1
|
Dong WY, Huang TY, Zhao SY, Zhang J, Lei Y, Huang J, Zhou ZS, Lu YB. Chromosome-level genome assembly of the parasitoid wasp Aenasius arizonensis. Sci Data 2025; 12:809. [PMID: 40382346 PMCID: PMC12085690 DOI: 10.1038/s41597-025-05020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/14/2025] [Indexed: 05/20/2025] Open
Abstract
Aenasius arizonensis is an important solitary endoparasitoid successfully used for biocontrol of cotton mealybug. However, lacking genomic resources has limited molecular-level investigations. Our exploration produced a superior genomic assembly of A. arizonensis from the chromosome level by combining MGISEQ short reads, Hi-C scaffolding, and PacBio Revio sequencing techniques. The genome measured 398.69 Mb, including a contig N50 of 4.73 Mb, a BUSCO completeness level of 97.07%, and a scaffold N50 of 35.96 Mb. Hi-C data were further utilized cluster and anchor 98.66% of the genome sequences into 11 chromosomes. Approximately, 165.90 Mb, representing about 41.61% of the genome, was identified as repeat elements. Non-coding sequence annotation identified 171 rRNAs, 117 small RNAs, 331 regulatory RNAs, and 872 tRNAs. Genome annotation reveals 11,727 protein-coding genes, with 10,842 (92.45%) genes functionally annotated. In summary, our chromosome-level genome assembly serves as a significant resource for advancing research on Encyrtidae parasitoids.
Collapse
Affiliation(s)
- Wan-Ying Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tian-Yu Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sheng-Yuan Zhao
- Institute of Bio-Interaction, Xianghu Laboratory, Hangzhou, 311258, China
| | - Juan Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Hangzhou, 311251, China
| | - Yang Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572019, China.
| | - Yao-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- Institute of Bio-Interaction, Xianghu Laboratory, Hangzhou, 311258, China.
| |
Collapse
|
2
|
Zhao J, Wang ZW, Shen G, Hu D, Zhong Y, Ye C, Wang JJ. Regulation of melanization in aphids by parasitoid wasp venom proteins enhances mummification. PEST MANAGEMENT SCIENCE 2025; 81:1017-1025. [PMID: 39494788 DOI: 10.1002/ps.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Interactions between parasitic insects and their hosts demonstrate the complexity of evolutionary processes. Specifically, the parasitoid wasp Aphidius ervi manipulates its host, the pea aphid Acyrthosiphon pisum, through strategic venom injection to enhance mummification. This study explores how this venom affects the aphid's immune system, particularly targeting the activity of the phenoloxidase (PO) enzyme. RESULTS Following the injection of venom from A. ervi, significant changes were observed in the expression of immune-related genes in A. pisum, especially notable expression changes of ApPPOs and a reduction of PO activity. Multi-omics sequencing identified 74 potential venom proteins in the venom gland of A. ervi, including serine protease homolog 1 (AeSPH1) and serine protease inhibitor (AeSPN1), hypothesized to regulate PO activity. The injection of recombinant protein AeSPH1 and AeSPN1 into the A. pisum hemocoel selectively reduced the expression of ApPPO1, without affecting ApPPO2, and effectively suppressed melanization. Moreover, RNAi targeting AeSPH1 significantly reduced the mummification rate in A. pisum population parasitized by A. ervi. CONCLUSION Our findings clarify the complex biochemical mechanisms underlying host-wasp interactions and highlight potential avenues for developing targeted biological control strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Zheng-Wu Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Die Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Zhong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Mouchbahani-Constance S, Sharif-Naeini R. Proteomic and Transcriptomic Techniques to Decipher the Molecular Evolution of Venoms. Toxins (Basel) 2021; 13:154. [PMID: 33669432 PMCID: PMC7920473 DOI: 10.3390/toxins13020154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Nature's library of venoms is a vast and untapped resource that has the potential of becoming the source of a wide variety of new drugs and therapeutics. The discovery of these valuable molecules, hidden in diverse collections of different venoms, requires highly specific genetic and proteomic sequencing techniques. These have been used to sequence a variety of venom glands from species ranging from snakes to scorpions, and some marine species. In addition to identifying toxin sequences, these techniques have paved the way for identifying various novel evolutionary links between species that were previously thought to be unrelated. Furthermore, proteomics-based techniques have allowed researchers to discover how specific toxins have evolved within related species, and in the context of environmental pressures. These techniques allow groups to discover novel proteins, identify mutations of interest, and discover new ways to modify toxins for biomimetic purposes and for the development of new therapeutics.
Collapse
Affiliation(s)
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
4
|
Hwang IW, Shin MK, Lee YJ, Kim ST, Lee SY, Lee B, Jang W, Yeo JH, Lee S, Sung JS. N-type Cav channel inhibition by spider venom peptide of Argiope bruennichi. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-020-00109-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Abbas SK, Ul Abdin Z, Arshad M, Hussain F, Jamil A. In Vitro Studies for the Evaluation of Insecticidal Potential of the Venom of Endoparasitic Wasp Aenasius arizonensis (Girault) (Hymenoptera, Encyrtidae). Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Özbek R, Wielsch N, Vogel H, Lochnit G, Foerster F, Vilcinskas A, von Reumont BM. Proteo-Transcriptomic Characterization of the Venom from the Endoparasitoid Wasp Pimpla turionellae with Aspects on Its Biology and Evolution. Toxins (Basel) 2019; 11:E721. [PMID: 31835557 PMCID: PMC6950128 DOI: 10.3390/toxins11120721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/23/2022] Open
Abstract
Within mega-diverse Hymenoptera, non-aculeate parasitic wasps represent 75% of all hymenopteran species. Their ovipositor dual-functionally injects venom and employs eggs into (endoparasitoids) or onto (ectoparasitoids) diverse host species. Few endoparasitoid wasps such as Pimpla turionellae paralyze the host and suppress its immune responses, such as encapsulation and melanization, to guarantee their offspring's survival. Here, the venom and its possible biology and function of P. turionellae are characterized in comparison to the few existing proteo-transcriptomic analyses on parasitoid wasp venoms. Multiple transcriptome assembly and custom-tailored search and annotation strategies were applied to identify parasitoid venom proteins. To avoid false-positive hits, only transcripts were finally discussed that survived strict filter settings, including the presence in the proteome and higher expression in the venom gland. P. turionella features a venom that is mostly composed of known, typical parasitoid enzymes, cysteine-rich peptides, and other proteins and peptides. Several venom proteins were identified and named, such as pimplin2, 3, and 4. However, the specification of many novel candidates remains difficult, and annotations ambiguous. Interestingly, we do not find pimplin, a paralytic factor in Pimpla hypochondriaca, but instead a new cysteine inhibitor knot (ICK) family (pimplin2), which is highly similar to known, neurotoxic asilid1 sequences from robber flies.
Collapse
Affiliation(s)
- Rabia Özbek
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany;
| | - Frank Foerster
- Bioinformatics Core Facility, Bioinformatics and Systems Biology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
| | - Andreas Vilcinskas
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Björn Marcus von Reumont
- Project group Bioressources, Animal Venomics, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich Buff Ring 58, 35394 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
7
|
Kerima OZ, Niranjana P, Vinay Kumar B, Ramachandrappa R, Puttappa S, Lalitha Y, Jalali SK, Ballal CR, Thulasiram HV. De novo transcriptome analysis of the egg parasitoid Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae): A biological control agent. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Li LF, Xu ZW, Liu NY, Wu GX, Ren XM, Zhu JY. Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21451. [PMID: 29399896 DOI: 10.1002/arch.21451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom.
Collapse
Affiliation(s)
- Li-Fang Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Zhi-Wen Xu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guo-Xing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xue-Min Ren
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| |
Collapse
|
9
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
10
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|