1
|
Takjoo R, Wilson DT, Le Quilliec J, Schmidt CA, Zhao G, Liddell MJ, Shaikh NY, Sunagar K, Loukas A, Smout MJ, Daly NL. Structural analysis of an Asterias rubens peptide indicates the presence of a disulfide-directed β-hairpin fold. FEBS Open Bio 2025; 15:415-426. [PMID: 39561265 PMCID: PMC11891777 DOI: 10.1002/2211-5463.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Sea stars are an abundant group of marine invertebrates that display remarkably robust regenerative capabilities throughout all life stages. Numerous proteins and peptides have been identified in a proteome study on the coelomic fluid (biofluid) of the common sea star Asterias rubens, which appear to be involved with the wound-healing response in the organism. However, the three-dimensional structure and function of several of these injury-responsive peptides, including the peptide KASH2, are yet to be investigated. Here, we show that the KASH2 peptide adopts a disulfide-directed β-hairpin fold (DDH). The DDH motif appears to be evolutionarily related to the inhibitor cystine knot motif, which is one of the most widespread disulfide-rich peptide folds. The DDH motif was originally thought to be restricted to arachnids, but our study suggests that as a result of convergent evolution it could also have originated in sea stars. Although the widely conserved DDH fold has potential cross-phyla wound-healing capacity, we have shown that KASH2 does not enhance the proliferation of human fibroblasts, a simple method for wound-healing re-epithelialisation screening. Therefore, additional research is necessary to determine the role of KASH2 in the sea stars.
Collapse
Affiliation(s)
- Rozita Takjoo
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - David T. Wilson
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Justine Le Quilliec
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
- Univ Brest, École Supérieure d'Ingénieurs en Agroalimentaire de Bretagne atlantiquePlouzanéFrance
| | - Casey A. Schmidt
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Guangzu Zhao
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | | | - Naeem Y. Shaikh
- Evolutionary Venomics Lab, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia
| | - Alex Loukas
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Michael J. Smout
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| |
Collapse
|
2
|
Smith HL, Broszczak DA, Bryan SE, Norton RS, Prentis PJ. Molecular Insights into the Low Complexity Secreted Venom of Calliactis polypus. Genome Biol Evol 2024; 16:evae154. [PMID: 39018436 PMCID: PMC11299110 DOI: 10.1093/gbe/evae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Sea anemones are venomous animals that rely on their venom for prey capture, defense against predators, and intraspecific competition. Currently, comprehensive molecular and evolutionary analyses of the toxin repertoire for sea anemones are limited by a lack of proteomic data for most species. In this study, proteo-transcriptomic analysis was used to expand our knowledge of the proteinaceous components of sea anemone venom by determining the secreted venom proteome of Calliactis polypus. Electromechanical stimulation was used to obtain the secreted venom of C. polypus. We identified a low complexity proteome that was dominated by toxins with similarity to known neurotoxins, as well as six novel toxin candidates. The novel putative toxin candidates were found to be taxonomically restricted to species from the superfamily Metridioidea. Furthermore, the secreted venom of C. polypus had only three putative toxins in common with the venom of acontia from the same species and little similarity with the secreted venom of closely related species. Overall, this demonstrates that regionalized and lineage-specific variability in toxin abundance is common among sea anemone species. Moreover, the limited complexity of the toxin repertoire found in C. polypus supports the idea that peptide neurotoxins make up the dominant toxin arsenal found in the venom of sea anemones.
Collapse
Affiliation(s)
- Hayden L Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4000, Australia
| | - Scott E Bryan
- School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
3
|
Guo Q, Fu J, Yuan L, Liao Y, Li M, Li X, Yi B, Zhang J, Gao B. Diversity analysis of sea anemone peptide toxins in different tissues of Heteractis crispa based on transcriptomics. Sci Rep 2024; 14:7684. [PMID: 38561372 PMCID: PMC10985097 DOI: 10.1038/s41598-024-58402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Peptide toxins found in sea anemones venom have diverse properties that make them important research subjects in the fields of pharmacology, neuroscience and biotechnology. This study used high-throughput sequencing technology to systematically analyze the venom components of the tentacles, column, and mesenterial filaments of sea anemone Heteractis crispa, revealing the diversity and complexity of sea anemone toxins in different tissues. A total of 1049 transcripts were identified and categorized into 60 families, of which 91.0% were proteins and 9.0% were peptides. Of those 1049 transcripts, 416, 291, and 307 putative proteins and peptide precursors were identified from tentacles, column, and mesenterial filaments respectively, while 428 were identified when the datasets were combined. Of these putative toxin sequences, 42 were detected in all three tissues, including 33 proteins and 9 peptides, with the majority of peptides being ShKT domain, β-defensin, and Kunitz-type. In addition, this study applied bioinformatics approaches to predict the family classification, 3D structures, and functional annotation of these representative peptides, as well as the evolutionary relationships between peptides, laying the foundation for the next step of peptide pharmacological activity research.
Collapse
Affiliation(s)
- Qiqi Guo
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Jinxing Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Lin Yuan
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Yanling Liao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ming Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Xinzhong Li
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Bo Yi
- Department of Pharmacy, 928th Hospital of PLA Joint Logistics Support Force, Haikou, China
| | - Junqing Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Sanches K, Ashwood LM, Olushola-Siedoks AAM, Wai DCC, Rahman A, Shakeel K, Naseem MU, Panyi G, Prentis PJ, Norton RS. Structure-function relationships in ShKT domain peptides: ShKT-Ts1 from the sea anemone Telmatactis stephensoni. Proteins 2024; 92:192-205. [PMID: 37794633 DOI: 10.1002/prot.26594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arfatur Rahman
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
7
|
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci U S A 2020; 117:27481-27492. [PMID: 33060291 DOI: 10.1073/pnas.2011120117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.
Collapse
|
8
|
Histidine-Rich Defensins from the Solanaceae and Brasicaceae Are Antifungal and Metal Binding Proteins. J Fungi (Basel) 2020; 6:jof6030145. [PMID: 32847065 PMCID: PMC7557933 DOI: 10.3390/jof6030145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/01/2023] Open
Abstract
Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46–50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs). Using these initial HRD sequences as a query, a search of the available sequence databases identified over 750 HRDs in solanaceous plants and 20 in brassicas. Histidine residues are known to contribute to metal binding functions in proteins leading to the hypothesis that HRDs would have metal binding properties. A selection of the HRD sequences were recombinantly expressed and purified and their antifungal and metal binding activity was characterized. Of the four HRDs that were successfully expressed all displayed some level of metal binding and two of four had antifungal activity. Structural characterization of the other HRDs identified a novel pattern of disulfide linkages in one of the HRDs that is predicted to also occur in HRDs with similar cysteine spacing. Metal binding by HRDs represents a specialization of the plant defensin fold outside of antifungal activity.
Collapse
|
9
|
Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms. Mar Drugs 2020; 18:md18080413. [PMID: 32764303 PMCID: PMC7460484 DOI: 10.3390/md18080413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.
Collapse
Affiliation(s)
- Anna M. L. Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
- Correspondence:
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth, Drive Lakeland, FL 33801, USA
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
| | - Sérgio N. Stampar
- Department of Biological Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), FCL, Assis, SP 19806, Brazil;
| |
Collapse
|
10
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
11
|
Shafee T, Bacic A, Johnson K. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Mol Biol Evol 2020; 37:2155-2172. [DOI: 10.1093/molbev/msaa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence–function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions.
Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence–function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.
Collapse
Affiliation(s)
- Thomas Shafee
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| | - Kim Johnson
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| |
Collapse
|
12
|
Mitchell ML, Tonkin-Hill GQ, Morales RAV, Purcell AW, Papenfuss AT, Norton RS. Tentacle Transcriptomes of the Speckled Anemone (Actiniaria: Actiniidae: Oulactis sp.): Venom-Related Components and Their Domain Structure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:207-219. [PMID: 31981004 DOI: 10.1007/s10126-020-09945-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Cnidarians are one of the oldest known animal lineages (ca. 700 million years), with a unique envenomation apparatus to deliver a potent mixture of peptides and proteins. Some peptide toxins from cnidarian venom have proven therapeutic potential. Here, we use a transcriptomic/proteomic strategy to identify sequences with similarity to known venom protein families in the tentacles of the endemic Australian 'speckled anemone' (Oulactis sp.). Illumina RNASeq data were assembled de novo. Annotated sequences in the library were verified by cross-referencing individuals' transcriptomes or protein expression evidence from LC-MS/MS data. Sequences include pore-forming toxins, phospholipases, peptidases, neurotoxins (sodium and potassium channel modulators), cysteine-rich secretory proteins and defensins (antimicrobial peptides). Fewer than 4% of the sequences in the library occurred across the three individuals examined, demonstrating high sequence variability of an individual's arsenal. We searched for actinoporins in Oulactis sp. to assess sequence similarity to the only described toxins (OR-A and -G) for this genus and examined the domain architecture of venom-related peptides and proteins. The novel putative actinoporin of Oulactis sp. has a greater similarity to other species in the Actiniidae family than to O. orientalis. Venom-related sequences have an architecture that occurs in single, repeat or multi-domain combinations of venom-related (e.g. ShK-like) and non-venom (e.g. whey acid protein) domains. This study has produced the first transcriptomes for an endemic Australian sea anemone species and the genus Oulactis, while identifying nearly 400 novel venom-related peptides and proteins for future structural and functional analyses and venom evolution studies.
Collapse
Affiliation(s)
- Michela L Mitchell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
- Sciences Department, Museum Victoria, G.P.O. Box 666, Melbourne, Victoria, 3001, Australia.
- Queensland Museum, P.O. Box 3000, South Brisbane, Queensland, 4101, Australia.
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Gerry Q Tonkin-Hill
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- CSL Limited, 30 Flemington Road, Parkville, Victoria, 3010, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter & Eliza Hall Institute of Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3010, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, 3010, Australia
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|