1
|
Kroumpouzos G, Silikovich F. Exploring Nonresponse to Botulinum Toxin in Aesthetics: Narrative Review of Key Trigger Factors and Effective Management Strategies. JMIR DERMATOLOGY 2025; 8:e69960. [PMID: 40273416 PMCID: PMC12045523 DOI: 10.2196/69960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/26/2025] Open
Abstract
Background Nonresponse to botulinum toxin type A (BoNT-A) has been reported in both medical and aesthetic applications. Secondary nonresponse (SNR) occurs when BoNT-A is initially effective before failure commences at a later point. Most reported cases involve SNR in aesthetics. Several aspects of this complication remain elusive or controversial. Objective We aimed to address unanswered questions regarding the prevalence and etiology of SNR. Additionally, we investigated the immunogenicity of BoNT-A formulations, mainly focusing on the development of neutralizing antibodies that hinder the toxin's pharmacologic effects. Furthermore, we sought to examine the management strategies for SNR. Methods The PubMed and Google Scholar databases were searched from inception for articles on nonresponse to BoNT-A therapy. Articles were evaluated based on their contribution to the field. Expert opinions and panel recommendations regarding management and data gaps were also included in the review. Results There are limited data on SNR prevalence in aesthetic applications compared to therapeutic uses. Trigger factors of SNR include improper handling of BoNT-A; incorrect injection practices; and impurities present in the formulation, such as clostridial complexing proteins that may increase immunogenicity. Other contributing factors include infection; patient characteristics; and treatment parameters that encompass an increased frequency of BoNT-A injections (ie, <3 months apart), higher cumulative dosages, elevated treatment dosages, and booster injections (retreatment within 3 weeks of the initial injection). Neutralizing antibodies developed with first-generation formulations, such as onabotulinumtoxinA and abobotulinumtoxinA that contain clostridial proteins, but not with second-generation BoNT-As, such as incobotulinumtoxinA and daxibotulinumtoxinA, which lack these proteins. Among patients who developed SNR after using first-generation BoNT-A for aesthetic purposes, switching to incobotulinumtoxinA therapy did not result in the development of immune responses. Switching to a protein-free BoNT-A formulation such as incobotulinumtoxinA upon development of SNR has been advocated. To effectively manage SNR, it is crucial to minimize the identified trigger factors. Conclusions Nonresponse to BoNT-A is gaining importance in aesthetic treatments. Considering the potential for immunogenicity is essential when selecting a BoNT-A formulation. Preventing SNR is crucial, given the lack of solid data on effective treatments.
Collapse
Affiliation(s)
- George Kroumpouzos
- GK Dermatology PC, 541 Main St, Suite 320, South Weymouth, MA, 02190, United States, 1 617-501-1152, 1 781-812-2748
- Department of Dermatology, Warren Alpert Medical School at Brown University, Providence, RI, United States
| | | |
Collapse
|
2
|
Machicoane M, Tonellato M, Zainotto M, Onillon P, Stazi M, Corso MD, Megighian A, Rossetto O, Le Doussal JM, Pirazzini M. Excitation-contraction coupling inhibitors potentiate the actions of botulinum neurotoxin type A at the neuromuscular junction. Br J Pharmacol 2025; 182:564-580. [PMID: 39389783 DOI: 10.1111/bph.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Botulinum neurotoxin type A1 (BoNT/A) is one of the most potent neurotoxins known. At the same time, it is also one of the safest therapeutic agents used for the treatment of several human disorders and in aesthetic medicine. Notwithstanding great effectiveness, strategies to accelerate the onset and prolong BoNT/A action would significantly ameliorate its pharmacological effects with beneficial outcomes for clinical use. EXPERIMENTAL APPROACH Here, we combined BoNT/A with two fast-acting inhibitors of excitation-contraction coupling inhibitors (ECCI), either the μ-conotoxin CnIIIC or dantrolene, and tested the effect of their co-injection on a model of hind-limb paralysis in rodents using behavioural, biochemical, imaging and electrophysiological assays. KEY RESULTS The BoNT/A-ECCI combinations accelerated the onset of muscle relaxation. Surprisingly, they also potentiated the peak effect and extended the duration of the three BoNT/A commercial preparations OnabotulinumtoxinA, AbobotulinumtoxinA and IncobotulinumtoxinA. ECCI co-injection increased the number of BoNT/A molecules entering motoneuron terminals, which induced a faster and greater cleavage of SNAP-25 during the onset and peak phases, and prolonged the attenuation of nerve-muscle neurotransmission during the recovery phase. We estimate that ECCI co-injection yields a threefold potentiation in BoNT/A pharmacological activity. CONCLUSIONS AND IMPLICATIONS Overall, our results show that the pharmacological activity of BoNT/A can be combined and synergized with other bioactive molecules and uncover a novel strategy to enhance the neuromuscular effects of BoNT/A without altering the neurotoxin moiety or intrinsic activity, thus maintaining its exceptional safety profile.
Collapse
Affiliation(s)
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marica Zainotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Dal Corso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, Italian Research Council, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| | | | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Rahman E, Carruthers JDA. Immunogenicity of Botulinum Toxin A: Insights. Dermatol Surg 2024; 50:S117-S126. [PMID: 39196845 DOI: 10.1097/dss.0000000000004293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Botulinum toxin A (BoNT-A) is widely used in treating dystonia and spasticity to managing chronic migraine and cosmetic applications. However, its immunogenic potential presents challenges, such as the development of neutralizing antibodies that lead to diminished therapeutic efficacy over time, known as secondary nonresponse. OBJECTIVE This review aims to bridge the knowledge gap regarding the immunogenic mechanisms of BoNT-A and to explore effective management strategies to mitigate these immune responses. MATERIALS AND METHODS The authors conducted a systematic search in databases including PubMed, Embase, and Web of Science, using keywords related to BoNT-A's immunogenicity. The selection process refined 157 initial articles down to 23 relevant studies, which underwent analysis to investigate the underlying mechanisms of immunogenicity and the factors influencing it. RESULTS The analysis revealed that both the neurotoxin component and the neurotoxin-associated proteins could elicit an immune response. However, only antibodies against the core toxin influence therapeutic outcomes. Various patient-specific factors such as genetic predispositions and prior immune experiences, along with treatment-related factors such as dosage and frequency, play crucial roles in shaping these responses. CONCLUSION Understanding the specific immunogenic triggers and responses to BoNT-A is critical for optimizing treatment protocols and improving patient outcomes.
Collapse
Affiliation(s)
- Eqram Rahman
- Research and Innovation Hub, Innovation Aesthetics, London, United Kingdom
| | - Jean D A Carruthers
- Department of Ophthalmology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Corduff N, Park JY, Calderon PE, Choi H, Dingley M, Ho WWS, Martin MU, Suseno LS, Tseng FW, Vachiramon V, Wanitphakdeedecha R, Yu JNT. Real-world Implications of Botulinum Neurotoxin A Immunoresistance for Consumers and Aesthetic Practitioners: Insights from ASCEND Multidisciplinary Panel. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5892. [PMID: 38903135 PMCID: PMC11188869 DOI: 10.1097/gox.0000000000005892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Background As long-term, regular aesthetic botulinum neurotoxin A (BoNT-A) use becomes more commonplace, it is vital to understand real-world risk factors and impact of BoNT-A immunoresistance. The first Aesthetic Council on Ethical Use of Neurotoxin Delivery panel discussed issues relating to BoNT-A immunoresistance from the health care professionals' (HCPs') perspective. Understanding the implications of BoNT-A immunoresistance from the aesthetic patient's viewpoint allows HCPs to better support patients throughout their aesthetic treatment journey. Methods A real-world consumer study surveyed 363 experienced aesthetic BoNT-A recipients across six Asia-Pacific territories. The survey mapped participants' BoNT-A aesthetic treatment journey and characterized awareness and attitudes relating to BoNT-A immunoresistance and treatment implications. At the second Aesthetic Council on Ethical use of Neurotoxin Delivery meeting, panelists discussed survey findings and developed consensus statements relating to the impact of BoNT-A immunoresistance on the aesthetic treatment journey. Results Aesthetic BoNT-A patients' depth of knowledge about BoNT-A immunoresistance remains low, and risk/benefit communications need to be more lay-friendly. The initial consultation is the most important touchpoint for HCPs to raise awareness of BoNT-A immunoresistance as a potential side effect considering increased risk with repeated high-dose treatments. HCPs should be cognizant of differences across BoNT-A formulations due to the presence of certain excipients and pharmacologically unnecessary components that can increase immunogenicity. Standardized screening for clinical signs of secondary nonresponse and a framework for diagnosing and managing immunoresistance-related secondary nonresponse were proposed. Conclusion These insights can help patients and HCPs make informed treatment decisions to achieve desired aesthetic outcomes while preserving future treatment options with BoNT-A.
Collapse
Affiliation(s)
| | | | - Pacifico E. Calderon
- Department of Professionalism, Medical Ethics and Humanities, College of Medicine, and Clinical Ethics Services, St. Luke’s Medical Center, Quezon City, the Philippines
| | | | - Mary Dingley
- The Cosmetic Medicine Centre, Toowong, Queensland, Australia
| | - Wilson W. S. Ho
- The Specialists: Lasers, Aesthetics and Plastic Surgery, Central, Hong Kong
| | | | - Lis S. Suseno
- Division of Cosmetic Dermatology, Department of Dermatology and Venereology, Faculty of Medicine, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Vasanop Vachiramon
- Division of Dermatology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
5
|
Martin MU, Frevert J, Tay CM. Complexing Protein-Free Botulinum Neurotoxin A Formulations: Implications of Excipients for Immunogenicity. Toxins (Basel) 2024; 16:101. [PMID: 38393178 PMCID: PMC10892905 DOI: 10.3390/toxins16020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The formation of neutralizing antibodies is a growing concern in the use of botulinum neurotoxin A (BoNT/A) as it may result in secondary treatment failure. Differences in the immunogenicity of BoNT/A formulations have been attributed to the presence of pharmacologically unnecessary bacterial components. Reportedly, the rate of antibody-mediated secondary non-response is lowest in complexing protein-free (CF) IncobotulinumtoxinA (INCO). Here, the published data and literature on the composition and properties of the three commercially available CF-BoNT/A formulations, namely, INCO, Coretox® (CORE), and DaxibotulinumtoxinA (DAXI), are reviewed to elucidate the implications for their potential immunogenicity. While all three BoNT/A formulations are free of complexing proteins and contain the core BoNT/A molecule as the active pharmaceutical ingredient, they differ in their production protocols and excipients, which may affect their immunogenicity. INCO contains only two immunologically inconspicuous excipients, namely, human serum albumin and sucrose, and has demonstrated low immunogenicity in daily practice and clinical studies for more than ten years. DAXI contains four excipients, namely, L-histidine, trehalosedihydrate, polysorbate 20, and the highly charged RTP004 peptide, of which the latter two may increase the immunogenicity of BoNT/A by introducing neo-epitopes. In early clinical studies with DAXI, antibodies against BoNT/A and RTP004 were found at low frequencies; however, the follow-up period was critically short, with a maximum of three injections. CORE contains four excipients: L-methionine, sucrose, NaCl, and polysorbate 20. Presently, no data are available on the immunogenicity of CORE in human beings. It remains to be seen whether all three CF BoNT/A formulations demonstrate the same low immunogenicity in patients over a long period of time.
Collapse
|
6
|
Dong Z, Zhang X, Zhang Q, Tangthianchaichana J, Guo M, Du S, Lu Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int J Nanomedicine 2024; 19:1017-1039. [PMID: 38317847 PMCID: PMC10840538 DOI: 10.2147/ijn.s445333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally focus on the further use of AMPs nano agents in the anti-cancer direction.
Collapse
Affiliation(s)
- Ziyi Dong
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Research and Development Centre in Beijing, CSPC Pharmaceutical Group Limited, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jakkree Tangthianchaichana
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Mingxue Guo
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shouying Du
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Malek-Khatabi A, Rad-Malekshahi M, Shafiei M, Sharifi F, Motasadizadeh H, Ebrahiminejad V, Rad-Malekshahi M, Akbarijavar H, Faraji Rad Z. Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: design, formulation and in vivo evaluation. Biomater Sci 2023; 11:7784-7804. [PMID: 37905676 DOI: 10.1039/d3bm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Multiple periodic injections of botulinum toxin A (BTX-A) are the standard treatment of hyperhidrosis which causes excessive sweating. However, BTX-A injections can create problems, including incorrect and painful injections, the risk of drug entry into the bloodstream, the need for medical expertise, and waste disposal problems. New drug delivery systems can substantially reduce these problems. Transdermal delivery is an effective alternative to conventional BTX-A injections. However, BTX-A's large molecular size and susceptibility to degradation complicate transdermal delivery. Dissolving microneedle patches (DMNPs) encapsulated with BTX-A (BTX-A/DMNPs) are a promising solution that can penetrate the dermis painlessly and provide localized translocation of BTX-A. In this study, using high-precision 3D laser lithography and subsequent molding, DMNPs were prepared based on a combination of biocompatible polyvinylpyrrolidone and hyaluronic acid polymers to deliver BTX-A with ultra-sharp needle tips of 1.5 ± 0.5 µm. Mechanical, morphological and histological assessments of the prepared DMNPs were performed to optimize their physicochemical properties. Furthermore, the BTX-A release and diffusion kinetics across the skin layers were investigated. A COMSOL simulation was conducted to study the diffusion process. The primary stability analysis reported significant stability for three months. Finally, the functionality of the BTX-A/DMNPs for the suppression of sweat glands was confirmed on the hyperhidrosis mouse footpad, which drastically reduced sweat gland activity. The results demonstrate that these engineered DMNPs can be an effective, painless, inexpensive alternative to hypodermic injections when treating hyperhidrosis.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sharifi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahiminejad
- School of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia.
| | | | - Hamid Akbarijavar
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia.
| |
Collapse
|
8
|
Sattler S, Gollomp S, Curry A. A Narrative Literature Review of the Established Safety of Human Serum Albumin Use as a Stabilizer in Aesthetic Botulinum Toxin Formulations Compared to Alternatives. Toxins (Basel) 2023; 15:619. [PMID: 37888650 PMCID: PMC10610632 DOI: 10.3390/toxins15100619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Despite more than 80 years of use in a number of conditions, including in critically ill patients, comments have recently arisen regarding the safety and efficacy of human serum albumin (HSA) as a therapeutic product and stabilizer/excipient in botulinum neurotoxins. This review summarizes the literature on the safety of HSA. Beyond decades of safe use, the largest clinical dataset of HSA safety is a large meta-analysis of HSA supplier data, which found only an extremely remote risk of serious adverse events across millions of doses of therapeutic concentrations of HSA. There is a paucity of literature identifying HSA-specific adverse events when used as a stabilizer/excipient; however, studies of HSA-containing botulinum neurotoxins (BoNTs) suggest that adverse events are not related to HSA. Polysorbates, which are synthetically produced and not physiologically inert, are contained in pending or new-to-market BoNT formulations. In contrast to HSA, evidence exists to suggest that polysorbates (particularly PS20/PS80) can cause serious adverse events (e.g., hypersensitivity, anaphylaxis, and immunogenicity).
Collapse
|
9
|
Yokohata S, Ohkura K, Nagamune H, Tomoyasu T, Tabata A. Human serum albumin stabilizes streptolysin S activity secreted in the extracellular milieu by streptolysin S-producing streptococci. Microbiol Immunol 2023; 67:58-68. [PMID: 36478453 DOI: 10.1111/1348-0421.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Anginosus group streptococci (AGS) are opportunistic pathogens of the human oral cavity; however, their pathogenicity has not been discussed in detail. Oral streptococci live in the gingival sulcus, from where they can easily translocate into the bloodstream due to periodontal diseases and dental treatment and cause hazardous effects on the host through their virulence factors. Streptolysin S (SLS), a pathogenic factor produced by β-hemolytic species/strains belonging to AGS, plays an important role in damaging host cells. Therefore, we investigated the SLS-dependent cytotoxicity of β-hemolytic Streptococcus anginosus subsp. anginosus (SAA), focusing on different growth conditions such as in the bloodstream. Consequently, SLS-dependent hemolytic activity/cytotoxicity in the culture supernatant of β-hemolytic SAA was stabilized by blood components, particularly human serum albumin (HSA). The present study suggests that the secreted SLS, not only from β-hemolytic SAA, but also from other SLS-producing streptococci, is stabilized by HSA. As HSA is the most abundant protein in human plasma, the results of this study provide new insights into the risk of SLS-producing streptococci which can translocate into the bloodstream.
Collapse
Affiliation(s)
- Shuto Yokohata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hideaki Nagamune
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshifumi Tomoyasu
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Atsushi Tabata
- Division of Bioresource Science, Graduate School of Sciences and Technology for Innovation, Tokushima University Graduate School, Tokushima, Japan.,Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
10
|
Hada S, Lee JC, Lee EC, Ji S, Nam JS, Yun BJ, Na DH, Kim NA, Jeong SH. Dissociation mechanics and stability of type A botulinum neurotoxin complex by means of biophysical evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00570-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Philipp-Dormston WG, Bertossi D, Houschyar K, Rahman E. Botulinum Toxins for Aesthetic Facial Injections - A scientific review to support evidence-based best practice. Facial Plast Surg 2022; 38:152-155. [PMID: 34983077 DOI: 10.1055/a-1730-8270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Botulinum Toxins (BoNT) are complex biological products. Each licensed BoNTA has its own individual characteristics resulting into different attributes, some of them being of clinical relevance. Besides profound anatomical knowledge and understanding of aesthetic principles, the responsible injecting physician should be aware of those pharmaceutical and clinical properties. Especially against the background of new BoNTA formulations receiving approval by the authorities a critical and dedicated discussion on the individual characteristics should take place and the potential relevance on the treatment outcome should be taken into consideration.
Collapse
Affiliation(s)
| | | | - Khosrow Houschyar
- Dermatology, Hautzentrum Koeln, Klinik Links vom Rhein, Cologne, Germany, Koeln, Germany
| | - Eqram Rahman
- Plastic Surgery, Plastic Surgery, Royal Free Hospitals & University College London, London, UK., London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
12
|
Immunogenicity of Botulinum Toxin Formulations: Potential Therapeutic Implications. Adv Ther 2021; 38:5046-5064. [PMID: 34515975 PMCID: PMC8478757 DOI: 10.1007/s12325-021-01882-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are proteins produced by bacteria of the Clostridium family. Upon oral ingestion, BoNT causes the neuroparalytic syndrome botulism. There are seven serotypes of BoNT (serotypes A-G); BoNT-A and BoNT-B are the botulinum toxin serotypes utilized for therapeutic applications. Treatment with BoNT injections is used to manage chronic medical conditions across multiple indications. As with other biologic drugs, immunogenicity after long-term treatment with BoNT formulations may occur, and repeated use can elicit antibody formation leading to clinical nonresponsiveness. Thus, approaching BoNT treatment of chronic conditions with therapeutic formulations that minimize stimulating the host immune response while balancing patient responsiveness to therapy is ideal. Immunogenicity is a clinical limitation in many settings that use biologic drugs for treatment, and clinically relevant immunogenicity reduction has been achieved through engineering smaller protein constructs and reducing unnecessary formulation components. A similar approach has influenced the evolution of BoNT formulations. Three BoNT-A products and one BoNT-B product have been approved by the Food and Drug Administration (FDA) for therapeutic use: onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB; a fourth BoNT-A product, daxibotulinumtoxinA, is currently under regulatory review. Additionally, prabotulinumtoxinA is a BoNT-A product that has been approved for aesthetic indications but not therapeutic use. Here, we discuss the preclinical and clinical immunogenicity data that exist within the scientific literature and provide a perspective for considering immunogenicity as a key factor in choice of BoNT formulation.
Collapse
|