1
|
da Silva JR, Castro-Amorim J, Mukherjee AK, Ramos MJ, Fernandes PA. The application of snake venom in anticancer drug discovery: an overview of the latest developments. Expert Opin Drug Discov 2025:1-19. [PMID: 40012249 DOI: 10.1080/17460441.2025.2465364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Snake venom is a rich source of toxins with great potential for therapeutic applications. In addition to its efficacy in treating hypertension, acute coronary syndrome, and other heart conditions, research has shown that this potent enzymatic cocktail is capable of selectively targeting and destroying cancer cells in many cases while sparing healthy cells. AREAS COVERED The authors begin by acknowledging the emerging trends in snake-derived targeted therapies in battling cancer. An extensive literature review examining the effects of various snake venom toxins on cancer cell lines, highlighting the specific cancer hallmarks each toxin targets is presented. Furthermore, the authors emphasize the emerging potential of artificial intelligence in accelerating snake venom-based drug discovery for cancer treatment, showcasing several innovative software applications in this field. EXPERT OPINION Research on snake venom toxins indicates promising potential for cancer treatment as many of the discussed toxins can specifically target cancer cells. Nevertheless, variations in the composition of venoms, ethical issues, and delivery barriers limit their development into effective therapies. Thus, advances in biotechnology, molecular engineering, in silico methods are crucial for the refinement of venom-derived compounds, improving their specificity, and overcoming these challenges, ultimately enhancing their therapeutic potential in cancer therapy.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ashis K Mukherjee
- Vigyan Path Garchuk, Paschim Boragaon institution, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
3
|
Bittenbinder MA, Wachtel E, Pereira DDC, Slagboom J, Casewell NR, Jennings P, Kool J, Vonk FJ. Development of a membrane-disruption assay using phospholipid vesicles as a proxy for the detection of cellular membrane degradation. Toxicon X 2024; 22:100197. [PMID: 38633504 PMCID: PMC11021370 DOI: 10.1016/j.toxcx.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Snakebite envenoming is a global health issue that affects millions of people worldwide, and that causes morbidity rates surpassing 450,000 individuals annually. Patients suffering from snakebite morbidities may experience permanent disabilities such as pain, blindness and amputations. The (local) tissue damage that causes these life-long morbidities is the result of cell- and tissue-damaging toxins present in the venoms. These compounds belong to a variety of toxin classes and may affect cells in various ways, for example, by affecting the cell membrane. In this study, we have developed a high-throughput in vitro assay that can be used to study membrane disruption caused by snake venoms using phospholipid vesicles from egg yolk as a substrate. Resuspended chicken egg yolk was used to form these vesicles, which were fluorescently stained to allow monitoring of the degradation of egg yolk vesicles on a plate reader. The assay proved to be suitable for studying phospholipid vesicle degradation of crude venoms and was also tested for its applicability for neutralisation studies of varespladib, which is a PLA2 inhibitor. We additionally made an effort to identify the responsible toxins using liquid chromatography, followed by post-column bioassaying and protein identification using high-throughput venomics. We successfully identified various toxins in the venoms of C. rhodostoma and N. mossambica, which are likely to be involved in the observed vesicle-degrading effect. This indicates that the assay can be used for screening the membrane degrading activity of both crude and fractionated venoms as well as for neutralisation studies.
Collapse
Affiliation(s)
- Mátyás A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Eric Wachtel
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Daniel Da Costa Pereira
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Julien Slagboom
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Jennings
- AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- AIMMS Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| |
Collapse
|
4
|
Santos LC, Oliveira VQ, Teixeira SC, Correia TML, Andrade LOSB, Polloni L, Marques LM, Clissa PB, Baldo C, Ferro EAV, Gusmão ACMDM, Silva MJB, Sanabani SS, Ávila VDMR, Lopes DS. PLA 2-MjTX-II from Bothrops moojeni snake venom exhibits antimetastatic and antiangiogenic effects on human lung cancer cells. Toxicon 2024; 243:107742. [PMID: 38705486 DOI: 10.1016/j.toxicon.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.
Collapse
Affiliation(s)
- Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation in Dermatology and Immunodeficiency, São Paulo Institute of Tropical Medicine, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil.
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
5
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
6
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Honari P, Shahbazzadeh D, Behdani M, Pooshang Bagheri K. Highly in vitro anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer cells. Toxicon 2024; 241:107673. [PMID: 38432612 DOI: 10.1016/j.toxicon.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Development of promising medicines from natural sources, specially venom, is of highly necessitated to combat against life-threatening cancers. Non-small cell lung cancer (NSCLC) has a significant percentage of mortalities. Melittin, from bee venom, is a potent anticancer peptide but its toxicity has limited its therapeutic applications. Accordingly, this study aims to synthesize niosomes with suitable stability and capacity for carrying melittin as a drug. Additionally, it seeks to evaluate the anti-cancer activity of melittin-loaded niosomes on non-small cell lung cancer. METHODS The niosome was prepared by thin film hydration method. Cytotoxicity and apoptosis were assessed on A549, Calu-3, and MRC5 cells. Real-time PCR was used to determine expression of apoptotic and pro-apoptotic Bax, Bcl2, and Casp3 genes. Immunocytochemistry (ICC) was also used to confirm expression of the abovementioned genes. Furthermore, wound healing assay was performed to compare inhibition effects of melittin-loaded niosomes with free melittin on migration of cancer cells. RESULTS IC50 values of melittin-loaded niosomes for A549, Calu-3, and MRC5 cells were respectively 0.69 μg/mL, 1.02 μg/mL, and 2.56 μg/mL after 72 h. Expression level of Bax and Casp3 increased '10 and 8' and '9 and 10.5' fold in A549 and Calu-3, whereas Bcl2 gene expression decreased 0.19 and 0.18 fold in the mentioned cell lines. The cell migration inhibited by melittin-loaded niosomes. CONCLUSIONS Melittin-loaded niosomes had more anti-cancer effects and less toxicity on normal cells than free melittin. Furthermore, it induced apoptosis and inhibited cancer cells migration. Our results showed that melittin-loaded niosomes may be a drug lead and it has the potential to be future developed for lung cancer treatment.
Collapse
Affiliation(s)
- Pooyan Honari
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, P.O BOX. 1316943551, Tehran, Iran.
| |
Collapse
|
8
|
Qin WG, Zhuo ZP, Hu H, Lay M, Li QQ, Huang JT, Zeng LB, Liang ZJ, Long F, Liang Q. Proteomic characteristics of six snake venoms from the Viperidae and Elapidae families in China and their relation to local tissue necrosis. Toxicon 2023; 235:107317. [PMID: 37839739 DOI: 10.1016/j.toxicon.2023.107317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Patients envenomed by snakes from the Viperidae and Elapidae families in China often have varying degrees of local tissue necrosis. Due to the relative clinical characteristics of local tissue necrosis and ulceration following envenoming, this study has analyzed the proteome of six snake venoms from the Viperidae and Elapidae family, and the toxin profiles of each snake were compared and correlated with the clinical manifestations that follow cytotoxic envenoming. Deinagkistrodon acutus and Naja atra envenomation induce severe ulceration, which is absent in Bungarus multicinctus envenomation and mild in the other three vipers. It is interesting to note that the proportion of c-type lectins (CTL) (20.63%) in Deinagkistrodon acutus venom was relatively high, which differs from the venom of other vipers. In addition, three-fingered toxin (3FTx) (2.15%) is present in the venom of Deinagkistrodon acutus, but has not been detected in the remaining three vipers. Snake venom metalloprotease (SVMP) (34.4%-44.7%), phospholipase A2 (PLA2) (9.81%-40.83%), and snake venom serine protease (SVSP) (9.44%-16.2%) represent the most abundant families of toxin in Viperidae venom. The Elapidae venom proteome was mainly composed of neurotoxins and cytotoxins, including 3FTx (39.28%-60.08%) and PLA2 (8.24%-58.95%) toxins, however, the proportion of CRISPS (26.36%) in Naja atra venom was relatively higher compared to Bungarus multicinctus venom. Significant differences in SVMP, SVSP, and 3FTx expression levels exist between the Viperidae and the Elapidae family. The main toxins responsible for the development of tissue necrosis and ulcerations following Viperidae envenoming are hematotoxins (SVSMP, SVSP) and myotoxins (PLA2). Deinagkistrodon acutus venom contains high levels of CTL and traces of 3FTx, leading to more severe local necrosis. However, Naja atra venom can also cause severe local necrosis through the effects of myotoxin (3FTx, CRISP, PLA2). Bungarus multicinctus venom does not contain myotoxins, resulting in pure systemic neurological manifestations no obvious necrosis of local tissue in patients.
Collapse
Affiliation(s)
- Wan-Gang Qin
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Zhan-Peng Zhuo
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Hao Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mimi Lay
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, Vic, 3800, Australia
| | - Qian-Qin Li
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Jun-Ting Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Liang-Bo Zeng
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Zi-Jing Liang
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| | - Qing Liang
- Department of Emergency Medicine, The First Affiliated Hospital of Guangzhou Medical University,151 Yanjiang Rd., Guangzhou, 510120, China; Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, Vic, 3800, Australia.
| |
Collapse
|
9
|
Schulte L, Damm M, Avella I, Uhrig L, Erkoc P, Schiffmann S, Fürst R, Timm T, Lochnit G, Vilcinskas A, Lüddecke T. Venomics of the milos viper ( Macrovipera schweizeri) unveils patterns of venom composition and exochemistry across blunt-nosed viper venoms. Front Mol Biosci 2023; 10:1254058. [PMID: 37719269 PMCID: PMC10500195 DOI: 10.3389/fmolb.2023.1254058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction: Snakebite is a neglected tropical disease and a globally important driver of death and morbidity. Vipers of the genus Macrovipera (Viperidae: Viperinae) are among the snakes of higher medical importance in the Old World. Despite the medical relevance of Macrovipera venoms, the knowledge regarding them is heterogeneously distributed with virtually all works conducted so far focusing on subspecies of Macrovipera lebetinus, while other species within the genus are largely overlooked. Here we present the first proteomic evaluation of the venom from the Greek endemic Milos viper (Macrovipera schweizeri). In line with clinical symptoms typically elicited by Macrovipera envenomations, Milos viper venom primarily comprises coagulotoxic and cytotoxic protein families, such as metalloproteinases (svMP) and serine proteases (svSP). Methods: We conducted comparative bioactivity assays on venoms from M. schweizeri and the M. lebetinus subspecies M. lebetinus cernovi, M. lebetinus obtusa, and M. lebetinus turanica, and showed that they all exhibit similarities in levels of cytotoxicity proteolytic activity, and inhibition of prokaryotic growth. Lastly, we compared Macrovipera venom profiles by 1D-SDS-PAGE and RP-HPLC, as well as our proteomic data with previously published Macrovipera venom proteomes. Results and discussion: The analyzes performed to reveal that a general venom profile seems to be conserved across blunt-nosed vipers, and that, M. schweizeri envenomations, similarly to those caused by other blunt-nosed vipers, are able to cause significant tissue damage. The present work represents an important starting point for the development of comparative studies across the full taxonomic range of the genus Macrovipera and can potentially help optimize the treatment of envenomations caused by M. schweizeri.
Collapse
Affiliation(s)
- Lennart Schulte
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Maik Damm
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Ignazio Avella
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO Associated Laboratory, University Port, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIBIO, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Vairão, Portugal
| | - Lilien Uhrig
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Pelin Erkoc
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Schiffmann
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany
| | - Robert Fürst
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| |
Collapse
|
10
|
Feng J, Huang Y, Huang M, Luo J, Que L, Yang S, Jian J. A novel perlucin-like protein (PLP) protects Litopenaeus vannamei against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108932. [PMID: 37414305 DOI: 10.1016/j.fsi.2023.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
C-type lectins (CTLs), as pattern recognition receptors (PRRs), play an important role in the innate immunity of Litopenaeus vannamei. In this study, a novel CTL, named perlucin-like protein (PLP), was identified from L. vannamei, which shared homology sequences of PLP from Penaeus monodon. PLP from L. vannamei was expressed in the hepatopancreas, eyestalk, muscle and brain and could be activated in the tissues (hepatopancreas, muscle, gill and intestine) after infection with the pathogen Vibrio harveyi. Bacteria (Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, Streptococcus agalactiae and Bacillus subtilis) could be bound and agglutinated by the PLP recombinant protein in a Ca2+-dependent manner. Moreover, PLP could stabilise the expression of the immune-related genes (ALF, SOD, HSP70, Toll4 and IMD) and apoptosis gene (Caspase2). The RNAi of PLP could remarkably affect the expression of antioxidant gene, antimicrobial peptide genes, other CTLs, apoptosis genes, Toll signaling pathways, and IMD signaling pathways. Moreover, PLP reduced the bacterial load in the hepatopancreas. These results suggested that PLP was involved in the innate immune response against V. harveyi infection by recognising bacterial pathogens and activating the expression of immune-related and apoptosis genes.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liwen Que
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
11
|
Takayasu BS, Rodrigues SS, Madureira Trufen CE, Machado-Santelli GM, Onuki J. Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays. Heliyon 2023; 9:e18317. [PMID: 37539139 PMCID: PMC10393766 DOI: 10.1016/j.heliyon.2023.e18317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Snake envenomation is a neglected tropical disease. In Brazil, the Bothrops genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization. Traditionally, the effectiveness and quality control tests of venoms and antivenoms are assessed by in vivo assays. Despite this, there is a rising effort to develop surrogate in vitro models according to the 3R principle (Replacement, Reduction, and Refinement). In this study, we treated rat liver cells (BRL-3A) with venoms from five Bothrops species (B. jararaca, B. jararacussu, B. moojeni, B. alternatus, and B. neuwiedi) and analyzed cell viability and IC50 by MTT assay, cell cycle phases distribution by flow cytometry, and morphology and cytoskeleton alterations by immunofluorescence. In addition, we evaluated the correlation between IC50 and the enzymatic and biological activities of each venom. Our results indicated that Bothrops spp. venoms decreased the cell viability of rat liver BRL-3A cells. The rank order of potency was B. jararacussu > B. moojeni > B. alternatus > B. jararaca > B. neuwiedi. The mechanisms of cytotoxicity were related to microtubules and actin network disruption, but not to cell cycle arrest. No clear correlation was found between the IC50 and retrieved literature data of in vitro enzymatic and in vivo biological activities. This work contributed to understanding cellular and molecular mechanisms underlying the Bothrops spp. venom cytotoxicity, which can help to improve envenomation treatment, as well as disclose potential therapeutic properties of snake venoms.
Collapse
Affiliation(s)
- Bianca Sayuri Takayasu
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janice Onuki
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Laboratory of Herpetology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
12
|
Wachtel E, Bittenbinder MA, van de Velde B, Slagboom J, de Monts de Savasse A, Alonso LL, Casewell NR, Vonk FJ, Kool J. Application of an Extracellular Matrix-Mimicking Fluorescent Polymer for the Detection of Proteolytic Venom Toxins. Toxins (Basel) 2023; 15:toxins15040294. [PMID: 37104232 PMCID: PMC10143632 DOI: 10.3390/toxins15040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The cytotoxicity caused by snake venoms is a serious medical problem that greatly contributes to the morbidity observed in snakebite patients. The cytotoxic components found in snake venoms belong to a variety of toxin classes and may cause cytotoxic effects by targeting a range of molecular structures, including cellular membranes, the extracellular matrix (ECM) and the cytoskeleton. Here, we present a high-throughput assay (384-well plate) that monitors ECM degradation by snake venom toxins via the application of fluorescent versions of model ECM substrates, specifically gelatin and collagen type I. Both crude venoms and fractionated toxins of a selection of medically relevant viperid and elapid species, separated via size-exclusion chromatography, were studied using the self-quenching, fluorescently labelled ECM-polymer substrates. The viperid venoms showed significantly higher proteolytic degradation when compared to elapid venoms, although the venoms with higher snake venom metalloproteinase content did not necessarily exhibit stronger substrate degradation than those with a lower one. Gelatin was generally more readily cleaved than collagen type I. In the viperid venoms, which were subjected to fractionation by SEC, two (B. jararaca and C. rhodostoma, respectively) or three (E. ocellatus) active proteases were identified. Therefore, the assay allows the study of proteolytic activity towards the ECM in vitro for crude and fractionated venoms.
Collapse
Affiliation(s)
- Eric Wachtel
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matyas A Bittenbinder
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Bas van de Velde
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Julien Slagboom
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Axel de Monts de Savasse
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Luis L Alonso
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Freek J Vonk
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Bhattacharya N, Kolvekar N, Mondal S, Sarkar A, Chakrabarty D. SPAD-1, a serine proteinase associated disintegrin from Russell's viper venom disrupts adhesion of MCF7 human breast cancer cells. Toxicon 2022; 221:106979. [DOI: 10.1016/j.toxicon.2022.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
14
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|
15
|
Musthafa SA, Muthu K, Vijayakumar S, George SJ, Murali S, Govindaraj J, Munuswamy-Ramanujam G. Lectin isolated from Abelmoschus esculentus induces caspase mediated apoptosis in human U87 glioblastoma cell lines and modulates the expression of circadian clock genes. Toxicon 2021; 202:98-109. [PMID: 34562497 DOI: 10.1016/j.toxicon.2021.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Lectins are a cluster of proteins which are capable of recognizing and binding to glycoconjugates and are extensively found in plants, animals, fungi and bacteria. Plant-derived lectins have been gaining importance over the years due to their innumerable biological activities and also have the added possibility of being compatible to the human system while simultaneously exhibiting properties like antimicrobial and antitumor activities. Abelmoschus esculentus (AE) commonly known as okra is a vegetable with medicinal properties. AE extracts are used to treat disorders such as constipation, microbial infection, urine retention, hypoglycemia and inflammation in humans. Previous studies showed that lectin isolated from AE exhibited anti inflammatory, anti nociceptive, anticancer, antioxidant and hemagglutinating activities. However, the antitumor effect of the lectin derived from this plant against neural cancer cells still remains unexplored. Glioblastoma is a malignant tumor of the nervous system. Treatment options for patients afflicted by glioblastoma is limited to surgical resection, preceded by radiation therapy and followed by chemotherapy. Hence it would be of interest to identify novel bio molecules with ability to selectively target glioblastoma with minimum side effects. In this aspect, lectins from vegetables that are commonly used as food products could offer a promising lead as anticancer molecules. The present study proves the anti-proliferative effect of lectin isolated from AE on human U87 glioma cells. MTT assay showed significant concentration dependent cytotoxic activity and the IC50 value was calculated as 21 μg/ml. Further, annexin V/FITC staining by FACS, the expression of caspase 3 and 7 and the circadian genes clock and Bmal1 using RT-PCR and the generation of intracellular ROS, cell cycle analysis by FACS revealed the ability of AEL to induce effective apoptosis.
Collapse
Affiliation(s)
- Shazia Anjum Musthafa
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India
| | - Kesavan Muthu
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India
| | - Shubiksha Vijayakumar
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Sunita Josephine George
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Svathi Murali
- School of Bioengineering, Faculty of Engineering & Technology, SRM IST, Kattankulathur, 603203, TN, India
| | - Jayanthy Govindaraj
- Faculty of Agricultural Sciences, SRM IST, Kattankulathur, 603203, TN, India
| | - Ganesh Munuswamy-Ramanujam
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, TN, India; Department of Chemistry, Faculty of Science & Humanities, SRM IST, Kattankulathur, 603203, TN, India.
| |
Collapse
|
16
|
Kalita B, Saviola AJ, Mukherjee AK. From venom to drugs: a review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov Today 2021; 26:993-1005. [DOI: 10.1016/j.drudis.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
|
17
|
Micrurus surinamensis Peruvian snake venom: Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. Int J Biol Macromol 2020; 164:1908-1915. [PMID: 32781119 DOI: 10.1016/j.ijbiomac.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022]
Abstract
Micrurus surinamensis (Cuvier, 1817), popularly known as aquatic coral snake, has a broad geographic distribution in the Rainforest of South America. The purpose of this study was to investigate the cytotoxic effect caused by M. surinamensis venom in H9c2 cardiomyoblast cells and to identify protein components involved in cardiotoxic processes. Venom cardiotoxic potential is evidenced by cell viability reduction in a concentration-dependent manner. We have purified one of venom components responsible for this effect after three chromatographic steps: a cytotoxic 23.461 kDa protein, as determined by mass spectrometry. A 19-residue sequence (DCPSGWSSYEGSCYNFFQR) of the purified protein was deduced by MS/MS and exhibited high homology with N-terminal region of C-type lectin from snake venoms. This protein was named Ms-CTL. Morphologically, H9c2 incubation with Ms-CTL led to a significant cellular retraction and formation of cellular aggregates, as observed by microscopy phase-contrast images. Our results indicate that M. surinamensis venom is highly toxic to H9c2 cardiomyoblast cell and less or not cytotoxic to other cell lines, such as HaCat, VERO and U373. Results presented herein will help understanding the mechanisms that underlie cellular damage and tissue destruction, being useful in the development of alternative therapies against these coral snake bites.
Collapse
|
18
|
New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. Semin Cancer Biol 2020; 80:356-369. [PMID: 32846203 DOI: 10.1016/j.semcancer.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.
Collapse
|
19
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
20
|
Tran TV, Siniavin AE, Hoang AN, Le MT, Pham CD, Phung TV, Nguyen KC, Ziganshin RH, Tsetlin VI, Weng CF, Utkin YN. Phospholipase A 2 from krait Bungarus fasciatus venom induces human cancer cell death in vitro. PeerJ 2019; 7:e8055. [PMID: 31824756 PMCID: PMC6896944 DOI: 10.7717/peerj.8055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Snake venoms are the complex mixtures of different compounds manifesting a wide array of biological activities. The venoms of kraits (genus Bungarus, family Elapidae) induce mainly neurological symptoms; however, these venoms show a cytotoxicity against cancer cells as well. This study was conducted to identify in Bungarus fasciatus venom an active compound(s) exerting cytotoxic effects toward MCF7 human breast cancer cells and A549 human lung cancer cells. METHODS The crude venom of B. fasciatus was separated by gel-filtration on Superdex HR 75 column and reversed phase HPLC on C18 column. The fractions obtained were screened for cytotoxic effect against MCF7, A549, and HK2 cell lines using colorimetric assay with the tetrazolium dye MTT- 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The primary structure of active protein was established by ultra high resolution LC-MS/MS. The molecular mechanism of the isolated protein action on MCF7 cells was elucidated by flow cytometry. RESULTS MTT cell viability assays of cancer cells incubated with fractions isolated from B. fasciatus venom revealed a protein with molecular mass of about 13 kDa possessing significant cytotoxicity. This protein manifested the dose and time dependent cytotoxicity for MCF7 and A549 cell lines while showed no toxic effect on human normal kidney HK2 cells. In MCF7, flow cytometry analysis revealed a decrease in the proportion of Ki-67 positive cells. As Ki-67 protein is a cellular marker for proliferation, its decline indicates the reduction in the proliferation of MCF7 cells treated with the protein. Flow cytometry analysis of MCF7 cells stained with propidium iodide and Annexin V conjugated with allophycocyanin showed that a probable mechanism of cell death is apoptosis. Mass spectrometric studies showed that the cytotoxic protein was phospholipase A2. The amino acid sequence of this enzyme earlier was deduced from cloned cDNA, and in this work it was isolated from the venom as a protein for the first time. It is also the first krait phospholipase A2 manifesting the cytotoxicity for cancer cells.
Collapse
Affiliation(s)
- Thien V. Tran
- Tra Vinh University, Tra Vinh City, Vietnam
- Graduate University of Science and Technology VAST, Hanoi, Vietnam
| | - Andrei E. Siniavin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Anh N. Hoang
- Graduate University of Science and Technology VAST, Hanoi, Vietnam
- Institute of Applied Materials Science VAST, Ho Chi Minh City, Vietnam
| | - My T.T. Le
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chuong D. Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Trung V. Phung
- Center for Research and Technology Transfer VAST, Ho Chi Minh City, Vietnam
| | - Khoa C. Nguyen
- Graduate University of Science and Technology VAST, Hanoi, Vietnam
- Institute of Applied Materials Science VAST, Ho Chi Minh City, Vietnam
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Victor I. Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Yuri N. Utkin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation
| |
Collapse
|
21
|
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2019; 18:202-215. [PMID: 31622208 PMCID: PMC7327950 DOI: 10.2174/1570159x17666191016092221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lectins are proteins or glycoproteins of non-immunological origin capable of reversibly and specifically binding to glycoconjugates. They exist in free form or associated with cells and are widely distributed in nature, being found in plants, microorganisms, and animals. Due to their characteristics and mainly due to the possibility of reversible binding to glycoconjugates, lectins have stood out as important tools in research involving Neurobiology. These proteins have the ability to modulate molecular targets in the central nervous system (CNS) which may be involved with neuroplasticity, neurobehavioral effects, and neuroprotection. The present report integrates existing information on the activity of animal and plant lectins in different areas of Neuroscience, presenting perspectives to direct new research on lectin function in the CNS, providing alternatives for understanding neurological diseases such as mental disorders, neurodegenerative, and neuro-oncological diseases, and for the development of new drugs, diagnoses and therapies in the field of Neuroscience.
Collapse
Affiliation(s)
| | - Cauê Barbosa Coelho
- Programa de Pos-Graduacao em Ciencia e Tecnologia Ambiental para o Semiarido (PPGCTAS), State University of Pernambuco, Petrolina, Pernambuco, Brazil
| | - Adriana Rolim Campos
- Experimental Biology Centre (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceara, Brazil
| | | | | |
Collapse
|
22
|
Kalita B, Mukherjee AK. Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00014-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
24
|
Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta Gen Subj 2017; 1862:600-614. [PMID: 29196192 DOI: 10.1016/j.bbagen.2017.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. METHODS Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. RESULTS Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK1/2, p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. CONCLUSIONS We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. GENERAL SIGNIFICANCE The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment.
Collapse
|
25
|
Issaad N, Ait-Lounis A, Laraba-Djebari F. Cytotoxicity and actin cytoskeleton damage induced in human alveolar epithelial cells by Androctonus australis hector venom. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1320806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nesrine Issaad
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| | - Aouatef Ait-Lounis
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Bab Ezzouar, Algiers, Algeria
| |
Collapse
|