natural conditions and laboratory-based studies using direct co-cultivation approaches will provide more substantial information on the consequences of cyanotoxins in the natural ecosystem. This review is beneficial for understanding cyanotoxin-mediated interspecies interactions, developing bloom mitigation technologies and robustly assessing the hazards posed by toxin-producing cyanobacteria to humans and other organisms.
Collapse
Affiliation(s)
- Azam Omidi
- Chair Ecological Impact Research and Ecotoxicology, Technische Universität Berlin, 10587 Berlin, Germany;
| | - Stephan Pflugmacher
- Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Wallace Bldg., 125 Dysart Rd, Winnipeg, MB R3T 2N2, Canada;
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Young Jun Kim
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
| | - Maranda Esterhuizen
- Joint Laboratory of Applied Ecotoxicology, Korean Institute of Science and Technology Europe (KIST), Campus 7.1, 66123 Saarbrücken, Germany;
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
- Finland and Helsinki Institute of Sustainability Science (HELSUS), Fabianinkatu 33, 00014 Helsinki, Finland
| |
Collapse
|
11
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study. Toxins (Basel) 2021; 13:325. [PMID: 33946501 PMCID: PMC8147232 DOI: 10.3390/toxins13050325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 1-40, 119991 Moscow, Russia;
| | - Vadim M. Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
12
|
The Proposed Neurotoxin β- N-Methylamino-l-Alanine (BMAA) Is Taken up through Amino-Acid Transport Systems in the Cyanobacterium Anabaena PCC 7120. Toxins (Basel) 2020; 12:toxins12080518. [PMID: 32823543 PMCID: PMC7472364 DOI: 10.3390/toxins12080518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
Produced by cyanobacteria and some plants, BMAA is considered as an important environmental factor in the occurrence of some neurodegenerative diseases. Neither the underlying mechanism of its toxicity, nor its biosynthetic or metabolic pathway in cyanobacteria is understood. Interestingly, BMAA is found to be toxic to some cyanobacteria, making it possible to dissect the mechanism of BMAA metabolism by genetic approaches using these organisms. In this study, we used the cyanobacterium Anabaena PCC 7120 to isolate BMAA-resistant mutants. Following genomic sequencing, several mutations were mapped to two genes involved in amino acids transport, suggesting that BMAA was taken up through amino acid transporters. This conclusion was supported by the protective effect of several amino acids against BMAA toxicity. Furthermore, targeted inactivation of genes encoding different amino acid transport pathways conferred various levels of resistance to BMAA. One mutant inactivating all three major amino acid transport systems could no longer take up BMAA and gained full resistance to BMAA toxicity. Therefore, BMAA is a substrate of amino acid transporters, and cyanobacteria are interesting models for genetic analysis of BMAA transport and metabolism.
Collapse
|
13
|
β-Ν-Methylamino-L-alanine interferes with nitrogen assimilation in the cyanobacterium, non-BMAA producer, Synechococcus sp. TAU-MAC 0499. Toxicon 2020; 185:147-155. [PMID: 32687889 DOI: 10.1016/j.toxicon.2020.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
The production of β-Ν-methylamino-L-alanine (BMAA) in cyanobacteria is triggered by nitrogen-starvation conditions and its biological role, albeit unknown, is associated with nitrogen assimilation. In the present study, the effect of BMAA (773 μg L-1) on nitrogen metabolism and physiology of the non-diazotrophic cyanobacterium and non-BMAA producer, Synechococcus sp. TAU-MAC 0499, was investigated. In order to study the combined effect of nitrogen availability and BMAA, nitrogen-starvation conditions were induced by transferring cells in nitrogen-free medium and subsequently exposing the cultures to BMAA. After short-term treatment (180 min) and in the presence of nitrogen, BMAA inhibited glutamine synthetase, which resulted in low concentration of glutamine. In the absence of nitrogen, although there was no effect on glutamine synthetase, a possible perturbation in nitrogen assimilation is reflected on the significant decrease in glutamate levels. During the long-term exposure (24-96 h), growth, photosynthetic pigments and total protein were not affected by BMAA exposure, except for an increase in protein and phycocyanin levels at 48 h in nitrogen replete conditions. Results suggest that BMAA interferes with nitrogen assimilation, in a different way, depending on the presence or absence of combined nitrogen, providing novel data on the potential biological role of BMAA.
Collapse
|
14
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment. Toxins (Basel) 2020; 12:toxins12060372. [PMID: 32512731 PMCID: PMC7354497 DOI: 10.3390/toxins12060372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023] Open
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-917-534-7543
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
15
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. The First Proteomics Study of Nostoc sp. PCC 7120 Exposed to Cyanotoxin BMAA under Nitrogen Starvation. Toxins (Basel) 2020; 12:E310. [PMID: 32397431 PMCID: PMC7290344 DOI: 10.3390/toxins12050310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
The oldest prokaryotic photoautotrophic organisms, cyanobacteria, produce many different metabolites. Among them is the water-soluble neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), whose biological functions in cyanobacterial metabolism are of fundamental scientific and practical interest. An early BMAA inhibitory effect on nitrogen fixation and heterocyst differentiation was shown in strains of diazotrophic cyanobacteria Nostoc sp. PCC 7120, Nostocpunctiforme PCC 73102 (ATCC 29133), and Nostoc sp. strain 8963 under conditions of nitrogen starvation. Herein, we present a comprehensive proteomic study of Nostoc (also called Anabaena) sp. PCC 7120 in the heterocyst formation stage affecting by BMAA treatment under nitrogen starvation conditions. BMAA disturbs proteins involved in nitrogen and carbon metabolic pathways, which are tightly co-regulated in cyanobacteria cells. The presented evidence shows that exogenous BMAA affects a key nitrogen regulatory protein, PII (GlnB), and some of its protein partners, as well as glutamyl-tRNA synthetase gltX and other proteins that are involved in protein synthesis, heterocyst differentiation, and nitrogen metabolism. By taking into account the important regulatory role of PII, it becomes clear that BMAA has a severe negative impact on the carbon and nitrogen metabolism of starving Nostoc sp. PCC 7120 cells. BMAA disturbs carbon fixation and the carbon dioxide concentrating mechanism, photosynthesis, and amino acid metabolism. Stress response proteins and DNA repair enzymes are upregulated in the presence of BMAA, clearly indicating severe intracellular stress. This is the first proteomic study of the effects of BMAA on diazotrophic starving cyanobacteria cells, allowing a deeper insight into the regulation of the intracellular metabolism of cyanobacteria by this non-protein amino acid.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
16
|
Zhang Y, Whalen JK. Production of the neurotoxin beta-N-methylamino-l-alanine may be triggered by agricultural nutrients: An emerging public health issue. WATER RESEARCH 2020; 170:115335. [PMID: 31812811 DOI: 10.1016/j.watres.2019.115335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Diverse taxa of cyanobacteria, dinoflagellates and diatoms produce β-N-methylamino-l-alanine (BMAA), a non-lipophilic, non-protein amino acid. BMAA is a neurotoxin in mammals. Its ingestion may be linked to human neurodegenerative diseases, namely the Amyotrophic lateral sclerosis/Parkinsonism dementia complex, based on epidemiological evidence from regions where cyanobacterial harmful algal blooms occur frequently. In controlled environments, cyanobacteria produce BMAA in response to ecophysiological cues such as nutrient availability, which may explain the elevated BMAA concentrations in freshwater environments that receive nutrient-rich agricultural runoff. This critical review paper summarizes what is known about how BMAA supports ecophysiological functions like nitrogen metabolism, photosyntheis and provides a competitive advantage to cyanobacteria in controlled and natural environments. We explain how BMAA production affected competitive interactions among the N2-fixing and non-N2-fixing populations in a freshwater cyanobacterial bloom that was stimulated by nutrient loading from the surrounding agricultural landscape. Better control of nutrients in agricultural fields is an excellent strategy to avoid the negative environmental consequences and public health concerns related to BMAA production.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada
| | - Joann K Whalen
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
17
|
Nunes-Costa D, Magalhães JD, G-Fernandes M, Cardoso SM, Empadinhas N. Microbial BMAA and the Pathway for Parkinson's Disease Neurodegeneration. Front Aging Neurosci 2020; 12:26. [PMID: 32317956 PMCID: PMC7019015 DOI: 10.3389/fnagi.2020.00026] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a natural non-proteinogenic diamino acid produced by several species of both prokaryotic (cyanobacteria) and eukaryotic (diatoms and dinoflagellates) microorganisms. BMAA has been shown to biomagnify through the food chain in some ecosystems, accumulating for example in seafood such as shellfish and fish, common dietary sources of BMAA whose ingestion may have possible neuronal consequences. In addition to its excitotoxic potential, BMAA has been implicated in protein misfolding and aggregation, inhibition of specific enzymes and neuroinflammation, all hallmark features of neurodegenerative diseases. However, the exact molecular mechanisms of neurotoxicity remain to be elucidated in detail. Although BMAA is commonly detected in its free form, complex BMAA-containing molecules have also been identified such as the paenilamicins, produced by an insect gut bacterial pathogen. On the other hand, production of BMAA or BMAA-containing molecules by members of the human gut microbiota, for example by non-photosynthetic cyanobacteria, the Melainabacteria, remains only hypothetical. In any case, should BMAA reach the gut it may interact with cells of the mucosal immune system and neurons of the enteric nervous system (ENS) and possibly target the mitochondria. Here, we review the available evidence and hint on possible mechanisms by which chronic exposure to dietary sources of this microbial neurotoxin may drive protein misfolding and mitochondrial dysfunction with concomitant activation of innate immune responses, chronic low-grade gut inflammation, and ultimately the neurodegenerative features observed across the gut-brain axis in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Daniela Nunes-Costa
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - João Duarte Magalhães
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Ph.D. Programme in Biomedicine and Experimental
Biology (PDBEB), Institute for Interdisciplinary Research, University of
Coimbra, Coimbra,
Portugal
| | - Maria G-Fernandes
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
| | - Sandra Morais Cardoso
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute of Cellular and Molecular Biology,
Faculty of Medicine, University of Coimbra,
Coimbra, Portugal
| | - Nuno Empadinhas
- CNC–Center for Neuroscience and Cell
Biology, University of Coimbra, Coimbra,
Portugal
- Institute for Interdisciplinary Research
(IIIUC), University of Coimbra, Coimbra,
Portugal
| |
Collapse
|
18
|
Metabolism of the neurotoxic amino acid β-N-methylamino-L-alanine in human cell culture models. Toxicon 2019; 168:131-139. [PMID: 31330193 DOI: 10.1016/j.toxicon.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Human dietary exposure to the environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in an increased risk of developing sporadic neurodegenerative diseases like Alzheimer's and amyotrophic lateral sclerosis. Evidence suggests that humans are exposed to BMAA globally, but very little is known about BMAA metabolism in mammalian systems, let alone in humans. The most plausible, evidence-based mechanisms of BMAA toxicity rely on the metabolic stability of the amino acid and that, following ingestion, it enters the circulatory system unmodified. BMAA crosses from the intestinal lumen into the circulatory system, and the small intestine and liver are the first sites for dietary amino acid metabolism. Both tissues have substantial amino acid metabolic needs, which are largely fulfilled by dietary amino acids. Metabolism of BMAA in these tissues has been largely overlooked, yet is important in gauging the true human exposure risk. Here we investigate the potential for BMAA metabolism by the human liver and small intestine, using in vitro cell systems. Data show that BMAA metabolism via common proteinogenic amino acid metabolic pathways is negligible, and that in the presence of other amino acids cellular uptake of BMAA is substantially reduced. These data suggest that the majority of ingested BMAA remains unmodified following passage through the small intestine and liver. This not only supports oral BMAA exposure as a plausible exposure route to toxic doses of BMAA, but also supports previous notions that protein deficient diets or malnutrition may increase an individual's susceptibility to BMAA absorption and subsequent toxicity.
Collapse
|
19
|
Popova AA, Rasmussen U, Semashko TA, Govorun VM, Koksharova OA. Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:369-377. [PMID: 29624906 DOI: 10.1111/1758-2229.12647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1, 40, Moscow, 119992, Russia
| |
Collapse
|
20
|
Nunn PB. 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). PHYTOCHEMISTRY 2017; 144:271-281. [PMID: 29102875 DOI: 10.1016/j.phytochem.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The isolation of α-amino-β-methylaminopropionic acid from seeds of Cycas circinalis (now C. micronesica Hill) resulted from a purposeful attempt to establish the cause of the profound neurological disease, amyotrophic lateral sclerosis/parkinsonism/dementia, that existed in high frequency amongst the inhabitants of the western Pacific island of Guam (Guam ALS/PD). In the 50 years since its discovery the amino acid has been a stimulus, and sometimes a subject of mockery, for generations of scientists in a remarkably diverse range of subject areas. The number of citations of the original paper has risen in the five decades from a few to 120 within the decade 2007-2016 and continues at a high rate into the next decade. The reasons for this remarkable outcome are discussed and examples from the literature are used to illustrate the wide range of scientific interest that the original paper generated.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, Hampshire PO1 2DT, UK.
| |
Collapse
|
21
|
Nunn PB, Codd GA. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2017; 144:253-270. [PMID: 29059579 DOI: 10.1016/j.phytochem.2017.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK.
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, DD1 5EH, UK; School of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
22
|
Bishop SL, Kerkovius JK, Menard F, Murch SJ. N-β-Methylamino-L-Alanine and Its Naturally Occurring Isomers in Cyanobacterial Blooms in Lake Winnipeg. Neurotox Res 2017; 33:133-142. [PMID: 28965245 DOI: 10.1007/s12640-017-9820-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
Cyanobacterial blooms have affected Lake Winnipeg since the mid-1990s due to an increased phosphorus loading into the lake, which has been exacerbated by stressors such as climate change and eutrophication. Aquatic ecosystems involving cyanobacteria have been found to contain N-β-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB), non-protein amino acids that are associated with neurodegenerative disease, as well as two of the naturally occurring isomers, N-2(amino)ethylglycine (AEG) and β-amino-N-methylalanine (BAMA). We hypothesized that the cyanobacterial bloom in Lake Winnipeg produces BMAA and/or its naturally occurring isomers. Samples of cyanobacteria were collected by the Lake Winnipeg Research Consortium from standard sampling stations and blooms in July and September of 2016 and were analyzed for BMAA, DAB, AEG, and BAMA using previously published validated analytical methods. BMAA and BAMA were found in the highest concentration in the center of the north basin, the deepest and lowest-nitrogen zone of the lake, at an average concentration of 4 μg/g (collected in July and September 2016) and 1.5 mg/g (collected in July 2016), respectively. AEG and DAB were found in the highest concentration in cyanobacterial blooms from the nearshore region of the north basin, the slightly shallower and more nitrogen-rich zone of the lake, at 2.1 mg/g (collected in July 2016) and 0.2 mg/g (collected in July and September 2016), respectively. These findings indicate that the production of non-protein amino acids varies with the depth and nutrient contents of the bloom. It is important to note that we did not measure food or water samples directly and further study of the Lake Winnipeg food web is required to determine whether BMAA bioaccumulation represents an increased risk factor for neurodegenerative disease in the region.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Jeff K Kerkovius
- Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Frederic Menard
- Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | - Susan J Murch
- Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
23
|
Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P. The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 2017; 33:88-98. [PMID: 28843021 PMCID: PMC5811909 DOI: 10.1002/mds.27105] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD patients. It is, however, unknown whether these differences can be observed in individuals at high risk, for example, with idiopathic rapid eye movement sleep behavior disorder, a prodromal condition of α‐synuclein aggregation disorders including PD. Objectives To compare microbiota in carefully preserved nasal wash and stool samples of subjects with idiopathic rapid eye movement sleep behavior disorder, manifest PD, and healthy individuals. Methods Microbiota of flash‐frozen stool and nasal wash samples from 76 PD patients, 21 idiopathic rapid eye movement sleep behavior disorder patients, and 78 healthy controls were assessed by 16S and 18S ribosomal RNA amplicon sequencing. Seventy variables, related to demographics, clinical parameters including nonmotor symptoms, and sample processing, were analyzed in relation to microbiome variability and controlled differential analyses were performed. Results Differentially abundant gut microbes, such as Akkermansia, were observed in PD, but no strong differences in nasal microbiota. Eighty percent of the differential gut microbes in PD versus healthy controls showed similar trends in idiopathic rapid eye movement sleep behavior disorder, for example, Anaerotruncus and several Bacteroides spp., and correlated with nonmotor symptoms. Metagenomic sequencing of select samples enabled the reconstruction of genomes of so far uncharacterized differentially abundant organisms. Conclusion Our study reveals differential abundances of gut microbial taxa in PD and its prodrome idiopathic rapid eye movement sleep behavior disorder in comparison to the healthy controls, and highlights the potential of metagenomics to identify and characterize microbial taxa, which are enriched or depleted in PD and/or idiopathic rapid eye movement sleep behavior disorder. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Heintz-Buschart
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Urvashi Pandey
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tamara Wicke
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps University Marburg, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps University Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps University Marburg, Germany
| | | | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Department of Neurosurgery, Goettingen, Germany
| | | | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Department of Neurology, Goettingen, Germany
| | - Paul Wilmes
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
24
|
Rodgers KJ, Main BJ, Samardzic K. Cyanobacterial Neurotoxins: Their Occurrence and Mechanisms of Toxicity. Neurotox Res 2017; 33:168-177. [DOI: 10.1007/s12640-017-9757-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
25
|
Scott LL, Downing S, Downing TG. The Evaluation of BMAA Inhalation as a Potential Exposure Route Using a rat Model. Neurotox Res 2017; 33:6-14. [DOI: 10.1007/s12640-017-9742-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
|
26
|
Popova AA, Koksharova OA. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems. BIOCHEMISTRY (MOSCOW) 2017; 81:794-805. [PMID: 27677549 DOI: 10.1134/s0006297916080022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms.
Collapse
Affiliation(s)
- A A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
27
|
Lage S, Ström L, Godhe A, Rydberg S. The effect of exogenous β-N-methylamino-l-alanine (BMAA) on the diatoms Phaeodactylum tricornutum and Thalassiosira weissflogii. HARMFUL ALGAE 2016; 58:85-92. [PMID: 28073463 DOI: 10.1016/j.hal.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
β-N-methylamino-l-alanine (BMAA), a non-protein amino acid with neurodegenerative features, is known to be produced by cyanobacteria, diatoms and a dinoflagellate. BMAA research has intensified over the last decade, and knowledge has been gained about its bioaccumulation in aquatic and terrestrial ecosystems, toxic effects in model organisms and neurotoxicity in vivo and in vitro. Nevertheless, knowledge of the actual physiological role of BMAA in the producing species or of the ecological factors that regulate BMAA production is still lacking. A few studies propose that BMAA functions to signal nitrogen depletion in cyanobacteria. To investigate whether BMAA might have a similar role in diatoms, two diatom species - Phaeodactylum tricornutum and Thalassiosira weissflogii - were exposed to exogenous BMAA at environmental relevant concentrations, i.e. 0.005, 0.05 and 0.5μM. BMAA was taken up in a concentration dependent manner in both species in the BMAA free fraction and in the protein fraction of T. weissflogii. As a result of the treatments, the diatom cells at some of the time points and at some of the BMAA concentrations exhibited lower concentrations of chlorophyll a and protein, in comparison to controls. At the highest (0.5μM) concentration of BMAA, extracellular ammonia was found in the media of both species at all time points. These results suggest that BMAA interferes with nitrogen metabolism in diatoms, possibly by inhibiting ammonium assimilation via the GS/GOGAT pathway.
Collapse
Affiliation(s)
- Sandra Lage
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Linnea Ström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10654 Stockholm, Sweden.
| |
Collapse
|